
Towards Programs Logic Based Representation

Driven by Grammar and Conforming to a

Metamodel

Ciprian-Bogdan Chirila∗ and Călin Jebelean∗

∗University Politehnica of Timişoara, Romania

Faculty of Automation and Computer Science

Email: {chirila,calin}@cs.upt.ro

Abstract—Logic representation of programs gives an expressive
way to perform analysis and transformation. Logic representa-
tion conforming to a specified metamodel enables analysis and
transformation at both meta and concrete representation levels.
Logic representation mapping rules express how programs can
be automatically translated into metamodel conforming logic
representation. The designed formalisms are suitable to any
programming language.

I. INTRODUCTION

Program logic representation [14] is used for analysis and

transformation. Using logic representation several program

analysis can be performed like: anti-pattern detection [13],

concern detection and extraction [10]. Among the program

transformations based on logic representation we can mention:

refactorings, implementation of a reverse inheritance class

relationship in Eiffel [16], [8]. On the other hand, metamodel

conforming logic representation can be exploited by generic

rules like: generic node search, generic type checking, generic

node structure cloning.

In this paper we present how programs can be translated

into a metamodel conforming logic representation driven by

grammar (see figure 1). Using our approach we translate the

original

program
original

factbase

transformed

program

reader

(parser)

writer

(unparser)

transformer

transformed

factbase

mapping

rules

metamodel

generated by
conforms togrammar

augmented

grammarProGen

derived from

Fig. 1. Logic Based Approach

program source code into logic representation conforming to

a chosen metamodel. In order to achieve our goal we use a

translator (reader) which is built from a generated parser by a

grammar and a set of mapping rules, representing semantical

actions, which provides the logic representation according

to the metamodel. Next, transformations may be performed

on the original factbase resulting a transformed factbase.

Using another translator (writer) the transformed factbase is

regenerated back into the original program representation.

In [9], [6] we showed how concrete syntax tree equivalent

logic representation can be obtained automatically, while now

we provide a way to obtain abstract syntax tree equivalent

logic representation. In order to do this we need the metamodel

and mapping rules to specify how concrete syntax is abstracted

into logic facts.

The paper is structured as follows. Section II shows how

programs are modeled using logic based representation. In

section III we present the metamodel of the logic program

representation. In section IV we present the formalisms of the

designed mapping rules. In section V we study how mapping

rules are written for the MiniEiffel language. In section VI we

present the related works, while in section VII we draw the

conclusions and we set the future work.

II. LOGIC BASED REPRESENTATION OF PROGRAMS

In order to show how programs can be represented using

logical facts we will take an example of a class in an

Eiffel [12] subset language, named MiniEiffel. This language

subset is restricted to class declarations, feature blocks, fea-

ture declarations having formal arguments and type marks,

instructions like: creations, assignments, calls and expressions.

We consider these language features to be the most relevant

from the modeling point of view. In both Eiffel and MiniEiffel

class members (attributes and methods) are named feature

declarations. These feature declarations can be grouped in

feature blocks in the structural context of a class. In figure 2 we

01 class RECTANGLE

02 feature

03 width: REAL

04 height: REAL

05 make(w:REAL; h:REAL) is

06 do

07 width:=w

08 heigth:=h

09 end

10 end

Fig. 2. Rectangle Class Source Code

present a simple class modeling a rectangle (line 01) having:



the width and height attributes (lines 03-04) and a constructor

method named make (lines 05-09). This method takes as input

the width and height of the rectangle as formal arguments and

sets their values to the corresponding class members (lines

07-08).

