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Ciprian-Bogdan Chirilă, Pierre Crescenzo, Philippe Lahire
chirila@cs.utt.ro Pierre.Crescenzo@unice.fr Philippe.Lahire@unice.fr

Faculty of Automatics and Computer Science,
”Politehnica” University of Timişoara,
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Abstract

In order to facilitate software reengineering, adaptation and evolu-
tion we propose a Java language extension which includes a semantics
for reverse-inheritance class relation. Semantics is defined using the
OFL model and an intuitive approach. The grammar for language
extension and implementation solutions are provided in order to build
a translator between java extension language and pure java language.
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1 Introduction

The goal of this paper is to provide a way to adapt class hierarchies to
particular applications. By achieving this goal we aim to obtain a clean way
to reuse class libraries.

The approach is based on a reverse inheritance class relation, but this
is just a mean to accomplish our plan. There are also other possibilities like
a wizard or a reegineering tool. The first attempt is made for Java program-
ming language, defining a language extension that allows class adaptation.

The reverse inheritance class relation semantics is defined using the OFL
model [12, Cre01]. The use of OFL model guides us to a consistent semantics
definition, avoiding possible losses of important aspects.

On the other hand we use also an intuitive approach to define the reverse
inheritance semantics. It is necessary in order to explain the behavior of new
designed mechanisms like: feature adding mechanism, factoring mechanism,
descendant access mechanism, renaming mechanism. The reverse inheritance
is meant also to favor rapid prototyping of software projects.

Also there are necessary reengineering rules in order to make code trans-
formations. Depending on the semantics of reverse inheritance the transfor-
mations will be automatic or semiautomatic.

The features that facilitate software adaptation included in the approach
are: inserting a class into an existing hierarchy, extending an existing hi-
erarchy, adding functionality to a class hierarchy, factoring features from
classes, applying a design pattern, implementing a design pattern, compos-
ing abstractions by emulating multiple inheritance. All these features will be
detailed in the next chapters.

During the process of reengineering general features that facilitates adap-
tation will be extracted and abstracted. Also problems and constraints are
extracted and analyzed. The second attempt will be to apply the abstracted
features to Eiffel programming language.

A secondary goal is to facilitate software library evolution starting from
the considered approach. The advantage of the considered approach is that
you can refuse easily any evolutionary changes. Other major facility is the
temporary use of an evolution. An evolved version of the reengineered library
is made available for test and debug purposes. If the changes are suitable
for the desired application they can be made final and, in this way, the class
library evolves.

The following lines present the structure of the current paper. In the
following section are presented the approach and the motivations behind it.

In third section are explained case studies from the real world program-
ming, in which the use of reverse inheritance facilitates software reengineer-
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ing.
In the fourth section is defined the reverse inheritance relation’s semantics

by choosing appropriate values for OFL parameters. All details regarding the
OFL model will be presented in the section.

In the fifth section the structure of the new mechanisms that will help
adaptation and evolution is anatomically analyzed.

In the sixth section is defined the rest of the semantics using an intuitive
approach analyzing the impact of the newly added mechanism in Java with
the already existing ones.

In the seventh section are discussed implementation solutions and their
constraints.
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2 Motivation

In this section are presented motivations regarding the necessity of intro-
ducing reverse inheritance class relationship in object-oriented programming
languages as a mean for adaptation and evolution. Also we want to define and
to show how the reverse inheritance can be used in software reengineering.

There are some goals that could be achieved by reverse inheritance:

• maintenance for legacy systems;

• rapid prototyping in the development process of a new software project;

• adaptation for single application, adapting classes to new software con-
texts, modifying classes towards framework development;

• evolution of a class library towards a mature version.

Reverse inheritance can be used in several ways depending on the type of
software we deal with. Reverse inheritance will operate over libraries, frame-
works, legacy systems which can be generically named software entities. In
the real world of software development the source code of software entities
can be available so they can be modified, and sometimes not. So software en-
tities may be read-only. Some of the reasons are enumerated in the following
lines:

• software may be copyrighted;

• software have to be unchanged for existing applications;

• software is maintained by third party;

• software of source code is not available e.g. precompiled libraries.

Our approach is presented in figure 1.
The approach has two main directions identified by the two main goals

of the paper: software adaptation and software evolution. Each of them will
be explained in the following paragraphs.

Adaptation By adaptation in the context of software libraries we under-
stand all the changes that the library has to support in order to fit to new
concrete necessities. One concrete necessity can be the context of a partic-
ular application. For adaptation purposes we don’t intend that the changes
to be generic and to be reusable. The evolution of the library is made in the
direction of concreteness and towards particular situations. As stated in the
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Figure 1: Reverse Inheritance in Software Reengineering

previous chapter we want to achieve adaptation by reengineering. The mean
chosen for this aspect in reverse inheritance.

Given a library in state A the designer using reverse inheritance or other
equivalent means (e.g. wizard, any other reengineering tool), can freely
reengineer the class hierarchy getting it into state B1.

In state B1 we have the possibility to change a hierarchy of classes into
a framework. A framework is an abstract design for a particular kind of
application which consists of classes [16, Jo88]. The classes can be part of
class library or can be application specific. Frameworks have the ability to
allow extension of class library components.

In this state the designer is free to use any class relation available in the
used programming language: inheritance, reverse inheritance, aggregation
composition and any mechanism that these class relations have.

For instance in a Java software library, one can use the factoring mecha-
nism, included the reverse inheritance relation in order to reorganize features
in classes. The details regarding this mechanism are explained later in one
dedicated chapter.

Another example of adaptation is the one presented in [30, Sak02]. The
sample’s main idea is class hierarchy reorganization. A version of this mod-
ified sample is depicted in figure 2. The example is about a set of classes:
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Figure 2: Sample of Class Reorganization

Car, Ticket, DigitalCamera that belong to different hierarchies and have to
be adapted to a new situation. The new context is about prize winning and
implies a new class hierarchy, the one in figure 2. There are also some other
solutions like creating subclasses: CarPrize, TicketPrize, DigitalCameraPrize
or changing the superclass to Prize, but both solutions are inconvenient.

In state B1 we obtain an intermediary form of the library, written in a
language extension, which is not yet compilable with any classic compiler. In
order to achieve this goal, translators towards pure object-oriented languages
have to be built. Also this form of library needs validation. In order to obtain
the validation, support for test and debug is necessary.

Using reengineering the modified form of the library in state B1 is driven
to state C1 or C2 depending on the source code availability.

If we have access to the sources then reengineering is possible and we can
obtain new compilable source code of state C1. The reengineering process is
made by a translator which possibly has to be assisted by the designer.

During the reengineering process all the reverse inheritance class relations
are replaced by entities existing by default in the programming language.
For instance some of the reverse inheritance class relations are replaced with
simple inheritance relations.

