
Reverse Inheritance in Statically Typed Object-Oriented
Programming Languages

Ciprian-Bogdan Chirilă
University Politehnica of

Timişoara, Romania
chirila@cs.upt.ro

Markku Sakkinen
University of Jyväskylä,

Finland
sakkinen@cs.jyu.fi

Philippe Lahire
University of Nice, France

Philippe.Lahire@unice.fr

Ioan Jurca
University Politehnica of

Timişoara, Romania
ionel@cs.upt.ro

ABSTRACT
Reverse inheritance is a new class reuse mechanism, an ex-
perimental implementation of which we have built for Eif-
fel. It enables a more natural design approach, factorization
of common features (members), insertion of classes into an
existing hierarchy etc. Due to its reuse potential in Eif-
fel we consider exploring its capabilities in other industrial-
strength programming languages like C++, Java and C#.

Categories and Subject Descriptors
D.3.1.a [Programming Languages]: Semantics—reverse
inheritance; D.3.3 [Programming Languages]: Language
Constructs and Features—member factoring, type exheri-
tance; D.2.13 [Software Engineering]: Reusable Libraries—
class reuse

General Terms
Design, Languages

Keywords
reverse inheritance, generalization, class design, statically
typed object-oriented programming languages

1. INTRODUCTION
In this paper we present reverse inheritance (RI), a

language mechanism which is little known, although its ba-
sic idea is not so new. It is especially promising for statically
typed object-oriented programming languages (OOPLs), and
we have already designed and implemented it as an exten-
sion of Eiffel. Now we discuss also the potential of RI for
C++, Java and C#, which are among the most popular
and frequently used languages in the industry today.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The concept of inheritance is intensively studied in liter-
ature and highly present in all object-oriented programming
languages. It is defined as an incremental class creation
mechanism which allows transforming the superclass into
subclass by augmentation [3]. We will refer to this concept
as ordinary inheritance (OI) in distinction to reverse inher-
itance. OI can be single (SI) when subclasses have only one
parent, or multiple (MI) when subclasses (can) have two or
more parents.

Reverse inheritance (RI) is a class relationship that imple-
ments the generalization concept: subclasses exist first and
a superclass is created afterwards. The RI concept has its
origins in the database world [14]. Originally, it was used
for the generalization of database schemata to achieve the
goal of object reuse, while in object-oriented programming
RI facilitates class reuse.

RI is known in the literature also as exheritance [11], adop-
tion [6], generalization [8], and upward inheritance [14]. To
show that a class is defined using RI, it is called foster class
[6], generalizing class [11], or adoptive class. Here we will
use ther term ‘foster class’. RI can be single when there is
only one direct subclass involved, and multiple when a foster
class is built on top of multiple subclasses.

RI was implemented experimentally for the first time in
Eiffel [7] and the extended language is named RIEiffel (Re-
verse Inheritance Eiffel) [12]. To integrate RI into other
industrial-strength programming languages, its interaction
with the main language mechanisms must be taken into ac-
count.

We will use the Java terms ‘member’, ‘field’ and ‘method’
instead of the corresponding Eiffel terms — ‘feature’, ‘at-
tribute’ and ‘routine’. We will use the Eiffel terms ‘parent’
and ‘heir’ for direct superclass and subclass, respectively;
likewise ‘ancestor’ and ‘descendant’ for superclass and sub-
class in general (and including the class itself). In the class
diagrams, we extend standard UML notation by a downward
pointing triangle arrowhead to denote reverse inheritance.

The rest of this paper is structured as follows. In section 2
we present briefly some of the RI class reuse capabilities. In
section 3 we discuss what are the possible choices for a super-
class in the context of RI. Section 4 presents the main issues
related to member factoring. In section 5 we discuss sev-
eral aspects related to superclass implementation. Section
6 presents a special adaptation mechanism used to adapt
subclass members having different signatures to a common

superclass signature. In section 7 we present some related
work, while in section 8 we draw the conclusions and set the
future work.

