
Testing Techniques for a Logic Representation Generator

Ciprian-Bogdan Chirilă
Politehnica University of Timişoara

ciprian.chirila@cs.upt.ro

Călin Jebelean
Politehnica University of Timişoara

calin.jebelean@cs.upt.ro

Krisztina Francz
kfrancz@gmail.com

Abstract

Logic based representation can be used for express-
ing programs and models driven by a grammar. Thus,
model analysis and transformation written as declarative
paradigm rules can be more expressive. Usually, logic
representations are obtained by translators which must be
tested as any other software artifacts. We present several
testing techniques in the context of logic based representa-
tion.

1 Introduction

Our work is based on the logic foundation for program
representation defined in [11]. The logic representation may
be seen as a set of Horn clauses organized as a 3NF normal-
ized relational database having no null values. In practice
the Horn clauses are implemented as Prolog clauses. Logic
representation has two main uses for programs and models:
analysis and transformation. These uses can help in achiev-
ing several other goals in the programming world. Using
logic representation for programs allows writing analysis
and transformation rules using declarative languages. Thus,
these rules are more expressive than writing them using
other paradigm like the one of imperative languages. An-
other major advantage of the approach is that the logic based
representation is language independent. We experimented
it on Java [2] and Eiffel [13]. Currently, logic representa-
tion is used in the context of object-oriented technology for
several purposes like: i) the detection for the lack of de-
sign patterns in object-oriented design [9]; ii) the detection
and extraction of concerns in the context of separation of
concerns paradigm [12]; iii) the implementation of the re-
verse inheritance class relationship semantics for Eiffel in
order to favor code reuse and to facilitate ”a posteriori” ar-
chitecture redesign [4, 5]. The main diagram of our logic
based framework is presented in figure 1. The first rectangle
block of the framework is the logic representation generator

Figure 1. Logic Based Approach

which translates the input program into logic representation
or factbase. In the remaining of the paper we will refer to
this parser as reader. In [10] it is shown that for any model
expressed through a grammar it can be automatically gen-
erated a parser which can output a logic representation of
that model. Otherwise the reader must be written manually.
The second rectangle block is a transformer which can ex-
tract information from the factbase or can change the model
by adapting, evolving or enhancing it. The third rectangle
block is the writer which unparses the resulted factbase and
regenerates the program. In this paper we present several
black box testing techniques [3] for a test automation frame-
work to assist the programmer in the development process
of the reader. Some of the used techniques are classic and
some have some original elements. The paper is structured
as follows: in section two we present the main concepts of
the logic based representation; in section three we describe
several testing strategies for the generator; in the fourth sec-
tion related works are presented; finally, in section five we
conclude and we set the perspectives.

2 Logic Based Representation in a Nutshell

In this section we will briefly present the basics of the
logic based representation which was defined in [11] for
Java. We will illustrate these concepts through an exam-
ple in the Java programming language. The approach on
logic-based representation we use is language independent,
as was shown in [10]. Figure 2 presents a simple example

1



of a Java class Person, with a field representing the person’s
age and a setter for this field. In figure 2 we have the exam-
01 class Person {
02 int age;
03 void setAge(int age) {} }
04
05 classDecl(100,0,’Person’,[101,102]).
06 fieldDecl(101,100,’age’,int).
07 methodDecl(102,100,’setAge’,void,[103],104).
08 param(103,102,’age’,int).
09 block(104,102,[]).