The main characteristic of this state C1 is that all sources have to be pure
and readable by everyone even they are generated by a translator. This state
of the library can be used very easily for test and debug purposes and also
as the adapted final version. On the other hand state C1 implies acceptance.

This situation occurs when source code of the library is not available. In
this case the translator in the reengineering process will generate not readable
source code and/or byte code. This state is meant just for temporary test
and debug actions.

10



Evolution Evolution in software libraries means all the changes in order
to obtain the desired level of abstraction for reusing the code to several kinds
of applications.

State A is the initial state of the library and the goal we need to achieve
is to obtain an evolved version of it. The following steps are similar to those
presented in the adaptation process.

State B2 accepts designer’s modifications towards the new evolved ver-
sion.

When sources are available the reengineering helps the designer to get the
library in state C3. The main characteristic of this state remains readability.

If no sources are available then we get state C4 which is similar to C2.

Drawbacks of the Approach There are some disadvantages using re-
verse inheritance. Some reluctant programmers may say that is difficult to
understand how to use it. Others may say that it involves overhead activity
and others may say that reverse inheritance can break the code.
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3 Case Studies Dealing with Reengineering

In this chapter are presented case studies that will introduce the reengineering
capabilities of reverse-inheritance. We intend to give intuitive examples on
how the new reverse inheritance class relation can help the code to adapt
and to evolve. Each of the following subchapters describes one case study
which stands for a specific functionality. All samples are designed using
UML class diagrams in order to be independent from any implementation
object-oriented programming language.

3.1 Need for Abstraction

A class hierarchy can evolve downward using inheritance and we propose
an upward evolution using reverse inheritance. The downwards evolution
implies the creation of specialized classes, and the upwards evolution implies
the creation of abstract classes.

In Java programming language the inheritance class relation stands for
both specialization and generalization abstractions [1, AG00]. In UML the
situation is viceversa, specialization is implemented using generalization re-
lation [23, OMG03]. Although the two relations are redundant they may be
used together [6, CL01].

In order to achieve adaptation and evolution programmer may use reverse
inheritance class relation which implements the generalization concept.

Example This example presents a typical situation in which the need for
abstraction is highly motivated.

There are several possible contexts for this scenario. The new designed
application models concrete integrated circuits: circuits of type A, B and
C. In the process of electronic application modelling the architect creates
one class for each concrete circuit type: CircuitA, CircuitB and CircuitC.
Other possibility is to reuse these classes from a library which is provided by
different third-party vendors or they are part of a legacy system. In order to

Figure 3: Separating Specialization and Generalization (before reengineering)

manipulate easier integrated circuit instances, the design architect generalizes
the concrete circuit concepts and he creates an abstract circuit class named
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AbstractCircuit which will be the supertype of circuit modelling classes. All

Figure 4: Separating Specialization and Generalization (after reengineering)

the code which is common to all circuits can be placed in the abstract class
in order to avoid code duplication. The use of reverse inheritance relation
increases code readability and class relation clarity.

3.2 Composing Abstractions

In system modelling, composition of abstractions are often needed. In some
programming languages we may find mechanisms fully or partially conform
to support this need.

In Java language [1, AG00] there is a partial implementation of this mech-
anism. The composition works only at the level of interfaces.

In C++ language [32, Str87] and Eiffel language [21, Mey02] is imple-
mented the full mechanism of multiple inheritance between classes relation.

We will give another solution based on reverse inheritance class rela-
tion that permits composition of abstractions. This solution addresses the
programming languages that do not have the complete multiple inheritance
mechanism.

The following example uses reverse inheritance in a special way in order
to join several basic concepts that are already modelled by existing classes.
The sample is about building a calculator-watch, starting from existing im-
plementations for watch, calculator and cronograph.

The solution is intuitive and implies simply to compose the three concepts
into a single one. Composition is made by applying the reverse inheritance
relation from each basic concept class: Watch, Calculator, Cronograph to
the desired target class CalculatorWatch.

At this level the design is very clear but after the reengineering process
the new design obtained may loose it’s accuracy.
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Figure 5: Composing Abstractions (before reengineering)

Figure 6: Composing Abstractions (after reengineering)

3.3 Inserting a Class into an Existing Hierarchy

The analyzed case study deals with unforseen changes which involves archi-
tecture changes. Adaptability from this point of view discussed in [18, Lie95]
is the capability of software to be easily changed.

The sample deals with class hierarchy reorganization which is solved by
reverse inheritance.

Figure 7: Inserting a Class into a Hierarchy (before reengineering)

A typical situation is one in which we have a library that contains graphi-
cal components [6, CL01]. For some of the reasons classes Parallelogram and
Square are read-only. We want to add a new class to the hierarchy preserving
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architecture correctness from the object-oriented paradigm point of view. In
euclidian geometry one may state the followings:

• any rectangle is a parallelogram;

• any square is a rectangle.

Euclidian geometry forces type Rectangle to be subtype of Parallelogram
and supertype of Square. The first type relation can be implemented very
easily with an existing class relation: simple inheritance between classes.

Figure 8: Inserting a Class into a Hierarchy (after reengineering)

The second subtyping relation could be solved using simple inheritance
between Rectangle and Square which implies the modification of class Square
which is read-only.

Because type Rectangle is a generalization of type Square, it is more
natural to use a reverse inheritance relation between the two types.

3.4 Extending an Existing Hierarchy

The studied case involves unforseen structure changes, that are discussed in
[18, Lie95], and the possibility of third party software inclusion.

We go further with the example of graphical components and we imagine a
new typical situation. Initially a graphic library contains only Parallelogram
type components, later on an extension of the library is needed because of
the decision to include also Ellipse type graphical components.

The solution is to create an abstract type Shape which is the supertype
of Parallelogram and Ellipse. Classes Ellipse and Circle will be derived from
Shape and Ellipse and the problem of organizing round graphical component
classes is solved.

15



Figure 9: Extending an Existing Hierarchy (before reengineering)

The problem arises in connecting class Parallelogram an class Shape. One
possibility is to modify class Parallelogram in order to extend class Shape.
The solution is not valid because class Parallelogram is read-only, so the
other possibility is to generalize the type of Parallelogram into Shape. This
example concludes also that a reverse inheritance relation is needed between
the two classes.

Figure 10: Extending an Existing Hierarchy (after reengineering)

In the figure 10 we managed to build a design solution using reverse in-
heritance, that preserves consistency and respects object-oriented principles.

3.5 Adding Features to Classes

One benefit of using reverse inheritance class relation is that one may add at-
tributes and methods to a class or to a hierarchy of classes without modifying
them manually.

So we can add very easily state and functionality to a class hierarchy [18,
Lie95].
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Figure 11: Adding Features to Classes (before reengineering)

The idea of adding common features to a read-only class hierarchy could
improve the state and functionality of classes without modifying manually
their read-only source code. In the current example we have a hierarchy of
classes, actually the same graphical components which misses an attribute
regarding area. One solution is to modify class Shape and to add a member
and some methods regarding this aspect. The other solution proposed by us
is to use reverse-inheritance with a newly created class AbstractShape which
contains the new state and behavior.