2. CLASS REUSE CAPABILITIES
One benefit of having the RI class relationship in a lan-

guage is the facility of a more natural class design. Heirs can
be independently modeled first, and commonalities factored
into a common parent later. Of course, this is a common
refactoring operation, but in current languages it requires
the definitions of all heirs to be modified. With RI, the
equivalent refactoring is nondestructive.

It is important to note that a foster class is a completely
normal class, and the semantics of all classes in an inheri-
tance hierarchy with RI are exactly the same as if the same
hierarchy had been defined using OI.

2.1 Capturing Common Functionalities
RI facilitates the factoring of common functionalities from

classes that have been designed in different contexts. Thus,
they can be used uniformly with the help of the newly cre-
ated parent. In figure 1 we present three heirs: Rectangle,

Rectangle

+draw()

Ellipse

+draw()

Triangle

+draw()

AbstractShape

+draw()

reverse inheritance

Figure 1: Capturing Common Functionalities

Ellipse and Triangle, which share one common functionality,
namely method draw(). Creating the AbstractShape parent
on top of the three heirs and factoring method draw() en-
ables polymorphic calls to that method. However, in prac-
tice it is very unlikely that methods having similar func-
tionalities also have exactly the same name and signature.
For that reason RI is equipped with a member adaptation
mechanism, which will be presented in section 6.

2.2 Inserting a Class Into an Existing Hierar-
chy

RI in combination with OI allows the insertion of a new
class “between” two classes of an existing hierarchy. Such a
class we call an amphibious foster class. All members that
exist in its parent(s) must be also exherited from its heirs;
we call them amphibious as well. In RIEiffel we had rea-
sons to keep the original direct inheritance link instead of
putting the new class literally in between — as in figure 2.
However, this is impossible in Java, C# and other single-
inheritance languages, and not workable in C++ because it
could change the semantics. In figure 2, the classes Shape
and Rectangle must have existed first. Afterwards the deci-
sion is taken to add a new abstraction layer, namely to insert
class Parallelogram as an heir of Shape and as a parent of
Rectangle.

2.3 Extending a Class Hierarchy
RI and OI can be combined freely in extending an existing

class hierarchy. Figure 3 gives an example of that. The
original class hierarchy there was composed of three classes:
Parallelogram and its heirs Rectangle and Diamond. Later
on, a new class AbstractShape was created by RI, and then
Ellipse, Circle and Triangle by OI. If the designers will later

Shape

Parallelogram

Rectangle

reverse inheritance

ordinary inheritance

ordinary
inheritance

Figure 2: Inserting a Class Into an Existing Hierar-

chy

wish to add, e.g. a class Polygon, it can be easily defined by
OI from AbstractShape and by RI from Parallelogram and
Triangle.

AbstractShape

Rectangle

Paralelogram

Diamond

Ellipse Triangle

Circle

ordinary inheritancereverse inheritance

ordinary inheritance ordinary inheritance

Figure 3: Extending a Class Hierarchy

RI makes possible also other kinds of class reuse, like:
i) reusing partial behavior of a class — by factoring selec-
tively a subset of the heir members into the parent;
ii) creating a new supertype for classes that must be handled
homogeneously in special contexts;
iii) decomposing and recomposing classes — using RI, be-
havior can be extracted from a heir, stored in the parent and
then using multiple OI it can be composed with another par-
ent resulting a composed heir;
iv) facilitating the integration of heirs into design patterns
[4] (Adapter, Template Method, etc).

3. THE GENERALIZING CLASSIFIER

3.1 The Nature of the Classifier
In this section we will analyze what kinds of classifiers (in

the UML sense) are available in the four discussed OOPLs,
and how they can be combined in RI. We must ignore gener-
icity in this paper, although it is supported in the current
versions of all those languages.

In Eiffel and C++ there are only classes. They can be
either concrete (effective) or abstract (deferred), but this
difference does not restrict OI, so it must not restrict RI
either. In Java and C# there are two kinds of classifiers:
classes and interfaces. Both the extends and implements re-
lationships in Java can be regarded as inheritance. Thus we
have the restriction that an interface cannot inherit a class;
the same holds in C#. For RI this implies, of course, that
a class cannot exherit an interface, while the inverse is pos-
sible. Where needed, we will speak about foster interfaces
(of classes or/and other interfaces) in analogy with foster
classes.

