
Features old print figure from classes RECTANGLE and ELLIPSE are the renamed versions of the orig-
inal ones. This is necessary because in Eiffel there is no overloading. The new print figure feature will
have a common signature and in the implememntation each will call the original version using adapta-
tions for parameters.

Perspectives
Reverse inheritance can help Eiffel class reusability by redesigning existing class hierarchies. The new
class relationship is built symetrically from ordinary inheritance, so is not a concept hard to understand
and to use, for designers. The special adaptation mechanisms included in RI semantics, do not represent
a severe deviation from the philosophy of the language.

One of the perspectives regarding the semantics of reverse inheritance is to fully integrate it into Eiffel
programming language. In order to fulfill this target, a formal model of the foster class must be proposed
and a translation schema have to be designed which will be the core of a translator that generates com-
pilable Eiffel code. Another perspective of the RI class relationship is to test it in practice like on the
classes of Eiffel Kernel library.

class RECTANGLE
inherit
PARALLELOGRAM
redefine draw
end
feature
draw is do ... end

end −− class RECTANGLE

class SHAPE
feature
draw is do ... end

end −− class SHAPE

class PARALLELOGRAM
inherit
SHAPE
redefine draw
end
feature
draw is do ... end

end −− class PARALLELOGRAM
Example 4: Example of Figure 2 using Ordinary Inheritance Only

class ELLIPSE
inherit
SHAPE
rename boundary as circumference
redefine floodfill, circumference,print figure
display
end
feature
draw is do ... end
floodfill is do ... end
circumference: INTEGER is do ... end
print figure(x1, y1, x2, y2, color: INTEGER) is
do
old print figure(x1, y1, x2, y2, 0)
end
display is
require else fgcolor /= bgcolor
do ... end
old print figure(x1, y1, x2, y2: INTEGER) is
do ... end

end −− class ELLIPSE

class RECTANGLE
inherit
SHAPE
rename boundary as perimeter
redefine floodfill, perimeter, print figure,
display
end
feature
draw is do ... end
floodfill is do ... end
perimeter: INTEGER is do ... end
print(x1, y1, x2, y2, color: INTEGER) is
do
old print figure((x1+x2)//2, (y1+y2)//2)
end
display is
require else fgcolor > 64 and bgcolor < 192
do ... end
old print figure(xcenter, ycenter: INTEGER) is
do ... end

end −− class RECTANGLE
Example 3: Example of Figure 1 Using Ordinary Inheritance Only

The foster keyword marks a class as being source in a RI class relationship.

From Inheritance/Exheritance Hierarchies to Ordinary In-
heritance
In order to point that our approach is feasible we will show that each semantical construct discussed
earlier can be expressed using a pure Eiffel language. The intermediate compilable code may contain a
modified copy of the original source code. Modifications are mostly performed at syntactical level on a
copy, leaving the behavior unchanged.

deferred class SHAPE
feature
fgcolor, bgcolor: INTEGER;
draw is deferred end
floodfill is
do
−− copy implementation of feature floodfill from class Ellipse
end
boundary: INTEGER is deferred end
print(x1, y1, x2, y2, color: INTEGER) is do ... end
display is
require fgcolor > 64 and bgcolor < 192 and fgcolor /= bgcolor
do ... end

end −− class SHAPE

class PARALLELOGRAM
inherit
SHAPE
redefine draw
end
exherit
RECTANGLE
redefine draw
end
all −− all exheritable features
feature
draw is do ... end

end −− class PARALLELOGRAM

class SHAPE
feature
draw is do ... end

end −− class SHAPE

class RECTANGLE
inherit
SHAPE
redefine draw
end
feature
draw is do ... end

end −− class RECTANGLE
Example 2: Example of Figure 2 of the Extension of RI in Eiffel

−− class SHAPE continued
feature
print(x1, y1, x2, y2: INTEGER) is
require stronger
adapted
{RECTANGLE}.print((x1+x2)/2,(y1+y2)/2)
{ELLIPSE}.print(x1,y1,x2,y2,0)
do
−− possible implementation
end

end −− class SHAPE

deferred foster class SHAPE
exherit
RECTANGLE
rename perimeter as boundary
undefine draw, floodfill, boundary
adapt print
end
ELLIPSE
rename circumference as boundary
undefine draw, boundary
adapt print
move floodfill
end
all −− all exheritable features