Figure 12: Adding Features to Classes (after reengineering)

The resulted code has the state and functionality extension incrementally
kept in newly added class AbstractShape. In fact this is just another way
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of class extension by difference, like simple inheritance. Simple inheritance
creates the extension on a lower level of abstraction while reverse inheritance
manages extension on the highest abstraction level.

3.6 Factoring Features from Classes

The reverse functionality of the case study presented above, is to extract
common state and behavior from hierarchies of classes. This way we can
avoid data and code duplication and we facilitate software maintenance [19,
Mart00].

In the process of factoring, name conflict problems arises. In [17, LHQ94],
[30, Sak02] are described mechanisms which handle name conflicts in reverse
inheritance class relations. Some of the ideas will be used in the definition
of factoring and renaming mechanisms further on.

In the chosen case study we deal with a couple of classes that have same
functionalities and they must be reorganized in order to build a new hierar-
chy. The functionalities may be stored in methods with different names or
signatures.

In our example we considered a simplified situation in which the common
members and methods have same signatures in all classes. All the other
situations can be reduced, using the rename mechanism, to the current one.
The rename mechanism is presented in one of the next chapters.

Figure 13: Factoring Features From Hierarchy (before reengineering)

All the graphical component classes have some common features that we
propose to factor. The getArea() method is the candidate feature that can
be factored.

The idea of factoring features is to manage the uniform distribution of
selected behavior between classes. Some classes in a hierarchy may have
a concrete implementation of a feature and some may not. We want to
enable the inheritance of factored features in classes in which they are not
implemented.

18



Supposing that class Triangle has no implementation for getArea() method,
with the factoring mechanism we can fill the implementation gap of methods
in classes.

Figure 14: Factoring Features From Hierarchy (after reengineering)

The feature renaming mechanism can help also the process of factoriza-
tion. There is the case of renaming a feature with the same functionality and
different name. We can imagine that class Square has another name for the
method that computes area: getSurface(). So in order to build a consistent
hierarchy, a renaming is necessary. Method name getSurface() is renamed to
getArea().

3.7 Applying a Design Pattern - Composite

This example shows how using reverse inheritance, we can apply a design pat-
tern to a hierarchy of classes. For this case study we selected the Composite
[15, GOF96] design pattern.

The Composite design pattern is a structural pattern which composes
objects into tree structures. The anatomy of the design pattern is illustrated
in figure 15.

The main idea is to have an abstract class Component that represents
both primitives and containers. In the object tree the primitives will be
leaves and the containers will be composites.

Component declares the interface from the objects in composition, de-
clares an interface for managing child components.

Leaf represents leaf objects in the composition and they have no children.
Composite defines behavior for components having children, stores the
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Figure 15: Composite Design Pattern - Structure

child components, and the child related operations from the Component in-
terface.

Figure 16: Composite Design Pattern - Sample

The object tree in figure 16 is a sample of how objects of different types
can be linked in a hierarchy.

Continuing with our graphical component classes, some end user of the
hierarchy would like to create a figure graphical component which has to
contain all types of shapes including also figure type. The classes may belong
to different libraries.

The idea we want to use in this example is to create a superclass of
all concrete classes using reverse inheritance. If we deal with hierarchies of
classes the most abstract class from it has to be linked with the new created
superclass using reverse inheritance. In this way you do not have to worry
about altering classes or class hierarchies.

Then the composite class will be defined inheriting from the superclass
using direct or reverse inheritance. It is mandatory for the composite class
to contain a collection of superclass types in order to implement completely
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Figure 17: Applying Composite Design Pattern (before reengineering)

the design pattern.
The sample considered contains two independent class hierarchies: one

starting with Parallelogram and one starting with Ellipse. Al the level of
the most abstract classes from hierarchies we apply the reverse inheritance.
We define a new superclass Shape which infers Parallelogram and Ellipse
classes. With this transformation we added a new layer of abstraction to
the application design. Class Figure is created by deriving from Shape using
direct inheritance, because we prefer the usage of direct inheritance instead
of reverse inheritance. In all situations we want to favor the “extends” re-
lation, “infers” relation is just a tool for solving the more complex difficult
adaptation or reuse problems. To accomplish the design pattern class Figure
has a collection of Shape. In this example the collection is implemented by
an array.

In conclusion we may state that where a design pattern, based on a higher
level of abstraction in the class hierarchy, is needed, reverse inheritance can
help. It facilitates the addition of the new abstract layer, thus the desired
design pattern can be easily used.
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Figure 18: Applying Composite Design Pattern (after reengineering)

3.8 Implementing a Design Pattern - Adapter

This case study starts from the different implementations of the Adapter
design pattern [15, GOF96]. First there are presented the idea, the structure
of the pattern and the existing implementations.

The main idea of the pattern is to convert the interface of a class to the
interface that a client expects. Adapter facilitate classes with incompatible
interfaces to work together.

The participant classes involved in the structure of the pattern can be
grouped in this manner:

• Target - domain specific interface that Client uses;

• Client - works with object conform to the target; interface;

• Adaptee - existing interface that needs adapting;

• Adapter - adapts the interface of Adaptee to the Target; interface

The structure of the patterns is dual. To adapt from one interface to
another there is the possibility of using multiple ihneritance. Some of the
object-oriented programming languages like Java do not have this class re-
lation implemented so they have to use something else. The Adapter class
inherits from the Adaptee the specific request.
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Figure 19: Adapter Design Pattern - Structure (inheritance)

The second possibility is to use class composition. The creation of an in-
stance of a Adaptee class will permit the access to the needed specific request.
This solution is realizable in the main of the object-oriented programming

Figure 20: Adapter Design Pattern - Structure (composition)

languages, but includes the overhead of the Adaptee object management.
We start from the Adapter design pattern case study from [15, GOF96]

and we are modifying it using our approach based on reverse inheritance.
First we identify the classes that compose the pattern. The DrawingEdi-

tor class plays the role of the client, the Shape abstract class is the Target of
the adaptation. The TextShape class is the Adapter and the TextView is the
Adaptee. The idea of the sample is to develop a class hierarchy of Shapes
and to include also a class that manipulates text shapes. The behavior re-
garding text manipulation is encapsulated in class TextView. There are the
two possibilities of implementation: class inheritance or object composition
[11, Coop98]. We propose to use the reverse inheritance relation instead of
inheritance. Class TextShape is the adapter class and it inherits the desired
behaviuor from class TextView. Using this relation the advantage of mod-
ifying a class from outside in achieved. The designer will create the new
class TextShape, inside he will define the specific behaviuor, for instance,
createManipulator() method, and all the delegation methods will simply call
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Figure 21: Applying Adapter Design Pattern (before reengineering)

Figure 22: Applying Adapter Design Pattern (after reengineering)

the desired behaviour from TextView. This approach helps only software
systems implemented in languages that do not include multiple inheritance
class relation. The only possibility is to have a composition object relation.
The overhead of this solution is the component object’s management.
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4 Possible Semantics Derived from the OFL

Model

The goal of this section is to define the reverse inheritance semantics system-
atically. For this purpose the OFL model will be used to catch all the essential
features of the relation. This will be made analyzing and choosing between
all possible values that OFL parameters can get. For each hyper-generic pa-
rameter value there will be presented the motivation. The given semantics
does not depend on a particular programming language. For argumentation
are used samples of UML diagrams and Java extension code.