00 Cluster ::= (ClassDecl)*
01 ClassDecl ::= "class" <id> (FeatureBlock)* "end"

02 FeatureBlock ::= "feature" (FeatureDecl)*
03 FeatureDecl ::= <id> ["(" FormalArguments ")"] [":" <id>]

04 ["is" ("do" Routine | "deferred") "end"]

05 FormalArguments ::= FormalArgument (";" FormalArgument)*
06 FormalArgument ::= <id> ":" <id>

07 Routine ::= (Instruction)*
08 Instruction ::= Creation | Assignment | Call

09 Creation ::= "create" <id>

10 Assignment ::= <id> ":=" Expression

11 Expression ::= Call (<BinaryOperator> Call)*
12 Call ::= <id> [Actuals] ("." <id> [Actuals])*
13 Actuals ::= "(" Actual ("," Actual)* ")"

14 Actual ::= Expression

Fig. 3. MiniEiffel Grammar

In figure 3 we present the grammar of the MiniEiffel

programming language to which our RECTANGLE class (see

figure 2) conforms. The grammar describes a class declaration

having tokens: ”class”, ”end” as keywords, id as identifier,

representing the class name, and a list of feature blocks (see

line 01). A feature block is a list of feature declarations or class

members (see line 02). A feature declaration is described, in

order, by:

i) an identifier id - the name of the feature;

ii) an optional list of formal arguments enclosed by ”(” ”)”;

iii) a return type expressed by the ”:” id sequence, the identifier

denotes the type;

iv) the ”is” keyword;

v) a ”do” routine sequence if the feature is concrete or

”deferred” if the feature is abstract;

vi) the ”end” keyword (see lines 03-04).

The routine is defined as a list of instructions (see line 07). An

instruction can be an object creation instruction, an assignment

or a call (see line 08). The creation instruction is represented

by the ”create” keyword and the identifier of the feature to be

created (see line 09). The assignment instruction is denoted by

the identifier to be assigned and the assigned expression (see

line 10). The expression is either a simple call or a successive

application of a binary operator on two calls (see line 11). A

call is a qualified chain of identifiers optionally having actuals

(see line 12). The actuals are a list of actual elements separated

by the ”;” token (see line 13). Finally, in line 14 we learn that

an actual is denoted by an expression.

Using a parser generator taking as input the previously listed

grammar we obtain the MiniEiffel parser. Using this parser

to analyze the RECTANGLE class we obtain its the concrete

syntax tree.

In figure 4 we present the concrete syntax tree of the class

listed in figure 2. The concrete syntax is represented by a

tree composed of non-terminal nodes, while the terminals

displayed as included in the non-terminals. For example, a

MiniEiffel class will be represented by a node containing

"class" "RECTANGLE" FeatureBlock "end"

"heigth" ":" "REAL""width" ":" "REAL" "make" "is" "do" routine "end"

ClassDecl

FeatureBlock

Instruction Instruction 

"width" ":=" expression "height" ":=" expression

Assign

Routine

FeatureDecl

Instruction

assign assign

FeatureDecl FeatureDecl

Instruction

Assign

Call

"w"

Expression

Call

Call

"h"

Expression

Call

Fig. 4. Rectangle Class Concrete Syntax Tree

in order: ”class”, ”RECTANGLE”, FeatureBlock, ”end”. The

first, second and fourth items are terminals, while the third

one is a sub node representing a feature block.

cluster(10,’.’).

classDecl(100,10,’RECTANGLE’).

formalArgument(502,400,’h’,950).

formalArgument(501,400,’w’,950).

typeMark(302,950).

featureBlock(200,100).

attribute node 

reference to 

parent (400)

reference to 

parent (400)

reference to

child (502)

reference to 

child (501)

reference 

to parent (303)

reference to 

parent (300)

featureDecl(303,200,’make’).

formalArguments(400,303,[501,502]).

routine(600,303,[701,702]).

assign(701,500,301,801).

assign(702,500,302,802).

featureDecl(301,200,’width’).

featureDecl(302,200,’height’).

typeMark(301,950).

attribute node 

call(901,801,501).

call(902,802,502).

expression(801,701,901).

expression(802,702,901).

type(950,101).

classDecl(101,1,’REAL’).

Fig. 5. Rectangle Class Logic Representation

In figure 5 we present the equivalent Prolog facts for the

RECTANGLE class listed in figure 2. The class declaration

is modeled by the classDecl fact which has the following

arguments:



i) globally unique identifier (100);

ii) parent identifier - the cluster identifier the class belongs to

(10);

iii) class name (RECTANGLE).

