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Bd. V. Pârvan nr. 2, RO-300223 Timişoara, Romania
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Abstract. Message sequence charts (MSC) are a graphical language for
the description of communication scenarios between asynchronous pro-
cesses. Our starting point is to model systems using an assume-guarantee
formalism, in the style of LSCs and Triggered MSCs. We enrich MSCs
with the possibility of using gaps (template MSC), and show their ex-
pressivity. This formalism also allows to express logical formulas. We
analyze the model-checking problem, whose complexity is linear in the
size of the system, and ranges from PTIME to EXPSPACE in the size
of the template formula.

1 Introduction

Concurrent systems are intricate and hence difficult to describe. The classical
description, stemming from programming practices, is based on listing the dif-
ferent concurrent participants, e.g., the processes. The Message Sequence Charts
(MSC) formalism allows an alternative “sequential” description of a concurrent
system, where the complete behavior of all the processes involved in some given
task are depicted in a visual way. The language enjoys widespread use in the
specification of telecommunication protocols and has been standardized by the
ITU-T [1]. In a single MSC we can describe the behavior of all the processes
involved, including the local actions and the messages exchanged between them.
Such a slicing of the concurrent execution provides further intuition about the
behavior of the system. One of the drawbacks of this representation is that tasks
are seldom executed in a sequential way, and some overlap commonly exists.

In this paper we study an MSC-related formalism that allows expressing non-
contiguous tasks. This is done by adding gaps to the MSC formalism. Intended
for the analysis of systems, we present the formalism and study related verifica-
tion problems. We are influenced in our proposal by Live Sequence Charts [4] and
Triggered MSCs [16], and include an assume-guarantee mechanism, i.e., being
able to require the execution of a task provided that another task was executed.
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While an individual MSC has a formally defined semantics, its relation to
the system behavior is left open by the standard: the usual interpretation is that
the scenario should be possible in the implementation. In defining Live Sequence
Charts, Damm and Harel [4] extensively emphasize the duality of mandatory
and provisional semantics, but with a much wider set of features, including
abort/exit conditions and reliable or lossy transmission. The provisional seman-
tics is used with the standardized High-Level MSCs (HMSCs for short), that
are described by (hierarchical) graphs with nodes labeled by MSCs [1]. The se-
mantics of an HMSC is the set of MSCs formed by concatenating (process by
process) MSCs seen along a path. HMSCs have several drawbacks, such as the
difficulty to express concurrency between two independent threads, due to the
sequential control of the graph. The result is that many systems are hard to
model using HMSCs. To address this problem, other kinds of specifications have
been proposed, e.g. based on Petri nets with transitions labeled by MSCs [12].

A totally different approach is taken by Triggered MSCs [16]. They replace
the sequential description of HMSCs by an assume-guarantee formalism (that
also exists in LSCs in form of activation messages). Causality is expressed by
structuring a specification with two components: a precondition that identifies
the initial behavior, and a postcondition expressing the continuation supposed
to be guaranteed under this assumption. Assume-guarantee combined with the
parallel operator emphasizes compositionality: a system description is most eas-
ily obtained combining MSCs for collections of directly interacting processes,
and superimposing assume-guarantee patterns that further constrain interac-
tions between individual scenarios.

We are inspired by the Triggered MSCs notation. Our suggestion attempts
to improve on several points, for example, making the use of infinite assume-
guarantee easier to understand. Our main contribution is to define template
MSCs, and use them in the Triggered MSCs setting. We achieve conciseness by
specifying only events strictly needed to identify a scenario and by using gaps as
placeholders for other messages. With gaps, parallel composition can be simply
expressed as conjunction, without the need for parallel (shuffle) operators. Using
assume-guarantee template MSCs we can easily specify loops and thus infinite
specifications.

A second important use of assume-guarantee template MSCs is the ability to
easily specify properties that a system should satisfy (the system is given here
as a set of FSMs communicating through (existentially) bounded FIFO message
queues, or as an HMSC). We can express temporal properties, e.g. the fact that
whenever A happens, B should eventually follow. Compared to temporal logics,
MSCs have the advantage of being a visual formalism, and thus easier to use in
a design and engineering environment. Moreover, template MSC formulas are a
fragment of a partial-order global logics with filter, whose complexity would be
much higher. We study the complexity of verifying temporal properties expressed
by various classes of templates and show that it ranges from PTime to ExpSpace
in the size of the formula, and is linear-time in the size of the system.
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One of the main differences between template MSCs and LSCs or Triggered
MSCs is the use of gaps inside the MSC notation, in order to express an arbitrary
(but finite) amount of communication or events. The user can also draw single
send/receive events, with the matching event being located in a gap. Another
difference is that we are using template MSCs as a visual specification formalism,
as an alternative to temporal logic specification. Our specification is partial-order
based, related to logics such as LTrL [17,5], TLC [3] and MSO [13].