4.1 Name

Description The parameter specifies the name of the OFL-component and
it must be unique in the language.

Value Reverse-Inheritance Between Classes

Figure 23: Reverse Inheritance Class Relation

Example We chose a UML like notation for the reverse inheritance class
relation.

class B

{

}

class A infers B

{

}
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The infers keyword is selected to denote the reverse inheritance relation
between classes A and B. Class A is the source ancestor class and class B is
the heir target class.

4.2 Kind

Description The parameter specifies the sort of the OFL-component. Im-
port is used for inheritance and all other importation links between descrip-
tions. Use is for aggregation, composition, and all the other use links between
descriptions.

Value import For reverse-inheritance class relation the value for this pa-
rameter is import because the source class may import features from target
classes.

4.3 Context

Description This parameter has two possible values: language or library.

Value Language We choose the value of language because we desire to
interact with all the elements of the rest of the language.

4.4 Cardinality

Description Defines the minimal and the maximal cardinality of a rela-
tion.

Value several possible values. For each of them we have illustrated a class
diagram example. Some of them are just theoretical examples, some are
already used in programming languages and some are serious candidates.
The order of the possible values is a systematical one in order to include all
the possibilities. The values are not absolute, some of them can be obtained
combining others.

Example A1 - 1 − 1 In example A1, figure 24, using this parameter for
class relation some of it’s potential mechanisms are favored. The mentioned
mechanisms will be presented in the next chapter. If we think about descen-
dant access mechanism there are no difficulties in selecting features. Also the
factoring mechanism can be designed in a more simplified manner.
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Figure 24: Cardinality - One to One

Example B1 - (1−1)∗N This new example B1, figure 25, is derived from
the previous one but now we have two targets and two class relations. You
may use the reverse-inheritance relation several times with the same source,
but the problem which arises is that the interactions related to multiple
targets have to be managed globally, from outside relation. This type of
cardinality is present in all the simple class inheritance relations implemented
in the programming languages. We may mention Java, C++, Eiffel. In the
next example we avoid this kind of disadvantage. This kind of usage of the
reverse inheritance class relation is forbidden but it is discussed from the
analytical point of view.

Example B2 - 1−∞ This example B2, figure 26, is very similar with the
previous one and it has the advantage of having one relation that manages
all the classes involved.

Example C1 - N ∗(1−1) Sample C1, figure 27, is similar to B1 but having
two sources and one destination. There are multiple independent one to one
relations sharing the same target.

Example C2 - ∞ − 1 Example C2, figure 28, depicts a relation that
has multiple sources and one target. This kind of cardinality is typical for
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Figure 25: Cardinality - One to One x N

multiple inheritance relation. Languages like C++ and Eiffel allow this value
for cardinality in class inheritance relation.

Example D1 - ∞−∞ This example D1, figure 29, is a composition of
four one to one relations between 4 classes: 2 sources and 2 destinations.
The four one to one relations are the following: A-C, A-D, B-C, B-D.

Example D2 - ∞−∞ The sample above D2, figure 30, is a mix of two
basic relations: one to many relation. One basic relations has one source
class A and two class targets C and D. The other basic relation is the same
as the former but it has as source class B.

Example D3 - ∞ − ∞ This sample D3, figure 31, is composed of two
basic relations. The basic relation involves two sources and one target: A,
B sources, C target and A, B sources and D target. The actual value for
the cardinality parameter for C++ is this because includes simple and also
multiple inheritance.

Example E1 - ∞−∞ This sample E1 figure 32, is very similar to sample
B2, figure 26, but allowing two sources. This kind of cardinality is possible
only if the language allows the declaration of class relation to be independent
of the declaration of the class itself. This is because the declaration of a class
limits the multiplicity in one direction for the relation.
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Figure 26: Cardinality - One to Many

Figure 27: Cardinality - N x One to One

Observations In all the samples above where two sources or targets are
found they may be replaced with multiple sources, respectively multiple tar-
gets. The simplification does not loose generality and increases clarity. From
the samples above results that some relations are basic, they can’t be decom-
posed and some relations are complex composed of basic ones. Modelling the
basic relations and the interaction between instances of them, we can get the
complex relations. Modelling B1, C1; B2; C2 relations and the interaction
between their instances we can get D1 ; D2 ; D3. On the other hand if we
model D4 we get B2 and C2 as particular cases. Choosing between the val-
ues of this parameter we can achieve more or less functionality in facilitating
adaptation and evolution.
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Figure 28: Cardinality - Many to One

Figure 29: Cardinality - Many to Many (1)

4.5 Repetition Of Sources

Description The parameter indicates if the repetition of source-descriptions
in the relation is authorized.

Value forbidden

Example The example above illustrates a theoretical situation in which
is possible to specify a class relation using multiple sources and multiple
targets. Java, C++, Eiffel philosophy does not have any means for expressing
relations with multiple sources. So this is why the values of the discussed
parameter is false.

4.6 Repetition Of Targets

Description The parameter indicates if the repetition of target-descriptions
in the relation is authorized.
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Figure 30: Cardinality - Many to Many (2)

Figure 31: Cardinality - Many to Many (3)

Value forbidden

Example Repetition of targets is not allowed because for this relation
makes no sense.

4.7 Circularity

Description The parameter indicates if the relation allows a circular graph.

Value forbidden

Example 1 From the theoretical point of view a class can extend and infer
itself. This capability does not improve any aspect of class relation.

Example 2 This example can be correct and accepted from the theoretical
point of view if and only if the two classes involved have empty bodies.
Otherwise this kind of construction is not allowed because conceptually is
impossible to have a class which is at the same time the superclass and the
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Figure 32: Cardinality - Many to Many (4)

Figure 33: Repetition of Sources

subclass of the same class. The polymorphism mechanism will also fail in
such class construction. Another problem arises in the object construction
process. Because in object-oriented programming languages, the creation
of an subclass instance implies calls to all constructors in the inheritance
hierarchy, the chain of calls is recursive, thus infinite. The descendant access
mechanism presented in the previous chapter, will not work correctly also.

Example 3 If we build cyclic class diagrams we get the same disadvantages
as in the previous example.
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Figure 34: Repetition of Targets

Figure 35: Circularity - One Class

4.8 Symmetry

Description The parameter points out the symmetry of the relation.

Value false.