In C++ classes cannot be prevented from having heirs,
but such a restriction can be stated in Java (final) and C#

(sealed) This possibility has recently been added also to Eif-
fel (frozen), but it does not affect so-called non-conforming
inheritance (another new feature in Eiffel).

It seems obvious at first that a foster class could not log-
ically be declared as final. However, that might be allowed
with the effect that the class cannot have any heirs except
those from which it has been formed with RI. — It would
be possible to add another keyword that would prevent fos-
ter classes to be built from a class A. This is the inverse
of final, but here it seems completely natural that A can
have parents by OI. We have not added such a keyword to
RIEiffel.

3.2 Interaction with Multiple Inheritance
A very important language feature is the presence of MI.

Generally speaking, MI adds a lot of complications to the
language, like member sharing vs. replication dilemmas and
dynamic binding ambiguities. In Eiffel the MI approach is
attribute-based (member-based), while in C++ it is subobject-
based [9]. This difference is important for ancestors that are
inherited over more than one inheritance path (“diamond in-
heritance”): sharing or replication can be chosen in Eiffel for
each member separately (based on renaming); in C++ the
choice is made for the whole ancestor class subobject (repli-
cation unless the inheritance is declared “virtual”). Also in
RI we need to declare whether sharing or replication is in-
tended in a diamond.

Complex MI class hierarchies that combine both sharing
and replicating inheritance are difficult to understand and
handle in both languages. In C++ the combinations can be-
come truly anomalous [10]; therefore it seems reasonable to
allow an RI extension of C++ to create only purely sharing
and purely replicating hierarchies.

In Java and C# MI is enabled only for interfaces, so a
class can have only one parent class but several parent in-
terfaces. Therefore, in RI only one foster class F can be
defined for any class A, and F must be inserted between A
and its original parent — a structure like in figure 2 is not
possible. As a consequence of this, multiple RI is possible
only from subclasses of a common parent class.

MI from interfaces is much simpler and less problematic
than MI from classes. However, Java (but not C#) has the
problem that methods inherited from different parent inter-
faces are always unified if they happen to have the same
signature. It seems that RI to foster interfaces can be quite
useful; the restriction that interfaces cannot have fields is
a real drawback, but exheriting method implementations
(bodies) is seldom useful except in single RI (see section
5).

4. THE FACTORING MECHANISM
We consider the factoring mechanism to be the core of RI.

It consists in determining the exheritable members from
the heirs and then selecting which of them are actually ex-
herited to the foster class. For example, in figure 1 the
method draw() is common to all heirs and is factored to
the parent. In principle, if there is a set consisting of one
member in each heir that are all regarded to have the same
semantics, this set corresponds to an exheritable member for
the foster class. The major practical issues are discussed in
the following subsections.

4.1 Signature Compatibility

In order to have an exheritable member, the corresponding
members of each child class should preferably have compat-
ible signatures. The signature of a field consists of name
and type, and that of a member consists of name, parame-
ter types and result type. In Eiffel, the members’ assertions
(pre- and postconditions) must also be considered, but we
cannot discuss them in this paper.

By default, members having same names are taken as can-
didates to be exherited. In practice, however, very often
there are name conflicts of two opposite types [6, 11]: i)
“lost friends” — members having the same semantics but
different names; ii) “false friends” — members having dif-
ferent semantics but the same name. In Eiffel the built-in
renaming mechanism is an immediate solution for solving
such conflicts also in of RI. In the other considered OOPLs
special adaptation techniques must be used, which will be
presented in section 6.

The rules for compatibility of the types (of a field, param-
eters and result) depend on the language, and are discussed
next.

