
Lab 11 – Propositional Logic 

1. Glossary 
 

Interpretation = evaluation of a formula for its sentences. 

Truth table = table containing all interpretations of a formula. 

A formula with n propositions will have 2n interpretations. 

Realizable formula = a formula which can be true. 

Tautology = a formula which is always true (true for all its interpretations. 

Contradiction = formula which is never true. 

Contingency = formula which is neither a tautology, nor a contradiction. 

Equivalent formulas = formulas which have the same truth table. 

2. Logic Operators 
 

We define a sentence as a statement that can be either true (T) or false (F), but not both at the 

same time. In propositional logic, we can build more complex sentences based on simple 

propositions using logical operators, just as in ordinary language we can build more complex 

structures using key words such as and, or, if, etc. 

 

Definition: Logic negation (NOT) 
We consider proposition a. Its negation, not a, denoted by ¬a, is defined by the table of truth 

below: 

a ¬a 

T F 

F T 

Remark: ¬(¬a) = a 

 

Definition: Logic disjunction (OR) 
We consider the propositions a and b. Their disjunction, a or b, denoted by a ∨ b, is defined 

by the truth table below: 

a b a ∨ b 

T T T 

T F T 

F T T 

F F F 



Definition: Logic conjunction (AND) 

We consider the propositions a and b. Their conjunction, a and b, denoted by a ∧ b, is defined 

by the truth table below: 

 

a b a ∧ b 

T T T 

T F F 

F T F 

F F F 

 

Remark: Distributivity 

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 

 

Remark: Identity and absorption 

a ∨ F = a (identity) 

a ∧ T = a (identity) 

 

a ∨ (a ∧ b) = a (absorption) 

a ∧ (a ∨ b) = a (absorption) 

 

Definition: Implication 

 

We consider the propositions a and b. Implication describes a relationship of the type “if a then 

b”, denoted by a → b, is defined by the truth table below: 

 

a b a → b 

T T T 

T F F 

F T T 

F F T 

Remark: a → b = ¬a ∨ b 
 



3. De Morgan’s laws 
 

We consider the propositions a and b: 

￢(a ∨ b) = ￢a ∧ ￢b 

￢(a ∧ b) = ￢a ∨ ￢b 

 

Demonstration (Optional) 
 

To demonstrate de Morgan's rules and show that the two formulas are equivalent, we will build 

the truth tables: 

 

a b a ∨ b ￢(a ∨ b) ￢a ￢b ￢a∧ ¬b 

T T T F F F F 

T F T F F T F 

F T T F T F F 

F F F T T T T 

 

a b a ∧ b ￢(a ∧ b) ￢a ￢b ￢a∨¬b 

T T T F F F F 

T F F T F T T 

F T F T T F T 

F F F T T T T 

 

4. Conjunctive Normal Form (CNF) 
Conjunctive Normal Form (CNF) = A conjunction (∧) of clauses 

Clause = Disjunction (∨) of literals (propositions of negations of propositions) 

 

Example: 

(a ∨ b ∨ c) ∧ (￢a ∨ ￢b ∨ ￢c) ∧ a is in CNF. 

(a ∨ b ∨ c) is in CNF. 

(a ∧ b ∧ c) ∨ (￢a ∧ ￢b ∧ ￢c) is NOT CNF. 

(a ∨ b ∧ c) is NOT CNF. 



In order to bring a formula to the CNF we have to carry the negation inside to the proposition 

(using de Morgan's rules) and bring the disjunction ∨ inside the conjunction ∧ using the 

property of distributivity. 

 

Attention: Before doing this, do not forget to rewrite the implications using the formula 

a → b = ¬a ∨ b 

Observation: In certain cases, the absorption and identity properties can also be used for to 

simplify the formula. 

 

Warmup exercise 
 

Bring the following formula to the CNF, create the truth table and specify formula type: 

f = a ∨ (b ∧ c) 

 

Solution: 

f = a ∨ (b ∧ c) 

f = (a ∨ b) ∧ (a ∨ c) – using distributivity 

 

a b c a ∨ b a ∨ c f = (a ∨ b) ∧ (a ∨ c) 

F F F F F F 

F F T F T F 

F T F T F F 

F T T T T T 

T F F T T T 

T F T T T T 

T T F T T T 

T T T T T T 

 

The formula is realizable. 