The feature block is a class member container and it is mod-

eled as a child of the class declaration fact. The featureBlock

fact has the following arguments:

i) globally unique identifier (200);

ii) parent identifier - the class identifier the feature block

belongs to (100).

From the listing of the class code one can notice that

three class members are defined: two attributes (width, height)

and one method (make). Attribute width is modeled by the

featureDecl fact having the following arguments:

i) globally unique identifier (301);

ii) parent identifier - the feature block identifier the attribute

belongs to (200);

iii) attribute name (width).

A fact named typeMark is attached to the featureDecl fact,

denoting the type of the modeled attribute, which has the

following arguments:

i) parent identifier - the owner attribute identifier (301);

ii) type identifier - the attribute REAL type identifier (950).

Attribute height is modeled in the same manner.

Method make is modeled by its featureDecl Prolog fact.

This method has a set of formal arguments and a routine

modeled by formalArguments and respectively routine facts.

The formalArguments fact has:

i) globally unique identifier (400);

ii) parent identifier - the featureDecl fact identifier (303);

iii) the ordered list of each formal argument identifier

([501,502]).

Each formal argument is modeled by a formalArgument fact

having:

i) globally unique identifier (501,502);

ii) parent identifier - the formalArguments fact identifier (400);

iii) the name of the formal argument (w,h);

iv) the argument type identifier (950) denoting type REAL.

The routine fact models the ordered list of instructions and

has the following arguments:

i) globally unique identifier (600);

ii) the identifier of the parent method denoted by a featureDecl

fact (303);

iii) the ordered list of instruction identifiers ([701,702]).

The body of the make method has two assignment state-

ments (701,702), having the following arguments:

i) globally unique identifier (701,702);

ii) parent identifier - the routine identifier (600);

iii) the assigned feature identifier (301,302) for width and

respectively height; iv) the assigned expression identifier

(801,802).

The two expressions (801,802) are modeled by the follow-

ing arguments:

i) globally unique identifier (801,802);

ii) parent identifier - the assign identifier (701,702);

iii) the identifier of a feature call (901,902).

The two calls (901,902) are modeled by the following

arguments:

i) globally unique identifier (901,902);

ii) parent identifier - the expression identifier (801,802);

iii) the identifier of the called feature (501,502) for width and

height.

III. THE METAMODEL OF THE LOGIC REPRESENTATION

In this section we will present a fragment from the MiniEif-

fel metamodel to which all the Prolog facts will conform. We

restricted the metamodel description to the most relevant facts

because of space reasons but still covering all possible cases.

In figure 6 we list the metamodel rules for the Prolog facts

01 ast_node_def(’MiniEiffel’,featureDecl,[

02 ast_arg(id, mult(1,1,no), id, [featureDecl]),

03 ast_arg(parent, mult(1,1,no), id, [featureBlock]),

04 ast_arg(featureName, mult(1,1,no), attr, [atom])

05 ]).

06 ast_relation(’MiniEiffel’,deferred,[

07 ast_arg(featureDeclRef, mult(1,1,no), id, [featureDecl])

08 ]).

09 ast_node_def(’MiniEiffel’,formalArguments,[

10 ast_arg(id, mult(1,1,no), id, [formalArguments]),

11 ast_arg(parent, mult(1,1,no), id, [featureDecl]),

12 ast_arg(formalArgs, mult(1,*,ord), id, [formalArgument])

13 ]).

14 ast_node_def(’MiniEiffel’,formalArgument,[

15 ast_arg(id, mult(1,1,no), id, [formalArgument]),

16 ast_arg(parent, mult(1,1,no), id, [formalArguments]),

17 ast_arg(formalArgumentName, mult(1,1,no), attr, [atom]),

18 ast_arg(typeRef, mult(1,1,no), id, [type])

19 ]).

20 ast_sub_tree(’MiniEiffel’,formalArgs).

21 ast_ref_tree(’MiniEiffel’,featureDeclRef).

22 ast_ref_tree(’MiniEiffel’,typeRef).

23 ast_ancestor_tree(’MiniEiffel’,parent).