A variant of model-checking for MSCs and HMSCs is considered in [15]. It
uses an alternative semantics that consists in adding gaps between each pair
of events on each process. This allows combating the undecidability of HMSC
intersection. The approach in this paper is different. Gaps are added in the
specification, and their locations and types need to be explicitly specified. For
the full version see http://www.crans.org/˜genest/fossacs03 full paper.ps.

2 Message Sequence Charts and Templates

Message Sequence Charts (MSC for short) is a scenario language standardized by
the ITU, [1]. They represent simple diagrams depicting the activity and commu-
nications in a distributed system. The entities participating in the interactions
are called instances (or processes) and are represented by vertical lines. Message
exchanges are depicted by arrows from the sender to the receiver. In addition to
messages, atomic actions can also be represented.

The left part of Figure 1 gives an example of an MSC M modeling two
messages sent between a Writer W and a Server S.

Definition 1 An MSC is a tuple M = 〈P, E,A, �, m, <〉 where:
– P is a finite set of processes,
– E is a finite set of events,
– A is a finite set of names for messages and local actions,
– � : E → T = {p!q(a), p?q(a), p(a) | p �= q ∈ P, a ∈ A} labels an event with its
type: in process p, either a send p!q(a)of message a to process q (respectively, a
receive p?q(a) of message a from process q) or a local event p(a). The labeling
� partitions the set of events by type (send, receive, or local), E = S ·

⋃
R ·

⋃
L,

and by process, E = ·
⋃

p∈P Ep.
– m : S → R is a bijection matching each send to the corresponding receive. If
m(s) = r, then �(s) = p!q(a) and �(r) = p?q(a) for some p, q ∈ P and a ∈ A.

– <⊆ E × E is an acyclic relation between events consisting of:
- a total order on Ep, for every process p ∈ P, and
- s < r, whenever m(s) = r.

The event labeling � implicitly defines the process pr(e) for each event e:
pr(e) = p if e ∈ Ep, i.e., �(e) ∈ {p!q(a), p?q(a), p(a)} for some q ∈ P, a ∈ A. We
assume that channels are FIFO, i.e., there is no overtaking on messages sent on
the same channel.

The relation < is called the visual order on the MSC, since it corre-
sponds to its graphical representation. It is comprised of the process order-
ing and the message ordering, pairwise between send and matching receive.

h
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Since < is required to be acyclic, its reflexive-transitive closure <∗ is a par-
tial order on the set E of events, which we will denote by ≤. An exten-
sion of ≤ to a total order on E is called a linearization of M . We denote
by Lin(M) the set of all labeled linearizations of an MSC M , Lin(M) =
{�(e1) · · · �(en) | e1 · · · en is a linearization of M}.

The main objective in this paper is to model complex communication inter-
actions using finite scenarios. We argue that HMSCs are hard to use in specifica-
tion, since a designer must be able to describe the global behavior of a protocol
in form of a graph. In general, finite MSCs are easier to use, since they capture
the essence of scenarios. To describe one particular aspect of the system behav-
ior, it is frequently not needed to consider all message exchanges or indeed not
even all processes. Thus, we propose to use templates, which are diagrams in
which events/messages can alternate with gaps. Gaps are effectively placehold-
ers for arbitrary many (eventually zero) events or messages between designated
processes. They can be instantiated by compositional MSCs (CMSC for short),
that is an extension of MSCs [7]. The difference between a CMSC and an MSC
is that the message function m is a partial function, i.e., there can be sends or
receives for which no matching event is defined. A send s is called matched if the
(matching) receive r = m(s) is defined. By instantiating gaps by CMSCs, there
can be messages exchanged between different gaps or messages composed by an
event of the diagram and an event in a gap. The template MSC N in the right
part of Figure 1 describes the set of all CMSCs containing the message a.

Definition 2 (Template MSC) A template MSC is a tuple 〈P, E, Γ,A, �, m, <〉,
where 〈P, E,A, �, m, <〉 is a CMSC, with the following components extended:
– Γ is a finite set of gap markers,
– � : E ∪ Γ → T ∪ 2T , with �(γ) ⊆ T the message types allowed in gap γ ∈ Γ .
Let Γp ⊆ Γ be the set of gaps γ such that �(γ) allows events on process p.

– ≤ ⊆ (E ∪ Γ )2. For each process p ∈ P the restriction of < to Ep ∪ Γp must
be a total order.