You can check the result on Wolfram Alpha, at this link: 

https://www.wolframalpha.com/input?i=CNF+%28a+or+%28b+and+c%29%29 

 

 

 

 

https://www.wolframalpha.com/input?i=CNF+%28a+or+%28b+and+c%29%29


Example exercise 

 

Bring the following formula to the CNF, create the truth table and specify formula type: 

f = (p ∧ q) ∨ (p ∧ ￢q) 

 

Solution: 

f = (p ∧ q) ∨ (p ∧ ￢q) 

f = ((p ∧ q) ∨ p) ∧ ((p ∧ q) ∨ ￢q) 

f = ((p ∨ p) ∧ (p ∨ q)) ∧ ((p ∨ ￢q) ∧ (￢q ∨ q)) -eliminate redundant 

parentheses 

f = (p ∨ p) ∧ (p ∨ q) ∧ (p ∨ ￢q) ∧ (￢q ∨ q) – we use p ∨ p = p and ￢q ∨ q 

= T 

f = p ∧ (p ∨ q) ∧ (p ∨ ￢q) ∧ T -we know that a ∧ T = a 

f = p ∧ (p ∨ q) ∧ (p ∨ ￢q) 

f = p – absorption 

 

p q p ∨ q ￢q p ∨ ￢q f = p ∧ (p ∨ q) ∧ (p ∨ ￢q) 

F F F T T F 

F T T F F F 

T F T T T T 

T T T F T T 

 

The formula is realizable. 

Observation: The first and last columns are identical. 

You can check the result on Wolfram Alpha, at this link: 

https://www.wolframalpha.com/input?i=CNF+%28%28p+and+q%29+or+%28p+and+not+q%29

%29 

 

 

 

 

 

 

https://www.wolframalpha.com/input?i=CNF+%28%28p+and+q%29+or+%28p+and+not+q%29%29
https://www.wolframalpha.com/input?i=CNF+%28%28p+and+q%29+or+%28p+and+not+q%29%29


Example exercise 

 

Bring the following formula to the CNF, create the truth table and specify formula type: 

f = (a ∨ b) → ￢(a ∨ c) 

 

Solution: 

f = (a ∨ b) → ￢(a ∨ c) 

f = ￢(a ∨ b) ∨ ￢(a ∨ c) 

f = (￢a ∧ ￢b) ∨ (￢a ∧ ￢c) 

f = (￢a ∨ (￢a ∧ ￢c)) ∧ (￢b ∨ (￢a ∧ ￢c)) 

f = ￢a ∧ (￢b ∨ (￢a ∧ ￢c)) 

f = ￢a ∧ (￢b ∨ ￢a) ∧ (￢b ∨ ￢c) 

f = ￢a ∧ (￢b ∨ ￢c) 

 

a b c ￢a ￢b ￢c ￢b ∨ ￢c f = ￢a ∧ (￢b ∨ ￢c) 

F F F T T T T T 

F F T T T F T T 

F T F T F T T T 

F T T T F F F F 

T F F F T T T F 

T F T F T F T F 

T T F F F T T F 

T T T F F F F F 

 

The formula is realizable. 

You can check the result on Wolfram Alpha, at this link: 

https://www.wolframalpha.com/input?i=CNF+%28%28a+or+b%29+implies+not+%28a+or+c%29

%29 

 

 

 

 

 

 

https://www.wolframalpha.com/input?i=CNF+%28%28a+or+b%29+implies+not+%28a+or+c%29%29
https://www.wolframalpha.com/input?i=CNF+%28%28a+or+b%29+implies+not+%28a+or+c%29%29


Example exercise 

 

Bring the following formula to the CNF, create the truth table and specify formula type: 

f = ￢(p → q) ∨ ((r ∨ s) → (q ∨ t)) ∨ (￢p → ￢v) 