Figure 2. Logic Representation for a Java
Code Example

ple Java code between lines 01-03 and the equivalent logic
representation as Prolog knowledge between lines 05-09.
As one can easily notice, the Prolog model contains infor-
mation that’s already present in the Java code, only in a hier-
archical and logic fashion. Each Prolog fact refers to a Java
entity. These entities are also linked in Prolog by means of
numeric identifiers. Thus, each entity has a personal and
unique numeric ID as first parameter and the numeric ID of
its ancestor (father) as second parameter. The other param-
eters (if available) offer additional information about that
particular entity. The first two parameters of each Prolog
fact express a father-son relation between entities. Thus,
fields and methods are linked to the class where they belong,
parameters and blocks are linked to the method to whom
they belong, etc. The whole knowledge base becomes a big
generalized tree if only the first two parameters are consid-
ered from each fact. This tree is, in fact, the abstract syntax
tree of the program under analysis. In the example from
figure 2, the first Prolog fact (line 05) states that ’Person’
is the name of a class, its ID is 100 and its parent ID is 0
(this means it has no parent). The last parameter is a list
of IDs representing the IDs of the class members. We can
see there are two members in the class, having 101 and 102
as their personal IDs. If we further inspect the knowledge
base, we can see that 101 is the ID of a field called ’age’ of
type int, while 102 is the ID of a method called ’setAge’ of
type void, having one parameter with ID=103 (there could
be more parameters, that’s why we use a Prolog list to hold
them) and one method block with ID=104. The modeling
process is exhaustive, going all the way down to the instruc-
tion level and even beyond, to the atomic level. For reasons
of simplicity, we limited the example to the method block
level, but instructions within each method block would have
been considered and modeled further as sons of the method
block fact. Next sections deal with a few techniques aimed
at testing the consistency of the parser that generates such
logic knowledge bases.

3 Parser Testing Techniques

In this section we present an overview of the reader
parser we are going to test. The reader transforms pro-

grams written in a certain programming language into logic
based representation. The reader may be language inde-
pendent but some tests are language dependent and we will
illustrate the testing strategies on Eiffel programming lan-
guage. In our test plan we designed several test scenarios,
each scenario tests a certain language entity: class header,
inheritance branches, features, types, instructions and ex-
pressions. Each scenario is tested using several techniques.
We will illustrate our testing strategies on one example deal-
ing with feature blocks, features and client classes. We con-
sider the following input Eiffel code from figure 3 lines 01-
06. The correct expected output is listed in the same figure
between lines 08-15.
01 class FIGURE
02 feature {COMPOUND_FIGURE, DRAWING}
03 draw is do ... end
04 end
05 class COMPOUND_FIGURE ... end
06 class DRAWING ... end
07
08 cluster(10,’.’).
09 classDecl(100,10,’FIGURE’).
10 classDecl(101,10,’COMPOUND_FIGURE’).
11 classDecl(102,10,’DRAWING’).
12 featureBlock(200,100).
13 featureDecl(300,200,’draw’).
14 featureClientClass(400,200,101).
15 featureClientClass(400,200,102).

Figure 3. Logic Representation for an Eiffel
Code Example

Output Testing Output testing is a black box testing tech-
nique where we set a certain input and we expect a certain
output. For such a test the input is an Eiffel program and
the output is a Prolog factbase. The comparison is made
with the diff [7] tool between the output file and the oracle
file. The test succeeds if the two files are identical. For ex-
ample, for the input in figure 3 we expect to get the output
from the same figure. The advantage of such a technique is
that the comparison is very strict. Any modification in the
input sample will determine changes in the output, thus trig-
gering test failure. The disadvantage stands in the fact that
even some minor modifications in the sample, even ones not
related to the tested entity, will trigger test failure. For ex-
ample, if the identifiers of facts are changed due to some
fact generation order change, the test will detect false pos-
itives. The creation and maintenance of such a test battery
is done manually but it is used as regression test automated
by Perl [1] scripts and by the diff [7] tool.

Logic Testing Logic testing is also a black box testing
technique where we test the existence of several facts and
the relations between them, within the output factbase.
These tests can be easily constructed by: i) inspecting man-
ually the output facts; ii) selecting the desired facts which
are related; iii) changing automatically the identifiers into

2



anonymous variables; iv) adding the obtained rules to the
oracle of the test case collection. For example, in the case of
Eiffel language the facts refering to features, feature blocks
and client classes are described in figure 4. The generated
featureBlock(#id,#classDecl).
featureDecl(#id,#featureBlock,’FeatureName’).
featureClientClass(#id,#featureBlock,#classDecl).

Figure 4. Metamodel Fragment

output facts are listed in figure 3. From this list the pro-
grammer may easily select the facts from figure 5. The re-
01 featureBlock(200,100).
02 featureDecl(300,200,’draw’).
03 featureClientClass(401,200,101).
04 featureClientClass(402,200,102).