4.2 Type Compatibility
The type compatibility rules for OI in a language deter-

mine the rules that must be set for RI. For the result type of
a method, Eiffel has always had the covariant rule: the type
in an heir’s method must be the same or a subtype of the
parent’s method. This principle has later been adopted also
in C++, Java and C#. Eiffel has the same covariant rule
also for the types of fields method results, while the other
languages require nonvariance, i.e., the same type in parent
and heir.

For RI in Eiffel the above implies that in order for the cor-
responding members in the heirs to be exheritable together,
each corresponding set of types in their signatures must have
at least one common supertype. The corresponding type in
the exherited member of the foster class must then be such
a common supertype. For RI in the other three languages
the same rules holds for method results; field and parameter
types must be exactly the same in all heirs, and will then be
the same also in the foster class:

It is beyond the scope of this paper to discuss the actual
type systems of the four languages, except giving a couple
of short notes. Only in Eiffel are all types based on classes,
while the other languages have also primitive data types.
Genericity is a language feature that complicates the type
system considerably. It has always been there in Eiffel, is an
old feature in C++, and has been more recently added to
Java and even to C#. — These issues cause a lot of work
in the exact definition and implementation of RI, but they
do not affect the principles.

4.3 Member Selection
An important aspect is the programmer’s selection of mem-

bers to be actually exherited, because not all exheritable
members may be needed in the parent. In RIEiffel we de-
fined four keywords for the selection: i) all — to select all
exheritable members; ii) nothing — to select no member;
iii) only — to select an explicit list of members; iv) except
— to select all exheritable members except an explicit list.
Choices iii) and iv) may be difficult to express for members
that have different names in different heirs. In Eiffel the re-
naming mechanism solves this problem, while in the rest of
the analyzed OOPLs the adaptation mechanism presented

in section 6 is needed.
Note that if the foster class is amphibious (see subsec-

tion 2.2), a member that is also inherited from its parent(s)
cannot be excluded.

Here we did not yet take into account the impact of the
protection mechanisms of the analyzed OOPLs. This was
not an issue in RIEiffel, because in Eiffel the accessibility of
a member in an heir class can be arbitrarily different than
in its parent(s).

5. MEMBER IMPLEMENTATION
In OI superclasses are typically more abstract than sub-

classes: inherited abstract methods are implemented (ef-
fected) sooner or later. Consequently, it seemed natural to
us that in RI all exherited methods will be abstract by de-
fault. The exception are amphibious methods (section 2.2),
whose implementation in the parent class is inherited by de-
fault. Of course, it is possible to write a new implementation
in the foster class if desired.

The interesting case is when the implementation of a method
is exherited (imported) from an heir class. In RIEiffel the
moveup keyword is used in this sense. For the other OOPLs
some similar syntax would be needed.

Regardless of programming language, importing a method
implementation from one heir to the parent is often im-
possible. The reason is that all other members that the
method uses (directly or indirectly) must also be exherited
for the method to work. In multiple RI, some of those mem-
bers might not be even exheritable. These facts restrict
severely the possibilities of implementation exheritance. Ad-
ditional, although solvable, difficulties can be caused by the
use of keywords like this (current in Eiffel) and super

(precursor in Eiffel) in the exherited code.
In Eiffel, the choice between abstract and concrete con-

cerns even fields, because an inherited method (concrete or
abstract) can be redefined in OI also as an attribute with the
same signature. Of course, this is possible only for a result-
returning method without parameters. This issue does not
exist in the other discussed languages.

6. MEMBER ADAPTATIONS
As mentioned in subsection 4.1, semantically correspond-

ing members in different heirs can often have different signa-
tures, so that they are not exheritable by default. A member
adaptation mechanism is needed to cater for such situations;
the adaptation always happens when a member of an heir
class object is accessed through a reference of the foster type.

The easiest difference to handle is a name conflict; only
renaming is needed, and in Eiffel it already exists in the
standard language (see subsection 4.1). In any case, this
adaptation can be done at compile time.

Not much more difficult is the situation where a method’s
parameter lists are otherwise the same in all heirs, but the
order of the parameters varies. One of those orders must be
chosen for the method in the foster class, and for all heirs
with a different order the method call must be reordered at
run time.