Fig. 6. Metamodel Fragment

listed in figure 5. Each metamodel rule describes an AST

(Abstract Syntax Tree) node and the legal argument values

for the corresponding facts.

The featureDecl AST node is defined by: i) the ast node def

fact which has as first argument the name of the programming

language the node refers to (MiniEiffel); ii) the name of the

node (featureDecl), followed by a list of descriptive arguments.

In the context of this work the notions of fact and node

are considered to be synonyms. The name of the fact can be

considered its syntactical type. Each argument is described by

a ast arg fact and has its own properties like:

i) argument name - some names are predefined like id (lines

02, 10,15) or parent (lines 03,11,16), but the rest can be freely

chosen (lines 04,12,17,18);

ii) multiplicity - can be one to one (lines 02,03,04,...) or one

to many (line 12);

iii) ordering - it makes sense when multiplicity is one to many

and in this case the argument is a list which can be ordered or

not. For example a formal argument list may have one or more

formal arguments and their order is an important syntactical

information.

iv) kind of value - it can be identifier - id (lines 02,03) or

attribute - attr (line 04). Identifiers are positive integers, while

attributes are Prolog [5] atoms.



v) legal syntactic type(s) of argument values - there can be

one or many AST node types. For example, for featureDecl

facts: a) the type of the identifier argument is featureDecl; b)

the type of the feature declaration parent is featureBlock; c)

the type of the featureName argument is atom.

One can notice that in the metamodel there are rules for

structural nodes expressed as ast node def facts and also

for relations which are expressed as ast relation facts. For

example, featureDecl, formalArguments, formalArgument are

AST nodes, while deferredFeature is a relation node.

The relation between AST nodes is determined in the

metamodel by the type of the fact arguments. For example

formalArgs in line 20 is declared as a subtree. This means

that the relation between the formalArguments fact and for-

malArgument fact is a structural one, a sub-node relation. On

the other hand, in lines 18,22 the typeRef argument represents

a relation between the formalArgument fact and a type fact. Of

course that the parent argument denotes an ancestor structural

relation between nodes (see lines 03,11,16,23).

IV. MAPPING RULES: FROM CONCRETE TO ABSTRACT

SYNTAX

In this section we will present a set of simple rules which

allow mapping concrete syntax to abstract logical facts de-

signed on the framework of the JavaCC [15] parser generator

library.

A. The JavaCC Library Extension

In order to facilitate the mapping of concrete syntax into

logic facts we augmented the JavaCC [15] class library to have

better access to the CST (Concrete Syntax Tree) information.

The default CST token access mechanism is based on a few

methods from SimpleNode generated class and is depicted

in figure 7. In this figure we present a fragment of the

ClassDecl

"RECTANGLE"
FeatutreBlock "end"

"width"

getFirstToken()

FeatureDecl

"class"

":" "REAL"

getFirstToken() getLastToken()

next

getFirstToken() getLastToken()jjtGetChild(0)

next

next

FeatureDecl FeatureDecl

......

next

next

jjtGetChild(0) jjtGetChild(1) jjtGetChild(2)

Fig. 7. JavaCC Node Navigation Methods

RECTANGLE class CST. The only available node access meth-

ods are limited to: i) children non-terminals (jjtGetChild(int)

and jjtGetNumChildren()); ii) the first and the last terminal

(GetFirstToken() and GetLastToken()). There is no possibility

to access directly the first, second, third, etc child of a node

regardless of its non-terminal or terminal kind. The tokens

of a non-terminal can be navigated as a linked list, but the

navigation is driven through the whole subtree frontier. On

the other hand, the presence of a token can not be located by

a name search.

Entity

+progenID: Integer

+getProgenID(): Integer

+setProgenID(Integer)

Token

+image: String

+next: Token

ProgenNode

+getParent(String): Entity

+existsChild(String): boolean

+getChild(String): Entity

+getNextSibling(String): Entity

SimpleNode

+jjtGetParent(): Node

+jjtGetChild(int): Node

+jjtGetNumChildren(): int

Production

+entities: ArrayList<Entity>

+existsChild(String): boolean

+getChild(String): Entity

+getNextSibling(String): Entity

ASTClassDecl ASTFeatureBlock ASTFeatureDecl
...