Example The relation is not symmetrical except the case in which the
classes are empty.

4.9 Opposite

Description The parameter indicates a relation which should be equiva-
lent if source and target are replaced.
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Figure 36: Circularity - Two Classes

Value Extends Between Classes

Example The following two declarations are equivalent from the semanti-
cal point of view.

Observation If we agree on the value of the parameter we can not define
any new mechanisms like renaming mechanism. The simple inheritance class
relation does not have a similar mechanism.

4.10 Direct Access

Description The parameters indicates whether features of the ancestor are
directly visible in the heir. This parameter allows to choose the policy of the
visibility.

Value allowed If the value is allowed than some features are visible and
some are not, the differentiation can be made using a keyword like: private,
protected, public.

We are going to discuss about each of the semantics of the access modifiers
that will be used by the reverse inheritance class relation. Some aspects from
simple inheritance direct access will be included in the semantics of the new
designed relation. We intend to be as much general as possible regarding the
programming language. The descriptions can be applied to Java and C++.
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Figure 37: Circularity - Many Classes

The private access modifier allows access to features only from inside the
class.

The protected access modifier allows access to features from inside class,
from all it’s subclasses and from all the classes in the current package. By
current package we mean the package which contains the class having the
desired feature.

The package access modifier or implicit access modifier allows access to
features from inside class and from all the classes in the current package.

The public access modifier allows access to features from anywhere.
We will explain how these modifiers affect visibility in a concrete example.

Example

package p1;

class A infers B

{

private int m1;

protected int m2;
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Figure 38: Reverse-Inheritance Symmetry

int m3;

public int m4;

}

We start from a class A which has 4 members with all the possible access
modifiers. This is considered the subject class and we will access it’s members
from different locations, marking the visibility areas. Also we have to mention
that class A is located in package p1. On the other hand class A is involved
in a reverse inheritance relation with class B which at the moment is not
defined. It is not the natural way of building a reverse inheritance relation
but for the sake of explanation we made this choice. The access modifiers
apply the same way for fields and methods, so in our undergo, for simplicity,
we used only fields.

package p1;

class B

{

B b=new B();

b.m1; // error! not visible

b.m2; // visible

b.m3; // visible
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Figure 39: Reverse-Inheritance Opposite

b.m4; // visible

}

Class B is the subclass of A from the reverse inheritance relation. Class B
will access the members of class A. Except member m1 which is private, all
the other members are accessible. So from a heir class from the same package
are visible all members except private ones.

package p1;

class Test1

{

public static void test()

{

B b=new B();

b.m1; // error! not visible

b.m2; //error! not visible

b.m3; // visible

b.m4; // visible

}

}

Now we are dealing with a class Test1 which is in the same package p1 as
class A. Members m1 and m2 are not visible, but m3 and m4 are. From an
outside class are accessible only package access type and public members.
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package p2;

class Test2

{

public static void test()

{

B b=new B();

b.m1; // error! not visible

b.m2; // error! not visible

b.m3; // error! not visible

b.m4; // visible

}

}

The final stage is to access members from an outside class Test2 from a
different package p2. From this area only member m4 which is public can be
accessed.

Conclusions The example illustrates a piece of the reverse inheritance
semantics regarding direct access. This part of semantics is also present in
the extends between classes relation. If we accept the chosen value than
we restrict the addition of some new mechanisms. The factoring mechanism
presented in the previous chapter has different semantics. So we accept the
chosen value for the discussed parameter.

4.11 Indirect Access

Description Like the previous parameter it indicates whether features of
the ancestor are indirectly visible in their heir, naming the ancestor.

Value allowed In Java class inheritance the solution is based on the usage
of the super keyword. In C++ inheritance, indirect access is made using the
resolution operator ::.

Example 1 In this example is presented how a heir class can access data
from an ancestor class.

class B

{

public int m=1;

public void list()
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{

System.out.println(super.m);

System.out.println(m);

}

}

class A infers B

{

public int m=2;

}

class Test

{

public static void test()

{

B b=new B();

b.list();// output: 2 1

}

}

The reverse-inheritance relation has also to provide the basic mechanisms of-
fered by direct inheritance if we want to replace it with the new relation. This
example shows that the inheritance and the super mechanisms are preserved
from direct inheritance.

Example 2

class B

{

public int m;

public void list()

{

System.out.println(super.m); // compile time error !!!

System.out.println(m);

}

}

class A infers B

{
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factored public int m;

}

This example emphasizes that a factored member can not be inherited so
the usage of the super access mechanism is not legal and it will result in a
compile time error.

Example 3

class B

{

public int m;

public void modify1()

{

super.m=2;

}

public void modify2()

{

m=3;

}

public void list()

{

System.out.println(super.m);

System.out.println(m);

}

}

class C

{

}

class A infers B,C

{

factored public int m=1;

}
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class Test

{

public static void test()

{

B b=new B();

System.out.println(b.m); // output: 1

b.modify1();

b.list(); // output: 2 2 !!!

b.modify2();

b.list(); // output: 3 3 !!!

C c=new C();

System.out.println(c.m); // output: 1 !!!

}

}

The idea if this example is that the factored member is not inherited always,
but is shared. An instance of B will not inherit member m because it al-
ready has it. An instance of C will do inherit because it does not has it.
This mechanism aims to avoid the duplication of inherited members through
reverse-inheritance class relation. A value for the parameter is proposed to
express this semantics: allowed-shared.

Example 4

class B

{

public void m()

{

System.out.println(1);

}

}

class C {

public void m()

{

System.out.println(2);

}

}

41



class A infers B,C

{

public void m()

{

inferior(A).m(); // output: 1

inferior(B).m(); // output: 2

}

}

The descendant access mechanism must have a selector if we want to switch
between methods with the same signature from descendant classes. There
are some situations in which no name ambiguities occur and the selector is
not mandatory.

Example 5

class B

{

public void m1()

{

System.out.println(1);

}

}

class C

{

public void m2()

{

System.out.println(2);

}

}

class A infers B,C

{

public void m()

{

inferior.m1(); // output: 1

inferior.m2(); // output: 2

}

}
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The example above explains an aspect of how the descendant access mecha-
nism works.

4.12 Polymorphism Implication

Description The parameter indicates the direction of polymorphism. There
are available four values we select one and we motivate the choice.

Value down If polymorphism implication has the value down, all instances
of target descriptions must be also instances of source description. In our
case, source classes are superclasses and target classes are subclasses.

Example All instances of target description are also instances of source
description.

class B

{

}

class A infers B

{

}

class Test

{

public static void test()

{

A b=new B(); // correct

B a=new A(); // compile time error !!!

}

}

Class B is a initially created class. Then class A is created in reverse inher-
itance relation with B. Some tests are made instantiating A and B objects
and using different references. First line from the test function of class Test
refers using type A an instance of B which is correct, because a B object is
also an A. The following line in which reference B tries to hold an A object,
generates compile time error, because an A object is not a B object.
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4.13 Polymorphism Policy For Methods

Description The parameter indicates if a new declaration of a feature
(method) in the source description hides the feature (method) in the target
description or redefines it. Possible values are: hiding and overriding.