 

Solution: 

f = ￢(p → q) ∨ ((r ∨ s) → (q ∨ t)) ∨ (￢p → ￢v) 

f = ￢(￢p ∨ q) ∨ (￢(r ∨ s) ∨ (q ∨ t)) ∨ (p ∨ ￢v) 

f = (p ∧ ￢q) ∨ (￢r ∧ ￢s) ∨ q ∨ t ∨ p ∨ ￢v 

f = (p ∧ ￢q) ∨ ((￢r ∨ q ∨ t ∨ p ∨ ￢v) ∧ (￢s ∨ q ∨ t ∨ p ∨ ￢v)) 

f = (p ∨ ￢r ∨ q ∨ t ∨ ￢v) ∧ (￢s ∨ q ∨ t ∨ p ∨ ￢v) ∧ 

      (p ∨ ￢r ∨ q ∨ t ∨ ￢v ∨ ￢q) ∧ (￢s ∨q ∨ t ∨ p ∨ ￢v ∨ ￢q) 

f = (p ∨ ￢r ∨ q ∨ t ∨ ￢v) ∧ (￢s ∨ q ∨ t ∨ p ∨ ￢v) ∧ T ∧ T 

f = (p ∨ ￢r ∨ q ∨ t ∨ ￢v) ∧ (￢s ∨ q ∨ t ∨ p ∨ ￢v) 

 

We used q ∨ ￢q = T 

The formula is realizable for p = T, r = F, q = T, t = T, v = F, s = F. 

You can check the result on Wolfram Alpha, at this link: 

https://www.wolframalpha.com/input?i=CNF+%28not%28p+implies+q%29or+%28%28r+or+s%

29implies%28q+or+t%29%29or%28not+p+implies+not+v%29%29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.wolframalpha.com/input?i=CNF+%28not%28p+implies+q%29or+%28%28r+or+s%29implies%28q+or+t%29%29or%28not+p+implies+not+v%29%29
https://www.wolframalpha.com/input?i=CNF+%28not%28p+implies+q%29or+%28%28r+or+s%29implies%28q+or+t%29%29or%28not+p+implies+not+v%29%29


Example exercise 

 

Bring the following formula to the CNF, create the truth table and specify formula type: 

f = ￢((a ∧ b) ∨ ((a → (b ∧ c)) → c)) 

 

Solution: 

f = ￢((a ∧ b) ∨ ((a → (b ∧ c)) → c)) 

f = ￢((a ∧ b) ∨ ((￢a ∨ (b ∧ c)) → c)) 

f = ￢((a ∧ b) ∨ (￢(￢a ∨ (b ∧ c)) ∨ c)) 

f = (￢(a ∧ b) ∧ ￢(￢(￢a ∨ (b ∧ c)) ∨ c)) 

f = ((￢a ∨ ￢b) ∧ (￢￢(￢a ∨ (b ∧ c)) ∧ ￢c)) 

f = (￢a ∨ ￢b) ∧ (￢a ∨ (b ∧ c)) ∧ ￢c -we eliminate redundant parentheses 

f = (￢a ∨ ￢b) ∧ ((￢a ∨ b) ∧ (￢a ∨ c)) ∧ ￢c 

f = (￢a ∨ ￢b) ∧ (￢a ∨ b) ∧ (￢a ∨ c) ∧ ￢c (CNF, can be simplified further) 

f = (((￢a ∨ ￢b) ∧ ￢a) ∨ ((￢a ∨ ￢b) ∧ b)) ∧ (￢a ∨ c) ∧ ￢c 

f = (￢a ∨ ((￢a ∨ ￢b) ∧ b))) ∧ (￢a ∨ c) ∧ ￢c -absorption 

f = (￢a ∨ ((￢a ∨ ￢b) ∧ b))) ∧ ￢c - absorption 

f = (￢a ∨ ((￢a ∧ b) ∨ (￢b ∧ b))) ∧ ￢c 

f = (￢a ∨ ((￢a ∧ b) ∨ F)) ∧ ￢c 

f = (￢a ∨ ((￢a ∧ b))) ∧ ￢c 

f = ￢a ∧ ￢c - absorption 

a c ￢a ￢c f 

F F T T T 

F T T F F 

T F F T F 

T T F F F 

The formula is realizable. 