The order between gaps and events in the above definition ensures that tem-
plate MSCs can be effectively represented as diagrams. The semantics of a tem-
plate MSC is an infinite set of CMSCs, obtained by replacing the gaps by CMSCs
of allowed types.

Definition 3 (Semantics) A template MSC M = 〈P, E, Γ,A, �, m, <〉
defines a set of CMSCs, denoted by L(M). A CMSC M ′ =
〈P, E′ = E ∪

⋃
γ∈Γ Eγ ,A, �′, m′, <′〉 is in L(M) if it is obtained by re-

placing each gap γ ∈ Γ with a (possibly empty) CMSC Mγ with event set Eγ

such that:

– The type function �′ is the union of � and the type function of each Mγ . It
is required that �′(e) ∈ �(γ) for every event e ∈ Eγ (i.e., Mγ contains only
events of allowed types).

– The message function m′ extends m and the message function of each Mγ .
It is required that m′ preserves the FIFO restriction on matched events.



Specifying and Verifying Partial Order Properties Using Template MSCs 199

– The visual order <′ is the union of <, the visual order of each Mγ , and the
set of all pairs (e, f) satisfying m′(e) = f or pr(e) = pr(f) and one of the
following:

• e ∈ Eγ , f ∈ Eκ with γ < κ (both e, f in gaps),
• e ∈ Eγ , f ∈ E with γ < f (e in a gap),
• e ∈ E, f ∈ Eγ with e < γ (f in a gap).

Remark. The ordering required between an event e and a gap γ sharing some
process, does not imply an order between e and all events of γ. That is, we may
have two unordered events e, f in M ′, with f belonging to some gap γ where
e < γ (however, pr(e) �= pr(f) in this case). Moreover, we may have e < γ < f
in M with e, f ∈ E, γ ∈ Γ , but by replacing γ with the empty MSC, e, f are
not ordered in M ′.

Note also that with our definition it is possible to obtain different message
functions m′ for the same instantiation (Mγ)γ∈Γ of gaps. This is needed since
we will concatenate two such CMSC instantiations M1, M2, such that the result
is an MSC. Thus the message function of M2 depends on M1. �

Notice also that compositionality in gaps is mandatory if one wants e.g. to
describe the set of all MSCs containing a given message. Assume for instance
that in figure 1 the gaps of N are instantiated by MSCs, and not by CMSCs.
Then the MSC M in the left part does not belong to the template L(N).

W S

a

W S

a

NM

Fig. 1. Template N representing all (C)MSCs containing the message a

We define Lin(M) for a template MSC M as the union of the linearizations
of all CMSCs from L(M).

Template MSCs describe only simple communication patterns. To increase
their expressivity, we can use them in an assume-guarantee framework, that
allows in particular to express safety and liveness-like properties (see section
4.1). For defining assume-guarantee template MSCs we first define what it means
to decompose an MSC N as N = ST , where S, T are CMSCs. It means that
there exists a linearization x1 · · ·xk of N and some 1 ≤ i ≤ k such that x1 · · ·xi

(xi+1 · · ·xk, resp.) is a linearization of S (T , resp.).

Definition 4 (Assume-guarantee template MSCs) Let Ma, Mg be two template
MSCs. Then Ma � Mg and Ma � ¬Mg are assume-guarantee template MSCs
that define sets of MSCs, denoted by L(Ma � Mg),L(Ma � ¬Mg):
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– L(Ma � Mg) = {N ∈ MSC | for every decomposition N = ST, either
S /∈ L(Ma) or T ∈ L(Mg)}.

– L(Ma � ¬Mg) = {N ∈ MSC | for every decomposition N = ST, either
S /∈ L(Ma) or T /∈ L(Mg)}.

For an example of an assume-guarantee template MSC see Figure 4. Notice
that S, T can be CMSCs, but ST = N is required to be an MSC. Note also that
assume-guarantee template MSCs generalize MSCs, since every MSC M can be
represented as ε � M , where ε is the empty MSC.

A template MSC formula is a conjunction
∧

i(M
i
a � (

∨
j ±M ij

g )), where
± means that guarantee MSCs may appear in either positive or negated form.
That is, for each of the individual assume-guarantee specifications of the out-
ermost conjunction, we have preconditions in form of positive scenarios, and
postconditions as disjunctions of either positive or negative (forbidden) scenar-
ios. Hence, an MSC N belongs to L(Ma �

∨
j ±M j

g ) if for every decomposition
N = ST , whenever S ∈ L(Ma) either T ∈ L(M j

g ) for some positive M j
g , or

T /∈ L(M j
g ) for some negative M j

g . This conditional description allows in par-
ticular the guarantee false, with L(false) = ∅. For example, an MSC N satisfies
M � false iff no prefix of N is in L(M). The formula ε � ¬M describes the
complement of L(M).