Value overriding

Example

class B

{

// old method

public void m()

{

System.out.println(‘‘class B method m’’);

}

}

class A infers B

{

// new created method

public void m()

{

System.out.println(‘‘class A method m’’);

}

}

class C

{

public static void main(String args[])

{

A a=new A();

A b=new B();

a.m(); // output: class A method m

b.m(); // output: class B method m

((A)b).m(); // output: class B method m

}

}
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In class B, method m is inherited from class A by reverse inheritance. Also
in class B method m is redefined overriding the inherited one. The same
mechanism is present in simple class inheritance. Method m from class B
overrides inherited method m from class A.

4.14 Polymorphism Policy For Attributes

Description The parameter indicates if a new declaration of a feature
(attribute) in the source description hides the feature (attribute) in the target
description or redefines it. Possible values are: hiding and overriding.

Value hiding

Example 1

class B

{

public int m;

}

class A infers B

{

public int m;

}

class C

{

public static void main(String args[])

{

A a=new A();

A b=new B();

a.m=1;

b.m=2;

}

}

The semantics of the value given to the OFL parameter is the same as in
simple inheritance. Object b has two members called m: one inherited from
class A and one defined explicitly in class B. The explicit attribute hides the
inherited one.
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4.15 Variance For Number Of Parameters In Methods

Description This parameter expresses if the redefinition of a method per-
mits the variance of parameter number.

Value non-variant We chose the non-variant value because in most object-
oriented programming languages the signature of a method includes the num-
ber of parameters. In the next example we try to redefine a method changing
the number of parameters.

Example

class B

{

public void m(int i)

{

}

}

There is defined class B with method m having one parameter i.

class A infers B

{

public void m(int i,int j)

{

}

}

Next we create the superclass A of B using the reverse inheritance class
relation and we define method m with a different number of parameters,
two, i and j. Method m is not a redefinition of method m from class B
because it has different number of parameters.

class Test

{

public static void main(String args[])

{

B b=new B();

b.m(1);

b.m(1,2);
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}

}

The two methods declared in the two classes are considered different and
does not one redefine another.

4.16 Variance For Type Of Parameters In Methods

Description OFL parameter expresses if the redefinition of a method au-
thorizes or not the variance of parameters type.

Value non-variant The choice is motivated by the definition of a method
signature in common object-oriented programming languages.

In the first example we define two reverse inherited classes having a
method with the same name, same return type, same number of parame-
ters, but with the type of parameters different.

Example 1

class B

{

public void m(int a,int b)

{

}

}

class A infers B

{

public void m(String s1,String s2)

{

}

}

The two methods m differ only by the type of their parameters: int and
String.

class Test

{

public static void main(String args[])

{
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B b=new B();

b.m(1,2);

b.m("foo","bar");

}

}

We conclude that m method is not redefined in class B, but inherited, because
this example demonstrates that both methods m are available at the level of
B instances and none of them is redefined.

Example 2 This example was designed to show how method selection is
made when polymorphism is involved.

class X

{

}

class Y extends X

{

}

class Z extends Y

{

}

We designed a class hierarchy that will be used for parameterizing redefined
methods but with polymorphic parameter types. These classes will be the
types of the methods’ parameters.

class B

{

public void m(X p)

{

}

}

class A infers B

{

public void m(Y p)

{
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}

}

We have a reverse inheritance class hierarchy, each class has one method m
but with polymorphic parameter types: X and Y.

class Test

{

public static void main(String args[])

{

B b=new B();

b.m(new X()); // call m(X)

b.m(new Y()); // call m(Y)

b.m(new Z()); // call m(Y)

}

}

The test class will invoke the m method of the B instance with different
objects passed as parameters. First an X instance is passed and the call
will be made to the method m from class B because it’s declaration has the
parameter X. Second call is made using a Y object and the call is directed to
the method m of class A. The third call is using as argument a Z object. The
problem is which of the methods will be called: the one with X argument
or the one with Y argument. Because Y is the closest class to Z in the
inheritance tree, the answer will be the method with the Y parameter from
class A.

4.17 Variance For Type Of Result In Methods

Description The parameter expresses if the redefinition of a method au-
thorizes or not the variance of the return type.

Value variant Because in the signature of a method the return type is not
included, two methods can have the same signature, so one can override the
other, even if they have different return type.

The following example will demonstrate that once it is redefined a method
with the same name, parameters (number and type), but with different return
type, it is impossible to access the first method.
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Example

class B

{

public void m(int x)

{

System.out.println("class B method m");

}

}

In class B we have method m with void return type and one parameter of
type int.

class A infers B

{

public int m(int y)

{

System.out.println("class A method m");

}

}

In class A we have method m with int return type and one parameter of type
int.

class Test

{

public static void main(String args[])

{

B b=new B();

b.m(1); // output: class B method m

}

}

Because the call mechanism do not has the possibility to select by return
type which function will be called, method m from class A is redefined at the
level of B instances. There is no access from a B instance to the m method
of class A.
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4.18 Variance For Attributes

Description Parameter expresses if the redefinition of an attribute autho-
rizes or not the attribute’s type.

Value non-applicable Because attributes in Java cannot be redefined this
parameter is ignored.

4.19 Redefining For Modifiers Of Features

Description The parameter expresses if the redefinition of features autho-
rizes the redefinition of modifiers.

Value allowed

Example

class B

{

public void m1()

{

}

private void m2()

{

}

}

class A infers B

{

private void m1()

{

}

public void m2() // error !!!

{

}
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}

The modifiers of redefined features in subclasses have to be weaker that the
features in superclasses. So if we consider reverse inheritance the redefined
features from superclass have to have stronger modifiers. If this rule is not
respected a compile-time error occurs.

4.20 Redefining For Signature Of Methods

Description This parameter defines the capabilities of redefining signature
of methods. It expresses if is possible to change the signature of a redefined
method.

Value forbidden

Example

class B

{

public void m(int x)

{

// implementation 1

}

}

class A infers B

{

public int(int y)

{

// implementation 2

}

}

class Test

{

public static void main(String args[])

{

B b=new B();

b.m(1); // implementation 1

52



A a=new A();

a.m(1); // implementation 2

}

}

The signature is the only mechanism which can distinguish between two
methods. A signature identifies a method. So if we cannot redefine methods
and change their signature. The signature is invariant regarding returned
type and parameter names.

4.21 Redefining For Body Of Methods

Description This parameter describes if the redefinition for body of meth-
ods is authorized.

Value allowed The body of a method is an entity that is not part of it’s
signature.