Figure 5. Selected Facts

lations which can be inferred automatically from the facts
of figure 5 are listed in figure 6. The rule is inferred by
01 featureBlock(_200,_100),
02 featureDecl(_300,_200,’draw’),
03 featureClientClass(_401,_200,_101),
04 featureClientClass(_402,_200,_102).

Figure 6. Inferred Rule

changing the facts primary and foreign keys into anony-
mous variables and coupling them with the and operator.
The anonymous variable is created by adding the ” ” (un-
derscore) symbol as prefix to the integer keys. This rule
will be used to test the generated output. If some fact argu-
ments are atoms we can choose to make or not to make them
anonymous variables. Leaving atoms as such, will make the
rule more particular for a certain language entity present in
the factbase. For example in line 02 of figure 6 the rule
will refer only to the draw feature from the factbase. Oth-
erwise, the rule will check for any relation in the generated
factbase, regardless of any feature name. The drawback of
this technique is that the creation of such a test battery is
done manually but the advantage is that no maintenance is
needed during the parser development process unless the
metamodel is changed.

Type Testing Because facts are linked by primary and for-
eign keys and because they are globally unique, we can
check if the referred fact types correspond. Such a verifi-
cation is equivalent to the type checking stage of a regular
compiler. For example for the facts in figure 4 we must
check that: i) the second argument of the featureBlock fact
refers a classDecl fact; ii) the second argument of feature-
Decl fact refers a featureBlock fact; iii) the second argu-
ment of featureClientClass refers a featureBlock fact; iv) the
third argument of featureClientClass refers a classDecl fact.
Such a verification could be made automatically by a meta-
routine if there is a formal description of the metamodel.
In figure 7 we present the type checking rules for feature-

checkFeatureDecl(FeatureDeclId):-
exists(featureDecl(FeatureDeclId,
FeatureBlockId,_FeatureName)),

exists(featureBlock(FeatureBlockId,_)),
forall(exists(featureClientClass(
FeatureClientClassId,_,_)),
checkFeatureClient(FeatureClientClassId)).

checkFeatureClientClass(
FeatureClientClassId):-

exists(featureClientClass(
FeatureClientClassId,

FeatureDeclId,ClassDeclId)),
exists(featureDecl(FeatureDeclId,_,_)),
exists(classDecl(ClassDecl,_,_,_)).

Figure 7. Type Checking Rule

Decl and featureClientClass facts. Rule checkFeatureDecl
checks that all arguments of the analysed fact correspond to
a fact of a certain type meaning that FeatureBlockId iden-
tifies a feature block. Next, all the client class facts of the
current fact are type checked. For this purpose we call the
checkFeatureClientClassRule which will check that the sec-
ond argument of the fact is a feature declaration and that the
third argument represents a class declaration.

4 Case Study: ETransformer

The presented testing techniques were successfully ap-
plied on the Eiffel to Prolog translator named ETrans-
former. This tool is used in the implementation framework
for the semantics of reverse inheritance class relationship
of Eiffel [5]. For each entity of the language we wrote an in-
put Eiffel code sample. The tested entities are: class header,
inheritance and exheritance branches, creator declarations,
feature blocks, features, types (class, expanded, separate,
like, bit), formal arguments, locals, assertions, instructions
(creation, assignment, conditional, multibranch, loop, retry,
debug, call) and expressions (subexpression, unary oper-
ator, binary operator, manifest constant, call). We built
around 220 test cases.

5 Related Works

The functional testing or black box testing defined in [3]
explains the principles behind behavioral testing: the sys-
tem is tested based on its desired behavior and for confor-
mance to its specifications. Our work uses this principle in
the output testing and logic testing techniques. In the for-
mer we compare the output with an oracle and in the latter
we check the existence of expected facts. The first testing
technique uses the black box principles as such while the
second testing technique allows the creation of tests derived
from the structure of the input sample.

[8] defines an automatic process of generating model
based tests, taking as input a formal model of the tested
software and a set of generation directives. A test genera-
tor must output a set of test cases that include a sequence

3



of inputs and the expected responses of the system. Next, a
series of test generators are presented. Our work belongs to
this category only in what concerns the first method (output
testing). However, it is closely related to most of the frame-
works presented there in what concerns automation of the
test generation process.