3 Modeling Using Template MSCs

A first application of template MSCs is for modeling protocols easier than with
HMSCs [1]. The drawback of the standard notation of HMSCs is that one needs
a global (graph) description combining several scenarios, resp. behaviors of the
system. Using template MSCs, we model each behavior locally, that is each
scenario is described on the processes that it involves. We restrict then the
combination of these local behaviors by using template formulas. In the latter
step, using template MSCs allows us to focus only on the relevant messages in
a scenario, and avoid both repetition and the inclusion of unrelated messages.

W S

write(x)�

ok

commit �

N1

W S

write(x)�

fail

abort �

rb

N2

S R

read(x)�

val(x) �

commit �

N3

S R

read(x)�

val(x) �

abort �

N4

Fig. 2. Global Behavior of Writer-Server-Reader System: (N1 ∨ N2)�||(N3 ∨ N4)�

We present an example that illustrates the major features of our approach,
namely the reader-writer example, taken from [16]. The system consists of three
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processes: a writer W and a reader R which concurrently access variables main-
tained by a server S. The latter has the task of maintaining atomicity and
serialization of read and write operations, each of which are performed in two
phases. Since triggered MSCs cannot deal easily with infinite specifications, the
example from [16] involves a single read/write operation. With template formu-
las we do not have this problem, so we extend this example to arbitrary many
write/read operations.

The writer W performs a tentative update of variable x by sending a message
w(x) to the server S; x is now in a “dirty” state. Then, W performs a local
action ok or fail which decides on the outcome of the write, and sends the
corresponding message commit or abort to the server. A commit marks the
variable as “clean”. An abort causes the server to perform a local rollback action
rb and potentially influences a read in progress. The reader R can send the
server a request r(x) for the variable x, to which the server responds with a
value val(x). Subsequently, the server either follows up with a commit message,
if the sent value was clean, or has been since committed by the writer, or sends
an abort if the sent value has to be rolled back. Although many different orders
of interactions between the three processes are possible, the interaction between
the pairs of directly communicating processes is simple. Our system description
above contains a pair of basic scenarios for both writer-server and reader-server
interaction, depicted in Figure 2.

The global behavior is a subset of that given by composing these individ-
ual scenarios. Using a notation similar to Triggered MSCs, we would write
(N1 ∨ N2)�||(N3 ∨ N4)�. However, one side effect of gaps is that they make
the definition of a parallel composition operator unnecessary, assuming that
we compare MSC with different type sets. To express N1||N3 for instance, it
suffices to extend both MSCs to all three processes, and add gaps in between
all messages. The gaps in N1 (resp. N3) allow only events of N3 (resp. N1).
Then, parallel composition simply becomes conjunction (language intersection):
L(N1||N3) = L(N1)∩L(N3). We need slightly more work for expressing the star
of languages. First, we need an initialization step (ε � M1 ∨ M2) for the writer,
meaning that every MSC in the specification should begin on W, S by a write,
and then either ok and commit, or fail and abort. Anything can happen next, as
allowed by the unrestricted gap γ�. The MSCs M1, M2 are defined in figure 3,
where the gap γ� has no restriction, while γR is restricted to events of N3, N4.

By adding an inductive step we obtain the specification. Namely, we need
that either M1 or M2 happens after each message commit (or event rb), or there
is no more event on W, S (gap γR), specified as:

γ�commit � M1 ∨ M2 ∨ γR ∧ γ�rb � M1 ∨ M2 ∨ γR

The same applies for M3, M4. These individual scenarios are interdependent,
so the global system behavior is obtained by imposing additional constraints
on their composition. We divide the constraints into an assumption part that
identifies the initial behavior in a scenario, and a guarantee part expressing the
behavior expected of the system under this assumption.
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W S R

γR

write(x)�

ok γR

commit�

γ�

M1

W S R

γR

write(x)�

fail γR

abort�
γR

rb

γ�

M2

W S R

γW

read(x)�

γW

val(x)�

γW

commit�

γ�

M3

W S R

γW

read(x)�

γW

val(x)�

γW

abort�

γ�

M4

Fig. 3. Initialization: ε � (M1 ∨ M2) ∧ ε � (M3 ∨ M4)