Fig. 8. JavaCC Library Extension

In figure 8 we add new classes to the library in order

to simplify the access to the node children. In order to

achieve this goal, firstly, we design a new Entity superclass

for both Token and SimpleNode classes. We mention that

these two classes are automatically created by the JavaCC

parser generator and the two inheritance relationships must

be crated manually or programmatically. Secondly, we create

a new Production class as subclass of Entity which handles

a collection of Entity instances, having methods to access

homogeneously both tokens and non-terminals from the CST.

Thirdly, a new ProgenNode class is created as subclass of

SimpleNode and superclass for all the AST node gener-

ated classes named (ASTClassDecl, ASTFeatureBlock,...). This

class will use all facilities from the Production class. To set

the superclass of all generated AST node classes we use the

NODE CLASS=”ProgenNode” JavaCC option. After parsing,

a visitor will add to all nodes unique identifiers accessible

through getProgenID() and setProgenID() methods inherited

from class ProgenNode.

B. Mapping Formalisms

Mapping rules are expressed as simple formalisms which

can be easily translated into semantical actions to be inserted

in the grammar, in order to generate logic representation. The

designed formalisms have two basic principles:

i) the location of a sub-node (terminal or nonterminal) in the



context of a node;

ii) the generation of a semantical action, which will be

executed after the previously located sub-node.

01 LanguageGrammarRuleName (TokenConstantValue | Expression)

02 generate FactName(Expression1,Expression2,...)

03 LanguageGrammarRuleName

04 return Expression

Fig. 9. Mapping Rules Grammar

In figure 9 we present the formalisms for the two kinds of

mapping rules used in logic facts generation. The formalisms

between lines 01-02 denote rules that specify how a Prolog

fact will be generated from the CST. The token constant value

or the expression is located in the CST node and afterwards a

Prolog fact will be generated having as arguments the values

denoted by the listed expressions. The formalisms between

lines 03-04 specify that some grammar rules, equivalent to

methods in the JavaCC generated parser, will return certain

values denoted by the listed expressions.

V. CASE STUDY: MAPPING RULES FOR MINIEIFFEL

In this section we will present what mapping rules are

necessary to translate the CST representation (figure 4) of class

RECTANGLE into equivalent logic representation (figure 5).

For clarity reasons we split the mapping rules in two sets: one

related to the class structure (figure 10) and the other related

to the routine (figure 11).

01 Cluster node.jjtGetChild(0) generate

02 cluster(node.getProgenID(),

03 ’.’

04 ).

05 ClassDeclaration "class" generate

06 classDecl(node.getProgenID(),

07 node.getParent().getProgenID(),

08 "’"+node.getNextSibling("class")+"’"

09 ).

10 FeatureBlock "feature" generate

11 featureBlock(node.getProgenID(),

12 node.getParent().getProgenID()

13 ).

14 FeatureDecl node.jjtGetChild(0) generate

15 featureDecl(node.getProgenID(),

16 node.getParent().getProgenID(),

17 "’"+node.jjtGetChild(0).toString()+"’"

18 ).

19 FormalArguments return

20 orderedList(FormalArgument)

21 FormalArguments node.jjtGetChild(0) generate

22 formalArguments(node.getProgenID(),

23 node.getParent().getProgenID(),

24 node.toString()

25 ).

26 FormalArgument node.jjtGetChild(0) generate

27 formalArgument(node.getProgenId(),

28 node.jjtGetParent().getPGId(),

29 "’"+node.jjtGetChild(0).toString()+"’",

30 -1

31 ).