[14] presents some graph based techniques for model
testing. The process is based on modeling the states of soft-
ware as nodes in a graph and the actions that can be taken
in each state as links between nodes. Then, several graph
traversal algorithms are applied to test the software system.

[6] describes a structural testing technique, the code cov-
erage analysis on several statements like decisional state-
ments, calls, loops. This analysis deals with finding areas
of programs not exercised by the testcases. This technique
allows to identify redundant test cases that do not increase
code coverage.

6 Conclusions and Perspectives

In this paper, we have presented some techniques to test
the generation process of logic representation for programs.
We currently have a suite of generators of simple logic rep-
resentation for any programming language that were au-
tomatically generated and a manually-written generator of
logic representation aimed at programs written in the Eif-
fel language. While the automatically obtained generators
were quite unlikely to contain errors, the manually written
one would obviously benefit from a methodology aimed at
testing its consistency.

Logic representation generators are not different than
any other software artifacts, so all common testing tech-
niques may apply to them. Furthermore, due to the special
kind of output we showed that some other particular test-
ing techniques may be used. Output testing needs manual
validation of the output. Logic testing is semiautomatic and
implies manual selection of facts, but afterwards the test-
ing process is automatic. Type testing is a fully automatic
process if a formal metamodel is given. Logic testing ap-
parently overlaps type testing, but logic testing ”expects”
some facts while the type tester checks the types of existing
facts. In other words, if the reader does not provide the ”ex-
pected” facts the type tester may still validate the output. As
an immediate perspective, using the metamodel of the facts,
we could develop a generic routine to test the type of the
arguments with the facts which are referred. Another per-
spective would be to use these testing techniques on other
readers like those for Java or on a generic reader.

References

[1] Perl - Practical Extraction and Report Language.
http://www.perl.org, 2009.

[2] K. Arnold and J. Gosling. The Java Programming
Language. Sun Microsystems, 3rd edition, USA,
2000.

[3] Boris Beizer. Black Box Testing: Techniques for Func-
tional Testing of Software and Systems. John Wiley
and Sons, New York, USA, 1995.

[4] Ciprian-Bogdan Chirila, Pierre Crescenzo, and
Philippe Lahire. Reverse inheritance: Improving class
library reuse in Eiffel. Langages et Modeles a Objets
2007 (poster), Toulouse, France, May, 2007.

[5] Ciprian-Bogdan Chirila, Günter Kniesel, Philippe
Lahire, and Markku Sakkinen. The Eiffel/RI Project
Website. https://nyx.unice.fr/projects/transformer,
2009.

[6] Steve Cornett. Code coverage analysis.
http://www.bullseye.com/coverage.html, 2008.

[7] Paul Eggert. Diffutils.
http://www.gnu.org/software/diffutils/diffutils.html,
2008.

[8] Alan Hartman. AGEDIS Model based test generation
tools. http://www.agedis.de/documents/
ModelBasedTestGenerationTools cs.pdf.

[9] Călin Jebelean. Automatic detection of miss-
ing abstract-factory design pattern in object-oriented
code. In Proceedings of the International Confer-
ence on Technical Informatics, University Politehnica
Timişoara, 2004.

[10] Călin Jebelean, Ciprian-Bogdan Chirila, and Anca
Măduţa. Generating logic based representation for
programs. In In Proceedings of 2008 IEEE 4-th In-
ternational Conference on Intelligent Computer Com-
munication and Processing, pages 145–151, Cluj-
Napoca, Romania, August 2008.

[11] Günter Kniesel. A logic foundation for conditional
program transformations. Technical Report IAI-TR-
2006-1, Computer Science Dept. III, University of
Bonn, January 2006.

[12] Günter Kniesel, Jan Hannemann, and Tobias Rho. A
comparison of logic-based infrastructures for concern
detection and extraction. In Workshop on Linking As-
pect Technology and Evolution (LATE’07), Vancouver,
British Columbia. March 2007.

[13] Bertrand Meyer. Eiffel: The language.
http://www.inf.ethz.ch/˜meyer/, September 2002.

[14] Harry Robinson. Graph theory techniques in model-
based testing. In In Proceedings of the International
Conference on Testing Computer Software, 1999.

4