You can check the result on Wolfram Alpha, at this link: 

https://www.wolframalpha.com/input?i=CNF+%28not%28%28a+and+b%29or+%28not%28not+

a+or+%28%28b+and+c%29%29%29or+c%29%29%29 

 

 

 

https://www.wolframalpha.com/input?i=CNF+%28not%28%28a+and+b%29or+%28not%28not+a+or+%28%28b+and+c%29%29%29or+c%29%29%29
https://www.wolframalpha.com/input?i=CNF+%28not%28%28a+and+b%29or+%28not%28not+a+or+%28%28b+and+c%29%29%29or+c%29%29%29


5. Binary Decision Diagram (BDD) 
 

To build a BDD, choose a proposition p from a formula f and calculate fp=T s i fp=F (replace p in the 

formula first with T then with F). If as a result of the evaluation you have obtained T, F or an 

elementary proposition (for example q or ¬q) then you have finished evaluating the formula. If 

you have obtained a compound formula, recursively apply the algorithm (choose a new 

proposition, etc.). When you have finished evaluating all the formulas, draw all the propositions 

as nodes in a diagram. In the diagram there will be two nodes 0 and 1. 0 corresponds to False, 1 

corresponds to True. For each evaluated proposition, add the decision to the diagram and the 

result of its evaluation. 

 

Example exercise 
 

Create the BDD for the following formula: 

f = (a ∧ b) ∨ (c ∧ d) 

 

Solution: 

We choose proposition a. 

fa=T = (T ∧ b) ∨ (c ∧ d) = b ∨ (c ∧ d) = f1 (we note the newly obtained formula 

with f1. 1 does not represent power, only an index) 

fa=F = (F ∧ b) ∨ (c ∧ d) = c ∧ d = f2 

Because we have not obtained base cases, we well evaluate f1 and f2. 

For f1 we choose proposition b. 

f1b=T = T ∨ (c ∧ d) = T (base case) 

f1b=F = F ∨ (c ∧ d) = c ∧ d = f2 

We still need to evaluate f2. We choose proposition c. 

f2c=T = T ∧ d = d (base case) 

f2c=F = F ∧ d = F (base case) 

 

We have evaluated all cases, so now we can build the BDD. For this example, the process will be 

presented step by step. 



 
 

Example exercise 
 

Create the BDD for the following formula: 

f = (a ∨ b) → ￢(a ∨ c) 

 

Solution: 

f = (a ∨ b) → ￢(a ∨ c) 

f = ￢(a ∨ b) ∨ ￢(a ∨ c) 

We choose proposition a. 

fa=T = ￢(T ∨ b) ∨ ￢(T ∨ c) = F (base case) 

fa=F = ￢(F ∨ b) ∨ ￢(F ∨ c) = ￢b ∨ ￢c = f1
 



We will evaluate f1. For f1 we choose proposition b. 

f1
b=T = ￢T ∨ ￢c = ￢c (base case. Attention! The arrows need to be reversed 

because we have a negation.) 

f1
b=F = ￢F ∨ ￢c = T 

 

 
 

6. Propositional logic in Python (Optional) 
 

Can be found on Campus Virtual. 

 

7. Homework 
 

For this homework, upload a single file (.doc, .docx, .pdf, etc.). If you solve it on paper, scan the 

pages and upload the PDF file. No not upload images. Solve at least 2 of the 4 exerciese. 

 

Bring to conjunctive normal form (CNF), create the truth table, specify the formula type and 

draw the binary decision diagram (BDD) for the following expressions: 

1. ￢((c → ￢b) ∧ (a → ￢c)) 

2. ￢((b ∨ c) → ￢(￢a ∨ ￢b) ∨ ￢b) 

3. (a → b) → ((b → c) → (a → c)) 

4. ￢((a ∧ b) ∧ (c ∨ (￢(a → (b ∧ c))))  