W S R

val(x)�
abort�

abort�

M5

For our WSR example we identify 5 cases specified
with the constraints in Figure 4. M5 states that if a
write on the Server is followed by a send of x to the
Reader, and the Writer aborts (precondition), then the
Server should inform the Reader about the abort (post-
condition). The occurrence of the read is guaranteed by
M3 or M4, so it needs not be specified again. Likewise,
M1, M2 ensure that if there is no write between a send
of x and an abort of the Writer, then the write has oc-
curred in the first gap. This precondition will imply an
abort for the read (postcondition). The remainder of the interaction needs not
be specified, so we allow gaps in between these actions, corresponding to send-
ing and receiving other messages. The other cases correspond to a commit of
the value. Namely, a value is sent while no write has been produced (M6), or a
value is sent after the last write has been roll-backed (M7)/committed (M8), or
a commit is received immediately after the value is sent (M9).
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W S R
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Fig. 4. Assume-Guarantee Scenarios for Writer-Server-Reader System

Hence the constraint is M5 ∧ M6 ∧ M7 ∧ M8 ∧ M9. Without template MSCs,
we would need to write at least every possible instantiation for gaps in our 5
cases, yielding at least 12 cases. For instance, an HMSC specifying the same
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model would require at least 19 states. Moreover, the size increases even more
severely (exponentially) if instead of a single reader we allow several ones. With
template formulas we express the constraints for each pair Writer/Reader, while
an equivalent HMSC has to describe all possible combinations over all Readers.
This lack of conciseness of HMSCs is a real drawback, since many algorithms
involving MSCs are at least NP-hard. First, HMSCs are unable to represent the
parallel composition, which can lead to an exponential blow-up compared with
template formulas, and to specifications that are harder to understand. Second,
HMSCs are finitely generated, which prevents them from implementing simple
protocols such as the alternating bit. Third, HMSCs cannot be complemented in
general. Hence, since template formulas implicitly complement the assume part
they are not subsumed by HMSCs.

4 Specifying Properties

4.1 Logical Properties

Template MSC formulas can describe easily and in a concise way some interesting
properties and can be model-checked (see next section). We can use them for
describing global properties of MSC configurations and use gaps as filters, i.e.,
for restricting the types of events. We denote in the examples below by γ an
unrestricted gap over all processes, and by γ¬a a gap that can generate all event
types except for a.

– (γA) � false = ε � ¬(γAγ): No execution contains the MSC A.
– γ � γAγ: Every execution contains infinitely often the MSC A.
– γA � γBγ: Whenever A occurs, eventually B will occur.
– (γA � γaγ) ∧ [ε � (γ¬a ∨ γ¬aAγ)]: The MSC A may occur. If this is the

case, then the event a must follow. Moreover, event a cannot occur before
A. One can see a as an alarm event that is triggered by A.

The theorem below shows that the expressiveness of compositional gaps has a
drawback, namely that the satisfiability problem for template formulas is unde-
cidable in general. However, we can check the satisfiability of a template formula
S if we ask only for MSCs that have at least one linearization where the size of
each channel is bounded by some given value b (it is possible that other equivalent
linearizations have higher bounds). A set S of such MSCs is called existentially b-
bounded. For instance, every HMSC (even every realizable compositional HMSC,
see [7]) is existentially bounded.

Theorem 1 1. Given a bound b and a template MSC formula S, it is decidable
whether there exists an existentially b-bounded MSC in L(S).

2. It is undecidable whether a template MSC formula S satisfies L(S) �= ∅.

The proof of the first statement above follows from the results in the next
section. For the second statement, we reduce from the Post correspondence prob-
lem, making use of the unbounded communication channels.
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4.2 Model-Checking Template Formulas

We consider now the problem of verifying an implementation of a communica-
tion protocol S with respect to a template MSC formula Φ. A different approach
using partial order MSO for the specification Φ gives decidability for the model-
checking problem [13], albeit at very high costs. As suggested by Theorem 1, the
system S needs an existential bound on buffers, denoted by bS . This includes
protocols modeled by HMSCs, communicating finite state machines with exis-
tentially bounded FIFO buffers (and even realizable compositional HMSCs, see
[7]). The model for the implementation here is a finite automaton (FSM), gen-
erating linearizations of MSCs. We do not require that S is linearization-closed,
i.e., S may generate a linearization of some MSC without generating all of them.
We can obtain a linear-size FSM from any (realizable compositional) HMSC. It
suffices to replace each node by a linearization of the CMSC labeling the node.

Definition 5 For an FSM S and an assume-guarantee MSC Ma � ±Mg we
write S |= (Ma � ±Mg) if L(S) ⊆ L(Ma � ±Mg). The satisfaction of a
template formula is defined according to the usual semantics of ∧,∨.