Example

class B

{

public void m()

{

// implementation 1

}

}

class A infers B

{

public void m()

{

// implementation 2

}

}

class Test

{

public static void main(String args[])

{
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A a=new A();

A b=new B();

a.m(); // implementation 2

b.m(); // implementation 1

}

}

This example illustrates that redefinition of method bodies is preserved in
this class relation.
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5 Main Reverse Inheritance Mechanisms ap-

plied to Java

The reverse inheritance class relation is a mix of several mechanisms which
are presented separately. In this chapter the interaction between these mech-
anisms is discussed and code transformations ideas regarding their implemen-
tation are outlined. We anticipate what a programmer would expect to find
in the reengineered evolved sources.

5.1 Feature Adding Mechanism

5.1.1 Motivation

This mechanism takes the idea from the simple inheritance relation and
adapts it to reverse inheritance. The member and method addition in a
class is a very used reengineering feature in the examples presented in the
motivation section. We will define this mechanism with all the necessary
adaptations from the point of view of our approach.

5.1.2 Applicability

This mechanism can be easily applied to a class or to a hierarchy of classes.
We apply it to a class if we want to reuse the class without changing it, or if
we want to evolve in a controlled way. If we use this mechanism on a hierarchy
of classes we should add only common features that have sense for all classes
in the hierarchy. The difference between the two type of adaptations is that
one class adaptation can be more specific, and hierarchy adaptation is more
generic.

5.1.3 Anatomy

The anatomy of the mechanism consists of attribute and method declarations
in the superclass that will be imported in all the subclasses from the hierarchy.

Components of the mechanisms are:

• feature - can be a method or an attribute;

• source class - the place of the feature’s declaration;

• destination classes - the classes that source class infers.

55



Figure 40: Anatomy of Feature Adding Mechanism

5.1.4 Constraints

We define general situations in which this mechanism can not be used or
should not be used because it can generate conflicts. One situation in which
we have an applicability constraint is the one that generates a name conflict.
When we deal with a class hierarchy, we need a feature that in some classes is
already present and we use inheritance mechanism, feature hiding/overriding
happen. In order to avoid this ambiguity the mechanism in this kind of
situations should be used with factoring. The factoring concepts will be
presented in one of the following subsections.

5.1.5 Interactions with Other Mechanisms

Inheritance mechanism can be used independently with all the rest of mech-
anisms except factoring. Factoring and inheritance mechanism together per-
mit a selective inheritance. This aspect will be described in the factoring sub-
section. For inherited features only no renaming is provided. Access control
mechanism represented by private, protected, public keywords and implicit
package access type is preserved entirely from Java language [1, AG00].

5.1.6 Sample of Use

The following example briefly illustrates the main features that can be ob-
tained using the discussed mechanism.

class B

{

}

class C

{

}
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class A infers B,C

{

private int attA;

public void methA()

{

}

}

class Test

{

public static void main()

{

B b=new B();

b.methA();

}

}

The example consists of three classes. The first two classes B and C have a
readonly status and they request new features. The third class A has inside
it the new features that are needed by B and C classes. We use reverse
inheritance class relation from A to B and C in order to get the desired
functionality into A and B classes.

5.1.7 Code Transformation Strategies

One possibility of implementing this mechanism is using the “extends”. This
solution can be used only in situations in which there are no more than one
superclass which infers some other class targets, due to the limitation of single
inheritance in Java. Other possibility is to encourage a composition based
code transformation like in all object-oriented compiler implementation [4,
Bur]. The drawback of this solution is that the resulted application model
differs slightly from the designed model. Another strategy can be based
on emancipation of the classes on the first level of the inheritance tree [9,
CMR02].

5.1.8 Conclusions

Reusing the principles from the classical direct inheritance mechanism we
manage to help code reengineering. On the other hand code consistency is
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assured by checking constraints which avoids conflicts, ambiguities, viola-
tions.

5.2 Factoring Mechanism

5.2.1 Motivation

Factoring does the reverse of what feature adding mechanism does. Features
with same semantics from different classes should be factored in one single
superclass. Using reverse inheritance we achieve this goal. Factoring features,
we avoid code and data duplication.

5.2.2 Applicability

Actually there are several ways of using this mechanism: two elementary
usages and combinations with others. One is applied to classes which all
have the factored feature, and the other is applied to a hierarchy of classes in
which not all classes posses the desired feature. First usage is pure factoring
and the second one is a combination of factoring and feature adding.

5.2.3 Anatomy

Figure 41: Anatomy of Factoring Mechanism

The components of this mechanism are:

• factored feature declaration proceeded by factorized keyword;

• superclass which hosts the declaration of factored feature;

• the subclasses of the target hierarchy which are altered by infers rela-
tion.
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5.2.4 Constraints

Constraints may appear when desired features from subclasses have different
names and the renaming mechanism has to be used also. The renaming
mechanism will be presented in the next chapter. The factoring of methods
implies the creation of abstract methods in the superclass or the writing of a
generic one. If one decided to write a generic method the problem is how to
state for each subclass if the generic or the specific implementation should
be executed.

5.2.5 Interactions with Other Mechanisms

Adding features mechanism and factoring mechanism are compatible and
orthogonal.

5.2.6 Sample of Use

The following example is a simplified possible use of the mechanism. It will
explain how the mechanism works.

class CircuitA

{

private int m_nNoOfPins;

public void test()

{

// specific implementation A

}

}

class CircuitB

{

private int m_nNoOfPins;

public void test()

{

// specific implementation B

}

}

In the first part of the sample there are two classes CircuitA and CircuitB,
possibly from two different libraries having no super class. The reverse in-
heritance class relation offers the possibility to create a new superclass but
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does not provide access to their common features. So using the factoring
mechanism it is possible to access at the level of superclass features from
subclasses.

class Circuit infers CircuitA, CircuitB

{

factored private int m_nNoOfPins;

factored public void test()

{

}

}

Class Circuit is the superclass created by reverse inheritance relation. Also
in order to access features from the two classes m nNoOfPins member and
test() method is factored. At the level of Circuit class for the method test
we have two choices: it should have a generic implementation or it should be
abstract.

5.2.7 Code Transformation Strategies

Regarding the code transformation one possibility is to use simple inheri-
tance, to delete the factored members from subclasses and to put one copy
of them into the superclass. The idea is that they will be inherited in all the
subclasses. For the factored methods no code transformation has to be made.
The polymorphism of inheritance will decide which code has to be executed
depending on the type of the calling object. Other possibility is exactly at
the opposite pole: to make abstract all the factored features in the super-
class and to work with the data and code from instances of subclasses. By
abstraction we mean a way of avoiding inheritance of data. Either strategy
we choose the idea of organizing data and code for the superclass to exploit
them, remains.

5.2.8 Conclusions

Using factoring we help flexibility by eliminating duplicated data and code.
Also reverse inheritance gains in functionality at the level of class relation.