Example 1: Example of Figure 1 of the Extension of RI in Eiffel

class ELLIPSE
feature
fgcolor, bgcolor: INTEGER;
draw is do ... end
floodfill is do ... end
circumference: INTEGER is do ... end
print figure(x1, y1, x2, y2, color: INTEGER) is
do ... end
display is
require fgcolor /= bgcolor
do ... end

end −− class ELLIPSE

class RECTANGLE
feature
fgcolor, bgcolor: INTEGER;
draw is do ... end
floodfill is do ... end
perimeter: INTEGER is do ... end
print figure(xcenter, ycenter: INTEGER) is
do ... end
display is
require fgcolor > 64 and bgcolor < 192
do ... end

end −− class RECTANGLE

Goals
- To reuse Eiffel class libraries when their source code is not available or is copyrighted;
- To avoid maintaining entire class libraries by modifying their existing source code.

Solution
Reverse inheritance (RI) class relationship offers several facilities for reorganizing class hierarchies
in the context of Eiffel language: creating a common superclass, factoring common features, inserting a
class into an existing hierarchy.

Eiffel programming language was chosen for implementing an expressive and orthogonal RI because of
reasons dealing with language symmetry and consistency:
- The presence of adaptation mechanisms;
- The existence of multiple inheritance class relationship;
- Covariant feature redefinition;
- The lack of overloading enables feature identification by unique names;
- The uniform way of using features implemented by memory (attributes) or by computation (methods).

In order to respect the duality of ordinary inheritance of Eiffel, reverse inheritance can be conforming or
non-conforming. Conforming inheritance/reverse inheritance keeps the type conformance relationship
between subclass and superclass while non-conforming does not.

Reverse Inheritance Based Solutions
Capturing Common Functionalities
By creating a superclass using reverse inheritance there is no need to modify the source of subclasses,
because in the new superclass must be specified the list of all its subclasses and the list of common
features. This capability of RI allows creating a common interface which helps manipulating in an
homogeneous way classes from different hierarchies. Also new subclasses can be created by ordinary
inheritance as descendants of the newly created superclass.

Figure 1: Capturing Common Functionalities

Problems:
- Name conflicts [Ped89,LHQ94] arise when two features having the same semantics have different
names - called lost friends [Sak02] and when two features having the same name but different semantics
- called false friends;
- Signature incompatibilities have to take into account incompatibilities related to parameter and return
types, parameter number and order, assertions: preconditions, postconditions and invariants.

Benefits:
- Avoid modifying the original class hierarchy;
- Factoring the common features in one place on the hierarchy, in the superclass;
- Creating a common interface which helps manipulating the subclasses in an uniform manner;
- Extending the class hierarchy with a new subclass by ordinary inheritance.

Inserting a Class into an Existing Hierarchy
In figure 2 is presented a typical situation in which the design of an existing class hierarchy have to be
changed and a new class have to be inserted between already existing two ones. To add retroactively a
new layer of abstraction in a class hierarchy is a natural practice when the model of the application has
to be adapted to new contexts or when the model evolves.

Figure 2: Inserting a Class Into an Existing Hierarchy

Benefits:
- Preserving the original classes untouched;
- Still refining the class hierarchy;
- Easily canceling the modifications.

Expressiveness of Exheritance
RI offers several mechanisms for reaching the goal of reusability:
- Factoring Features - selects common features to be factored in the superclass;
- Exheriting Implementation - selects one implementation from one subclass to be available in the
superclass;
- Renaming - solves the name conflict problems or abstracts / generalizes the name of a feature;
- Parameter and Assertion Adaptations - solves the signature incompatibilities problems by giving
more general assertions.

Philippe Lahire Philippe.Lahire@unice.fr
Pierre Crescenzo Pierre.Crescenzo@unice.fr
Ciprian-Bogdan Chirila chirila@cs.upt.ro

Reverse Inheritance: Improving Class Library Reuse
in Eiffel