In the following, we give complexity results for checking S |= Φ for various
classes of template MSC formulas Φ. While S can be very large, real life formulas
Φ and existential channel bounds bS are pretty small. Hence we focus on keeping
the complexity linear w.r.t. S. We will transform the formula into an automaton,
so our algorithm will be automata-based. Moreover, checking that S |=

∧
i Φi is

done for each Φi separately.

Proposition 1 Given an FSM S with channel bound bS and a template MSC
Mg, we can check whether S |= ε � Mg in space exponential in bS |Mg| and
logarithmic in |S|.

Proof. Let E be the set of events in the template MSC Mg. Let M be the
MSC obtained from Mg by replacing each gap by the empty MSC. Let us fix a
linearization x = x1 · · ·xn of M . We show how to construct an NFA Ax accepting
every linearization of Lin(Mg) whose events occur in the order given by x.

For each gap γ of Mg and each process p that is allowed in γ we use a new
symbol γp. We first set the beginning and the end of γ on process p by choosing
two positions i ≤ j in x and then inserting one occurrence of γp between each
xk, xk+1 for i ≤ k < j. The choice of i, j must be consistent with the position of
gap γ on process p. For instance, both the events on p before γ and the symbols
κp with κ < γ must precede xi. Let y be a string obtained in this manner. It
remains to replace each symbol γp by X∗

γ,p, with Xγ,p ⊆ �(γ) the event types
of γ on process p. In order to obtain all linearizations of Lin(Mg), between any
two consecutive events xi, xi+1, the NFA will generate all possible orderings
of events that preserve the sequence of gaps X∗

γ,p on process p. For instance,
suppose that we have X∗

γ1,pX
∗
γ3,rX

∗
γ2,pX

∗
γ1,q between two events. Then the NFA

generates (Xγ1,p ∪ Xγ3,r ∪ Xγ1,q)∗(Xγ3,r ∪ Xγ2,p ∪ Xγ1,q)∗.
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We have to ensure that messages of M are preserved. For this, we use one
counter (of maximal value bS) per message in M . Furthermore, to ensure that a
message is never received before being sent, we use one counter per communica-
tion channel (of maximal value bS). When a message m from p to q of M is sent,
the counter Cm is initialized at 0. We increment it when a message is sent from
p to q, and decrement when q receives from p. When the message m is received,
we block the counter Cm. In the same way, we increment and decrement the
counter corresponding to some channel, and block whenever it has value -1. The
automaton accepts iff all counters are 0.

The resulting NFA is exponential in bS |Mg| and accepts all bS-bounded lin-
earizations of Lin(Mg). For a positive guarantee we can thus check L(S) ⊆
Lin(Mg) in space exponential in bS , |Mg|. For a negative guarantee we check
L(S) ∩ Lin(Mg) = ∅ in polynomial space in bS , |Mg|. �

We can construct the same automaton for the precondition Ma. Then we
compute in polynomial space the states of S that can be reached from an initial
state by some execution corresponding to an MSC in L(Ma). We obtain:

Theorem 2 Checking S |= Ma �
∨

i(±)M i
g is in EXPSPACE(bS |Mg|) (and

PSPACE(|Ma|). Checking S |= Ma �
∨

i ¬M i
g is in PSPACE(bS |Mg||Ma|).

4.3 Model-Checking in PTIME

While template specifications are quite expressive, we have seen in the previous
section that model-checking is rather expensive. On the other hand, partial-
order logics are in general more expensive than linear logics (e.g., LTrL is non-
elementary [18]. For a natural fragment of LTrL that is related to our template
formulas, where the until operator is replaced by the existential diamond oper-
ator, model-checking is also EXPSPACE, [3,18]. In this section we consider a
reasonable restriction of template MSCs that yields a polynomial time model-
checking algorithm. Basically, we require that 1) the guarantee template has only
one gap, 2) the system is linearization-complete and 3) gaps must be instantiated
by simple MSCs (instead of CMSCs).

Proposition 2 Checking S |= ε � Mg, where S is an FSM and Mg is an MSC
with at most one gap can be done in time polynomial in |Mg|.

Proof. For each process p, we show how to build an automaton Ap of
polynomial size, recognizing linearizations where the projection on p contra-
dicts the projection of Lin(Mg) onto p, denoted as

∏
p(Lin(Mg)). We have∏

p(Lin(Mg)) = a1 . . . alX
∗
pb1 . . . bm where Xp is the set of all events allowed

in the unique gap of Mg on process p. For generating L(Ap) =
∏

p(Lin(Mg)),
we just need the disjunction of three regular sets, the first one testing that the
number of events on p is less than l + m, the second one recognizing the viola-
tion of the prefix a1 . . . al on p, and the third one recognizing the violation of
the suffix b1 . . . bm on p. Clearly, Lin(S) ∩ Lin(

⋃
p Ap) = ∅ iff S |= ε � Mg. �

For model-checking vs. an assume-guarantee template MSC in polynomial
time we consider only linearization-complete systems. Recall that a system S is
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linearization-complete if for each execution of S that is the linearization of an
MSC M , every linearization of M is an execution of S. Such a system can be
derived from a regular MSC language [10].

