
Exercises – Week 8 

Trees 
 

1. Write a function that takes a binary tree and returns the list of nodes that have a single child. 

The order of the nodes in the list will be that of the inorder traversal. 

 

2. Write a function that takes a binary tree and returns the total number of nodes in the tree. 

 

3. Traversal of arbitrary trees: Modify traversal functions to work on arbitrary trees (each node 

has a list of children). Use list traversal functions. For inorder, first traverse the head of the list, 

then the root and then tail of the list. 

 

4. Indented Printing: Write a function that displays a binary tree of integers in preorder, one 

node per line, preceding the value of the node by a number of spaces equal to twice its depth 

(two spaces for each level). 

 

5. Removing a node: Write a function that takes a value and a binary search tree as parameters 

and returns the tree from which the value was removed (if present). 

Tips: 

• if the tree is not empty: 

o if the given value is identical to the root key then we have found the searched 
node. We proceed as follows: 

▪ if the node is terminal (the left subtree and the right subtree are empty) 
this node will be deleted, and the address retained by the parent in its 
place becomes None; 

▪ if only the left subtree is non-empty the node will be deleted, and the 
address retained by the parent in its place becomes the address of the 
left subtree; 

▪ if only the right subtree is non-empty the node will be deleted, and the 
address retained by the parent in its place becomes the address of the 
right subtree; 

▪ if both subtrees are not empty: 

• the biggest node in the left subtree is identified (the rightmost 
node of the left subtree). This node cannot have a right subtree! 

• the information from this node is copied into our searched node; 

• the identified node is deleted. The deletion is performed as if the 
node is terminal or as if the node has only left subtrees; 

o if the given value is smaller than the root key, the search continues in the left 
subtree; 



o if the given value is greater than the root key, the search continues in the right 
subtree; 

• if the tree is empty: 

o the searched value does not exist in the tree. 

 