Our adaptation mechanisms in RIEiffel support also some
more advanced adaptations, which are not purely syntactic
but concern also semantics. One is type conversion for fields,
parameters and results. Another is scale conversion, or more
generally value conversion. Both are illustrated in the fol-

lowing example (figure 4). The RI features there are given
just as annotations similar to the existing RIEiffel syntax,
embedded as comments in Java code. All access modifiers
have been omitted for simplicity. First there are the two
classes Rectangle and Ellipse, and the abstract foster class
Shape is then built by RI. We know that the methods size

01 class Rectangle {

02 void size(int s) {...}

03 double area() {...} // m^2

04 ... // other members

05 }

06 class Ellipse {

07 void scale(int f) {...}

08 float surface() {...} // dm^2

09 ... // other members

10 }

11 //@foster

12 abstract class Shape { //@exherits Rectangle, Ellipse

13 void scale(Integer factor)

14 {//@adaptations

15 //{Rectangle}{size(factor.intValue())}

16 //{Ellipse}{scale(factor.intValue())}

17 }

18 double area() // cm^2

19 {//@adaptations

20 //{Rectangle}{return area()*10000;}

21 //{Ellipse}{return surface()*100;}

22 }

23 }

Figure 4: Adaptation Example

(line 02) and scale (line 07) correspond to each other, al-
though they have different names. We exherit them to the
foster class under the name scale (line 13); we also change
the type of the parameter, and therefore add the conversions
on lines 15 and 16. These show how a method call made
through a Shape reference is modified and forwarded to an
instance of Rectangle or Ellipse.

The methods area (line 03) and surface (line 08) also
have the same semantics, but different names and result
types. In the foster class we take the signature of area from
class Rectangle. The result type of surface from class Ellipse
would be automatically convertible to that of area, but we
add a twist that makes the situation more interesting. The
method Rectangle.area returns a value in square meters, El-
lipse.surface in square decimeters, and Shape.area in square
centimeters. Therefore we need the adaptations on lines 20
and 21 to get the necessary scale conversions.

7. RELATED WORK
There are surprisingly few previous papers that are di-

rectly relevant to our research on RI; virtually all we have
found were referenced in section 1. On the other hand, there
are many published and even implemented approaches in-
tended to add reusability and flexibility to traditional inher-
itance. Some rather recent ones are traits [13], classboxes
[1], and expanders [15]. Even paradigms like aspect-oriented
programming (AOP) [5] aim at increasing reusability and
flexibility, but AOP is not focused on inheritance.

Traits [13] are reusable and composable parts that can be
used in building classes. Their original major purpose was
to add a special kind of multiple inheritance to languages

that only support single inheritance (especially Smalltalk).
Since traits must be written before classes, the approach is
rather opposite to RI.

Classboxes [1] allow adding and replacing methods in a
class. The changes made by a classbox are only visible in
that classbox or other classboxes importing it.

The expander is a construct that supports object adap-
tation [15]. Classes are adapted in a syntactically non-
intrusive manner by adding new fields, methods and super-
interfaces. Each client can adapt the same class in different
contexts independently with different expanders.

Both classboxes and expanders modify existing classes for
particular use contexts. The purpose of AOP is also to mod-
ify the semantics of classes (without touching their source
code), but it is especially targeted for crosscutting concerns
in software systems. This is in strong contrast to RI as pre-
sented in this paper: the semantics of existing classes are
carefully preserved, but classes from different contexts can
be taken and adapted to be used together in a homogeneous
manner.

We have actually suggested in an earlier paper [2] even the
possibility of defining new members in a foster class, with
the effect that these members would be “retrofitted” also to
all existing descendants. However, we have not continued re-
search in this direction yet, since a consistent definition and
implementation of RI has proved to be challenging enough
without such additions.

8. CONCLUSIONS AND FUTURE WORK
We emphasize that RI is intended to be the symmetri-

cal counterpart of OI, so RI should not be able to create
class hierarchies which are not possible to achieve with OI,
and vice versa. The main exception are adaptations, which
are necessary to compensate for minor syntactic and seman-
tic differences between corresponding members in exherited
classes that have different origins. Such adaptations are not
needed in OI, except for Eiffel’s renaming facility.