Proposition 3 Given a linearization-complete system S and a template MSC
Ma, we can construct a polynomial-size NFA A such that:

1. L(A) ∩ L(S) ⊆ Lin(Ma) ∩ L(S), and
2. for each MSC M ∈ L(Ma) with Lin(M) ∩ L(S) �= ∅, A accepts at least one

linearization in Lin(M) ∩ L(S).

In particular, the last proposition implies that we can determine in poly-
nomial time the states of S that can be reached from an initial state by some
execution corresponding to an MSC in Ma, by computing L(A) ∩ L(S).

Proof. Consider an arbitrary linearization x1 · · ·xn of Ma, with xi ∈ E ∪ Γ .
Since S is complete, any MSC in L(Ma) that has a linearization in L(S) also has a
linearization in L(S) corresponding to x1 · · ·xn. We construct A as a sequencing
of NFA for each xi. For events, the NFA is trivial, with one transition. For gaps,
we note that any event sequence in A which doesn’t respect the message order
is eliminated on intersection with S. Thus, it suffices to build for each gap an
NFA which at each state has a transition for any event e ∈ �(γ), augmented
with incrementing a global counter on each send (and decrementing it on each
receive). The NFA accepts when the counter is zero, i.e. the number of total
sends and receives is balanced. The intersection with S ensures acceptance of
only those sequences which are balanced for each individual message. The value
of the counter is bounded by the total number of outstanding messages, which
is less than the size of S. Thus, A is of polynomial size. �

Notice that we cannot check a template formula Ma �
∨

j M j
g in PTIME

since the non-emptiness problem of the intersection of several automata is al-
ready PSPACE-hard. We can just generalize to the following:

Theorem 3 Checking that S |=
∧

i(M
i
a � (±M i

g)) where S is a linearization-
complete system, each M i

g has at most one gap and gaps in both M i
a, M i

g must
be instantiated by MSCs, can be done in time polynomial in the size of M i

a, M i
g

and S.

4.4 Closing the Gap between PTIME and EXPSPACE

A natural question arising now is which special cases of assume-guarantee tem-
plate MSCs can be model-checked in less than exponential space. This is more
than just a theoretical question, since model-checking in the general setting is
very expensive, while the PTIME case given in section 4.3 can only express very
simple properties.

In this section we restrict the guarantee template to have at most two gaps,
which basically means pattern matching a finite MSC. Notice that even the
complex alarm property in section 4.1is rather concise, it uses just two gaps.
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The main result given in this section is that model-checking assume-guarantee
template MSCs where the guarantee part has at most two gaps, can be done in
PSPACE. Since the guarantee part is usually small, a polynomial space algorithm
in the size of the formula and logarithmic in the size of the system is feasible
in practice (remember that model checking an FSM against an LTL formula is
also polynomial space in the size of the formula, but logarithmic in the size of
the FSM).

Proposition 4 Consider an FSM S (linearization-complete or not), and a tem-
plate MSC M with 2 gaps. Checking that S |= ε � M is in PSPACE(bS |M |).

We describe the algorithm first for an easier case, namely when M = γPγ,
where γ is a gap on all processes without any type restriction, and P is a finite
MSC (pattern). We adapt the pattern matching algorithm of [8] for Mazurkiewicz
traces, improving the result stated for hierarchical MSCs in [6]. Intuitively, we
do string pattern matching for each projection Pp of the pattern P on a process
p and then determine occurrences that match together to an MSC pattern.

Formally, for an MSC N and a process p we denote by Np the sequence of
events of N on p. The idea is to compute for each process p the positions xp of
Mp where Pp occurs, and check that there exists some tuple of positions (xp)p∈P
that corresponds to the pattern M . We locate a pattern Pp immediately after
its last event. For simplicity, if P has no event on process p, then we do as if
there is a pattern Pp after any event of M on p.

Definition 6 Let xp, xq be two occurrences of Pp and Pq, resp., in the MSC M .
We call xp, xq compatible if 1) there is no message (s, r) in M from p to q with
xp < s < r < xq and no message from q to p with xq < s < r < xp, and 2) if P
contains a message from p to q, then there is no message (s, r) in M from p to
q with s < xp and xq < r.