Fig. 10. Class Mapping Rules

In figure 10 we present how logic facts are generically

created from the CST according to the metamodel. Between

lines 01-04 a cluster fact is generated. It has a unique identifier

obtained from the current node by the node.getProgenID()

call and a path which in our case is set to the current

directory ’.’ constant. Between lines 05-09 a classDecl fact is

generated after the ”class” keyword is located in the context

of the current node. The fact has a unique identifier got from

the current node. It has a parent identifier obtained through

the node.getParent().getProgenID() call of line 07. The name

of the class declaration is obtained by accessing the next

sibling of the earlier located node and enclosing its String

representation into apostrophes (line 08). The featureBlock fact

is generated after the ”feature” keyword is located. Such a

fact has only unique and parent identifiers computed as in the

previous fact generation (lines 10-13). In the context of an

ASTFeatureDecl node a featureDecl fact is generated having

unique and parent identifiers. To be noted that there is no

special keyword to trigger the generation. Instead, the presence

of the first child node is used as acceptance for generation. One

can notice that in the CST the name of the feature is the first

token of the node. The third argument is generated by access-

ing the String representation of that node and enclosing it by

apostrophes (line 17). The ASTFormalArguments node has two

mapping rules: one for fact generation and the other for setting

the returned value. The rule between lines 19-20 specifies that

the ASTFormalArguments node String representation will be

an ordered list of formal argument identifiers. Usually, such

a specification is dedicated to lists. The rule listed between

lines 21-25 is generating the formalArguments fact having the

following values: the unique identifier, the parent identifier

and the node String representation, namely the list of formal

argument identifiers described earlier. The ASTFormalArgu-

ment node holds information needed for the generation of the

formalArgument fact. The first two arguments are the unique

identifier and parent identifier. The third argument represents

the name of the formal argument accessible from the current

node (line 29). The fourth fact argument is the type identifier

of the formal argument. This identifier represents a reference,

whose computation is not covered in this paper. In this stage

of the research we set its value to a temporarily invalid -1

constant (line 30).

In figure 11 we list the mapping rules for the rest of

the facts. They are written according to the same principles

explained earlier.

VI. RELATED WORKS

All today’s models are organized around EMF [1] while all

metamodels around Ecore and MOF [11]. The EMF project

is a modeling framework and Java code generation facility for

building tools and other applications based on a structured data

model. In our approach the base is set on logic representation

and its metamodel, both expressed through Prolog facts.

The EMFText [3] project allows to describe syntax for lan-

guages described by an Ecore model. It offers both ”readers”

and ”writers” for DSLs (Domain Specific Language). Our

work offers a generic way to express what such a reader should

generate as Prolog facts, being more oriented to model object-

oriented programming languages.



01 Routine return

02 orderedList(Instruction)

03 Routine node.jjtGetChild(0) generate

04 routine(node.getProgenID(),

05 node.getParent().getProgenID(),

06 node.toString()

07 ).

08 Instruction return

09 node.jjtGetChild(0).getProgenID()

10 FeatureDecl "deferred" generate

11 deferred(node.getProgenID()

12 ).

13 Creation "create" generate

14 creation(node.getProgenID(),

15 node.getParent().getParent().getProgenID(),

16 -1

17 ).

18 Assignment ":=" generate

19 assign(node.getProgenID(),

20 node.getParent().getParent().getProgenID(),

21 -1,

22 node.getNextSybling(":=").getProgenID()

23 ).

24 Expression node.jjtGetChild(0) generate

25 expression(node.getProgenID(),

26 node.jjtGetChild(0).getProgenID()

27 ).

28 Call node.jjtGetChild(0) generate

29 call(node.getProgenID(),

30 node.getParent().getProgenID(),

31 -1

32 ).

33 Actual node.jjtGetChild(0) generate

34 actual(node.getProgenID(),

35 node.getParent().getParent().getProgenID(),

36 -1,

37 node.jjtGetChild(0).getProgenID()

38 ).

Fig. 11. Routine Mapping Rules

The Kermeta [4] workbench is a metaprogramming en-

vironment based on an object-oriented DSL optimized for

metamodel engineering. Our work is similar to Sintaks project

from the Kermeta workbench. They use a special language to

express the concrete syntax while our approach is based on

the language grammar.

VII. CONCLUSIONS AND FUTURE WORK

In this work we showed how abstract program logic repre-

sentation can be obtained without learning new technologies,

but just writing generic expressions in the metamodel frame-

work using the extended version of the JavaCC class library.