60



5.3 Descendant Access Mechanism

5.3.1 Motivation

If we look at the simple inheritance class relation in object-oriented program-
ming languages we notice that all have the possibility to refer in the subclass
features from superclass. This is necessary when in the subclass some super-
class code has to be reused. This mechanism already present in Java, C++,
Eiffel is motivated by avoiding code duplication and all the errors that may
appear when changing needed. Following this idea in the reverse inheritance
class relation we think it is necessary to have a similar mechanism. In C++,
for instance the access to the features in the superior classes is made using
the resolution operator ::. In Java it is provided a keyword super, which is a
reference to the superclass part of the object.

5.3.2 Applicability

For this mechanism there are no multiple possibilities to use it.

5.3.3 Anatomy

Figure 42: Anatomy of Descendant Access Mechanism

The components of this mechanism are:

• descendant access call using descendant keyword, parameterized with
the desired subclass. The descendant keyword plays the role of a pointer
to one of the descendant classes;

• the methods from the subclasses that are called with the help of this
mechanism;

• superclass which hosts the descendant calls;
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• the subclasses of the target hierarchy which are linked with the infers
relation, by the superclass.

5.3.4 Constraints

One severe restriction is regarding the methods from the descendant that
has to run in the superclass context. To be more specific if a method from
a subclass is invoked using this mechanism to run in the superclass it is
necessary to provide also every data that it depends on.

5.3.5 Interactions with Other Mechanisms

The descendant access mechanism is depending very much on the factoring
mechanism because of the constraints explained above. With the rest of the
mechanisms there are no interferences.

5.3.6 Sample of Use

In the next sample it is presented a way of how this mechanism can be used.

class Algorithm1

{

public void execute()

{

// implementation version 1

}

}

class Algorithm2

{

public void execute()

{

// implementation version 2

}

}

Starting from two classes which will become subclasses later. Each of the
classes has one execute() method with two different implementations.

class GenericAlgorithm infers Algorithm1, Algorithm2

{
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factored public void execute()

{

inferior(Algorithm1).execute(); // implementation version 1

inferior(Algorithm2).execute(); // implementation version 2

}

}

The new created class GenericAlgorithm is meant to reverse inherit the first
two classes and to access methods from them. Because there can be more
than one subclasses the inferior reference has to be augmented with the
desired subclass. So an instance of a GenericAlgorithm in it’s execute method
using this mechanism, are made two calls to the descendants, beneficiating
from both implementations.

5.3.7 Code Transformation Strategies

One solution of implementing this mechanism is to use composition [9, CMR02]
with some modifications. First the temporary composed object is created,
all the factored members values from superclass instance will be copied to
the temporary object. The specific method is executed on the temporary
object. The new values from the factored fields of the temporary object are
copied back to the superclass instance. This algorithm can be repeated as
many times as necessary. The main disadvantage is that all data that meth-
ods from subclasses depend on has to be factored in the superclass. Other
disadvantage could be the performance: low speed of the execution and the
memory needed for copying data.

5.3.8 Conclusions

The descendant access mechanism is meant to provide a way of accessing
data and code from subclasses. The execution is not straight forward as the
one from simple inheritance.

5.4 Renaming Mechanism

5.4.1 Motivation

This mechanism came to help the factoring process. Because in real life
software applications the names of the features that denote the same func-
tionality aspect differ. In the presentation of the factoring mechanism was
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made a restrictive supposition that all factored features from different li-
braries have the same name. Now we break the limitation introducing this
mechanism. Another motivation for this mechanism is to solve name con-
flicts. In 1989 Pedersen [30, Sak02] distinguishes two kinds of name conflicts
in multiple generalization between two names N1 and N2 from two subclasses
A1 and A2. The first conflict arises when the names N1 and N2 are equal,
but they denote different methods, the second one is when the names N1 and
N2 are different, but they denote the same method. This discussion has to
be applied equally to attributes and to methods.

5.4.2 Applicability

The applicability can be made for both types of name conflict discussed in
the previous paragraph.

5.4.3 Anatomy

Figure 43: Anatomy of Renaming Mechanism

The components of this mechanism are:

• ??? descendant access call using descendant keyword, parameterized
with the desired subclass. The descendant keyword plays the role of a
pointer to one of the descendant classes;

• the methods from the subclasses that are called with the help of this
mechanism;

• superclass which hosts the descendant calls;

• the subclasses of the target hierarchy which are linked with the infers
relation, by the superclass.
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5.4.4 Constraints

Most of the times the renaming has to be coupled with the factoring mecha-
nism. If it is not used the factored keyword the new feature will be inherited
in all the subclasses. This leads to feature hiding, overriding or to data
duplication. The inherited features will be accessible only at subclass level,
because at the superclass level the new name is pointing the renamed features
in subclass.

5.4.5 Interactions with Other Mechanisms

As mentioned above the main interaction for this mechanism is designed to
be with the factoring mechanism. Individual usage of this mechanism is not
recommended. The interaction with the adding features mechanism has no
side effects. The descendant accesses does not influence the renaming.

5.4.6 Sample of Use

The usage sample will present three classes that have a feature in common.
The first two are library classes and the common feature has different names.
The third one is the newly created one linked with the first two by reverse
inheritance class relation.

class Parallelogram

{

private int area;

}

class Ellipse

{

private int surface;

}

The above classes model geometric shapes and each of them has a member
that denotes the area of the geometric shape. The problem encountered is
that the features have different names: area and surface. The manipulation
of subclass instances can be made only the different features are reunited
under a unique name.

class Shape infers Parallelogram, Ellipse

{

factored protected int area={Parallelogram.area,Ellipse.surface};
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}

The solution stands in designing a class using the reverse inheritance class
relation and applying the factoring and renaming mechanisms. Class Shape
infers Parallelogram, Ellipse and it has a factored member for the area of
the shapes. It is noticeable the used syntax: initialization with the classified
names of the subclass members.

5.4.7 Code Transformation Strategies

Regarding code transformations there are some solutions. One could be based
on using access methods for the renamed features.

5.4.8 Conclusions

This mechanism was designed to be closer to real life situations of reengi-
neering.
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6 Conclusions, Perspectives and Future Work

With this research report we demonstrated that reverse inheritance class
relation can bring serious advantages in facilitating adaptation and evolution.

The next step in our research activity is to define a grammar of the Java
language extension to permit syntactically to use the reverse inheritance class
relation.

The AST representation of the extension code has to be transformed into
pure Java accepted AST. The obtained tree will be unparsed in pure Java
code. This code is meant to be human readable, as documented as possible
in all the parts where transformations were made.

Also there has to be made an analysis to determine how much of the ex-
tension code transformation into pure Java code is automatic, semiautomatic
or manual.

The code transformation will be done by a translator with human assis-
tance. At the moment there are in work some transformations schemes from
extended Java AST to pure Java AST.

The main future work is to create tools, like plug-ins for the Eclipse pro-
gramming environment, to provide a friendly user interface to the translator
of the extension defined above.

Other future works includes the extension of this approach to other object-
oriented programming languages such as Eiffel.
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