The next proposition states that the compatibility relation suffices for know-
ing whether M = γPγ, i.e., whether P occurs in M or not.

Proposition 5 A ℘-tuple (xp)p∈P is an occurrence of P in an MSC M iff xp, xq

are compatible for all p, q.

Proof. The implication from left to right follows easily. For the converse assume
by contradiction that (xp)p∈P is not a pattern because for some pair of processes
p, q, the sends from p to q do not match the receives of q from p.

There are several cases to consider. Either xp ends before the send of the
last message m from p to q that hits xq, and then this message m is after xp

and before xq, which is not possible. Or xq ends before the receive of the last
message m from p to q that was issued in xp, and then this message m is before
xp and after xq, which is not possible by the additional rule.

The last case where (xp)p∈P is not a pattern is because of some chain of
messages (sk, rk)1≤k≤m with pk = pr(sk+1) = pr(rk), rk < sk+1 for all k, and
such that p1 = p, pm+1 = q, xp < s1, rm < xq. Thus, there exists some k
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such that xpk
< sk and rk < xpk+1 . But this means that (xpk

, xpk+1) are not
compatible, a contradiction. �

The overall idea is to generate on-the-fly every pattern xp for all p, and to
compute the last pattern xp can be compatible with. If some xp is not compatible
with any xq (for at least one q), then we delete it. For instance, let (s, r) be a
message between p and q, and Xq be the last pattern on q before the receive r.
For all patterns xp < s on process p, the pattern Xq is the last pattern xp can be
compatible with, since any pattern xq > r on q would satisfy xp < s < r < xq. In
the case where Xq does not exist, xp cannot be matched and should be deleted.

Let A be the automaton corresponding to the product of deterministic au-
tomata recognizing (word) patterns on each process, using the pattern matching
algorithm of Knuth-Morris-Pratt.

We build an automaton B based on A that recognizes runs (linearizations)
that do not contain pattern P . The states of B are of the form (a, S,Pattern, c),
where

– a is a state of A.
– S is the set of unmatched sends seen so far.
– Pattern =

⋃
p Patternp, where Patternp is the set of patterns on process p

(not deleted) seen so far.
– c is the compatibility function. For x ∈ Pattern, p ∈ P, c(x, p) ∈ Patternp ∪

{+∞} is the last pattern x is compatible with. It equals +∞ if x is compat-
ible with any pattern on p.

S |= Ma � Mg Ma Mg

PTIME
closed gaps and S complete ± one closed gap,

or one closed gap no disjunction
PSPACE no restriction negative templates or ± two gaps

EXPSPACE no restriction no restriction

Fig. 5. Complexity of Model-Checking

We describe now the transitions. Let e be an event. Then (a, S,Pattern, c) →e

(a′, S′, Pattern′, c′) iff a →e a′ in A and

1. if e = p!q then Create new send(e)
2. if e = p?q, let s ∈ S matching the receive e. Update dependencies(s, e)
3. if pr(e) = p and A recognizes a pattern on p, Create new pattern(p).

Proposition 6 Let B have final states of the form (a, S = ∅,Pattern, c), such
that Patternp = ∅ for at least some process p. Then M ∈ L(B) iff P does not
occur in M .

For the general case we have to consider a guarantee template MSC of the
form Mg = M1γT PγT ′M2, where T, T ′ are sets of event types, and M1, P, M2
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are CMSCs. We deal with this case by extending the automaton B in a suitable
way, and combining with the ideas of section 4.3.

Theorem 4 Let S be an FSM, Mg =
∨

i(±)M i
g be a guarantee template MSC

with at most two gaps and let Ma be a template MSC.
Checking S |= Ma �

∨
i(±)M i

g is PSPACE-complete in (bS |Mg||Ma|).

5 Conclusion

We proposed template MSC formulas as an extension of Triggered MSCs by
adding gaps and showed how to use them as a visual specification formalism.
The two main components are the use of assume-guarantee CMSC as in Trig-
gered MSCs and LSCs, together with gaps. The formalism is quite expressive
and allows to specify safety and liveness-like properties. A drawback of the ex-
pressivity is that satisfiability is undecidable, unless there is an existential bound
on communication channels. Notice that for LSCs, satisfiability (consistency) is
shown to be decidable in [9] with a synchronous semantics of communication.
However, synchronous communication is a severe restriction for specifying pro-
tocols.

We considered template MSCs as a specification formalism, given as a visual
alternative to linear temporal logic, and we analyzed the complexity of check-
ing various template MSC properties. Model-checking a realizable compositional
HMSC S gives the following complexities for the restrictions below:
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