This paper is our first step toward adding RI to other
OOPLs besides Eiffel. We took into account only the main
language mechanisms, but a deeper analysis is necessary —
already in the case of Eiffel we learned that the devil really
is in the details. On the current level of discussion, the
factoring mechanism seems quite similar for all four studied
OOPLs.

Whether and how a base language supports MI is an im-
portant factor for a possible RI enhancement. On one hand,
taking MI into account makes RI more complicated, but on
the other hand the lack of MI restricts the possibilities for
RI. C++ is already such a complicated language (not only
concerning MI) that integrating RI into it will be a tough
challenge, if not worse. Java and C# look like much easier
targets. Due to the plethora of tools and models available
for Java we intend to define and implement the RI seman-
tics by translating the extended source code into pure Java
source code.

Another, quite ambitious, future goal is to describe a
generic RI semantics, which can be configured with appro-
priate parameters to extend a particular language with RI.
This means that each described mechanism must be ab-
stracted to be general enough to fit to a large set of OOPLs.

9. ACKNOWLEDGMENT

We would like to thank Günter Kniesel from the Univer-
sity of Bonn for the valuable advice given in the RI imple-
mentation for Eiffel.

10. REFERENCES
[1] A. Bergel, S. Ducasse, and R. Wuyts. Classboxes: A

minimal module supporting local rebinding. In
JMLC’03: Proceedings of Joint Modular Language
Conference. Springer, 2003.

[2] C.-B. Chirilă, P. Crescenzo, and P. Lahire. A reverse
inheritance relationship dedicated to reengineering:
The point of view of feature factorization. In
Proceedings of MASPEGHI Workshop at ECOOP
2004, Oslo, Norway, June 2004.

[3] P. H. Fröhlich. Inheritance decomposed. In
Proceedings of the Inheritance Workshop at ECOOP
2002, Malaga, Spain, June 2002.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1997.

[5] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of
European Conference on Object-Oriented
Programming, pages 220–242. Jyväskylä, Finland,
1997.

[6] T. Lawson, C. Hollinshead, and M. Qutaishat. The
potential for reverse type inheritance in Eiffel. In
Technology of Object-Oriented Languages and Systems
(TOOLS’94), 1994.

[7] B. Meyer. Eiffel: The language.
http://www.inf.ethz.ch/ meyer/, September 2002.

[8] C. H. Pedersen. Extending ordinary inheritance
schemes to include generalization. In Conference
proceedings on Object-oriented programming systems,
languages and applications, pages 407–417. 1989.

[9] M. Sakkinen. Disciplined inheritance. In Proceedings
of ECOOP ’89 (European Conference on
Object-Oriented Programming), pages 39 – 56, 1989.

[10] M. Sakkinen. A critique of the inheritance principles of
C++. Computing Systems, 5(1):69 – 110, Winter 1992.

[11] M. Sakkinen. Exheritance - Class generalization
revived. In Proceedings of the Inheritance Workshop at
ECOOP, Malaga, Spain, June 2002.

[12] M. Sakkinen, P. Lahire, and C.-B. Chirilă. Towards
fully-fledged reverse inheritance in Eiffel. In
Proceedings SPLST 09 and NW-MODE 09, pages
132–146, Tampere, Finland, 2009.

[13] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black.
Traits: Composable units of behaviour. In ECOOP,
pages 248 – 274, Darmstadt, Germany, July 2003.

[14] M. Schrefl and E. J. Neuhold. Object class definition
by generalization using upward inheritance. In ICDE,
pages 4–13. IEEE Computer Society, 1988.

[15] A. Warth, M. Stanojevic, and T. Millstein. Statically
scoped object adaption with expanders. In Proceedings
of Conference on Object-Oriented Programing,
Systems, Languages and Applications (OOPSLA’06),
Portland, Oregon, USA, 2006.