The approach based solely on concrete syntax tree depends

only on the language grammar, while the one based on the

abstract syntax tree needs a metamodel and a set of mapping

rules between the concrete syntax and the abstract syntax, as

a tradeoff.

The other alternative to generate logic representation is to

write a language specific translators like JTransformer [10] for

Java or ETransformer [8] for Eiffel.

In this stage of our research we allow expressing mostly sub-

tree relations between AST nodes / facts, while the expression

of the semantical relations is set as future work. We intend to

offer the possibility to express generically the references to

classes, features, types,... using only their names taking into

account scoping and other language features. For the moment,

the temporarily invalid reference values can be replaced with

user defined function calls capable of performing computation

according to the concrete language semantics.

An immediate perspective is to implement the approach as

a software tool and to integrate it in the Eclipse [2] platform

as a plugin.

In order to validate our approach, we intend to experiment

it on the GOBO Eiffel grammar [7] and to generate the same

Prolog facts as the ETransformer [8] Eiffel to Prolog translator.

REFERENCES

[1] Eclipse modelling framework. http://www.eclipse.org/modeling/emf/.
[2] Eclipse project. http://www.eclipse.org.
[3] Emf text project. http://http://www.emftext.org.
[4] Sintaks - Bridging concrete and abstract syntax.

http://www.kermeta.org/sintaks/.
[5] SWI prolog. http://www.swi-prolog.org.
[6] Călin Jebelean, Ciprian-Bogdan Chirila, and Anca Maduta. Generating

logic based representation for programs. In In Proceedings of 2008 IEEE

4-th International Conference on Intelligent Computer Communication

and Processing, pages 145–151, Cluj-Napoca, Romania, August 28-30
2008.

[7] Eric Bezault. GOBO Eiffel Project. http://www.gobosoft.com, Novem-
ber 2007.

[8] Ciprian-Bogdan Chirila. Generic Mechanisms to Extend Object-Oriented

Languages. The Reverse Inheritance Class Relationship. PhD thesis,
University Politehnica of Timişoara, February 26 2010.

[9] Ciprian-Bogdan Chirila, Calin Jebelean, and Anca Maduta. Towards
automatic generation and regeneration of logic representation for object-
oriented programming languages. In In Proceedings of International

Conference on Technical Informatics - CONTI 2008, volume 2, pages
13–18, Timisoara, Romania, June 5-6 2008. Politehnica Publishing
House Timisoara.

[10] Tobias Rho Gnter Kniesel, Jan Hannemann. A comparison of logic-
based infrastructures for concern detection and extraction. In Workshop

on Linking Aspect Technology and Evolution (LATE’07), in conjunction

with Sixth International Conference on Aspect-Oriented Software Devel-

opment (AOSD.07), March 12-16, 2007, Vancouver, British Columbia.
Workshop on Linking Aspect Technology and Evolution (LATE’07),
in conjunction with Sixth International Conference on Aspect-Oriented
Software Development (AOSD.07), March 12-16, 2007, Vancouver,
British Columbia, Mar 2007.

[11] Object Management Group. Meta-object facility.
http://www.omg.org/mof.

[12] ECMA International. Standard ECMA-367 Eiffel: Analysis, design and
programming language. www.ecma-international.org, June 2006.

[13] Călin Jebelean. Automatic detection of missing abstract-factory design
pattern in object-oriented code. In Proceedings of the International

Conference on Technical Informatics, University Politehnica Timişoara,
2004.

[14] Günter Kniesel. A logic foundation for conditional program transforma-
tions. Technical Report IAI-TR-2006-1, Computer Science Department
III, University of Bonn, Jan 2006.

[15] Sun Microsystems. Java Compiler Compiler (JavaCC) - the Java Parser
Generator. https://javacc.dev.java.net, March 2010.

[16] Markku Sakkinen, Philippe Lahire, and Ciprian-Bogdan Chirila. To-
wards fully-fledged reverse inheritance in Eiffel. In In Proceedings of

11th Symposium on Programming Languages and Software Tools SPLST

09 and 7th Nordic Workshop on Model Driven Software Engineering

NW-MODE 09, pages 132–146, Tampere, Finland, 2009.


