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Abstract. Generalization is common in object-oriented modelling. It would be
useful in many situations also as a language mechanism, reverse inheritance, but
there have been only few detailed proposals for that. This paper defines reverse
inheritance as a true inverse of ordinary inheritance, without changing anything
else in the language that is extended. Eiffel is perhaps the most suitable language
for that purpose because of its flexible inheritance principles. Moreover, there ex-
ists good previous work on Eiffel, on which we have built. We describe the most
important aspects of our extension, whose details proved to be more difficult than
we had assumed. It would be easier if some modifications were made to Eiffel’s
ordinary inheritance, or if one designed a new language.

ACM CCS Categories and Subject Descriptors: D.3.3 [Programming Lan-
guages]: Language Constructs and Features — inheritance; D.3.2 [Programming
Languages]: Language Classifications — object-oriented languages, Eiffel; D.2.3
[Software Engineering]: Coding Tools and Techniques — object-oriented program-
ming; D.2.2 [Software Engineering]: Design Tools and Techniques — object-oriented
design methods;

Key words: Eiffel, reverse inheritance, generalization, hierarchy evolution, refac-
toring

1. Introduction

Generalization is widely used in object-oriented (OO) modelling and design,
but it is not available on the programming level in any widely used language
or system. We propose to extend object-oriented languages with a new
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relationship, reverse inheritance (RI) or exheritance, which is an inverse of
ordinary inheritance (OI). Reverse inheritance allows non-destructive gener-
alization, just like ordinary inheritance allows non-destructive specialization.
This is not a completely new idea, but it has been very little treated in the
literature. Of course, we are building on applicable previous research (see
Section 2).
Clearly, if the source code can be modified, it is always possible to add a

direct superclass (parent in Eiffel terminology) to an existing class. This is
a common refactoring operation, but it may introduce many side effects and
affect the robustness of the existing classes. Further, it is very undesirable or
even impossible in many cases to modify existing classes, e.g. from standard
libraries. The situation is particularly difficult when one needs to combine
two or more large class hierarchies from different sources.
None of the previous proposals for reverse inheritance that we know has

been implemented. This time we wanted to allow RI to be tried out in prac-
tice, and therefore designed an extension to an existing industrial-strength
language, instead of a nice, formally defined toy language. Such an exercise
gives better possibilities to weigh the potential benefits of reverse inheritance
against its costs (added language complexity).
Eiffel is a particularly interesting and suitable language to extend with

RI, because of its well thought-out design principles. Most importantly,
its flexible and clean implementation of multiple inheritance with explicit
clauses for adaptation allows us to propose a solution that is both integrated
and expressive enough. Because no implementation of the new, significantly
changed version of Eiffel (Meyer [2006], ECMA International [2006]) existed
yet, we based our extensions on the stable old version often known as Eiffel
3 (Meyer [1992]). We use mostly the terminology of Eiffel literature, except
the term ‘method’ instead of ‘routine’. We’ll try to explain those Eiffel terms
and concepts that could be too alien to many readers, when using them the
first time.
To give a taste of RI, Figure 1 is a small example. Suppose that we have

two classes RECTANGLE and CIRCLE designed independently from each
other. It is noted later that some of their features can be factored into a
common parent class, which is named FIGURE. We do not explain all details
here, but the example should be understandable; the new keyword foster

denotes a class defined using RI. For reference purposes, we have added line
numbers, which are not part of the code. The keyword all specifies that
all features (the common superconcept of attribute and method in Eiffel)
with the same name and signature in both CIRCLE and RECTANGLE will
be exherited to FIGURE; this means location and draw. However, they
will become abstract (deferred in Eiffel) by default. For programmers using
these three classes, the example is fully equivalent to standard Eiffel code in
which FIGURE would be defined first and the others as its direct subclasses
(heirs in Eiffel).
We will present the main features of our approach in the rest of this paper.

Section 2 gives a brief overview of previous literature, whereas in Section
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01 class CIRCLE
02 feature

03 radius: REAL
04 location: POINT
05 draw is do ... end
06 end – class CIRCLE

07 class RECTANGLE
08 feature

09 height: REAL
10 width: REAL
11 location: POINT
12 draw is do ... end
13 end – class RECTANGLE

14 deferred foster class FIGURE

15 exherit

16 CIRCLE

17 RECTANGLE

18 all

19 end – class FIGURE

Fig. 1: Simple example of reverse inheritance

3 we address the main principles to be followed. We continue in Section 4
giving the fundamentals of our approach. Sections 5 and 6 illustrate the use
of RI in the two main situations: adding a superclass at the top level of the
hierarchy, and inserting a class between two or more classes in the hierarchy.
Finally we conclude and set a perspective for future research in Section 11.
We already have a quite comprehensive proof-of-concept implementation

of our RI extension for Eiffel, by a transformation to standard Eiffel. Space
does not permit us to describe it in this paper, but we refer interested read-
ers to the website https://nyx.unice.fr/projects/transformer .
Unfortunately, some of our adaptations cannot be done with such a transfor-
mation approach, but would need the Eiffel compiler itself to be modified.

2. Previous research

The earliest article we have found that discusses a concrete generalization
mechanism is Schrefl and Neuhold [1988], which uses the term ‘upward in-
heritance’. Its purpose is enabling the integration of different OO databases
into a multidatabase system, or building a homogeneous global view of het-
erogeneous systems. The paper Qutaishat et al. [1997] has a similar pur-
pose. Generalization is much more important in database integration than
in “ordinary” programming, because the homogenization of the underlying
databases is usually out of the question. It is also easier, because the gen-
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eralization classes live on a different layer of the system than the actual
database classes. On the other hand, there is the additional problem that
one real-world object (instance) may well be represented in several databases.
Our goal is essentially different from the above, namely allowing classes

to be defined either by specialization (OI), generalization (RI), or a combi-
nation of both, within the same context. To our knowledge, the first paper
proposing such an approach and mechanism is Pedersen [1989]. We consider
it a seminal paper, although it is somewhat simplistic or even erroneous on
some points.
A significant step forward was made in the paper Lawson et al. [1994],

which presents a detailed proposal for adding reverse inheritance into Eiffel.
It also discusses many problems both on the conceptual level and in the
implementation. We have adopted the most important terms from there, in
particular ‘foster class’. However, we could not see a reason for speaking
about reverse type inheritance, because inheritance is always a relationship
between classes in Eiffel and most other OOPLs.
One surprisingly missing aspect in both Pedersen [1989] and Lawson et al.

[1994] is the possibility of a class being defined by a combination of simul-
taneous ordinary and reverse inheritance, i.e., inserted into the inheritance
hierarchy between a superclass (parent) and its subclasses (heirs). We would
expect that to be more common in practice than defining a foster class as a
root class.
The workshop paper Sakkinen [2002] was written unaware of Lawson et al.

[1994], so the new term ‘exheritance’ was coined there. It is quite optimistic
about RI and suggests several new ideas. All of those are not included in
our Eiffel extension, but could be relevant if we did not want to stay fully
downward compatible with standard Eiffel (see Rule 1 in Section 3).
The workshop paper Chirilă et al. [2004] discusses the application of RI to

Java, including implementation aspects. Adding RI to a single-inheritance
language had not been treated in earlier papers. It is both much simpler
and much less powerful than with multiple inheritance, but not trivial. Our
first example (Figure 1) did not need multiple ordinary inheritance.
Since 2005, we have cooperated and tried to combine our different view-

points on reverse inheritance. The current paper builds on the earlier work,
especially Lawson et al. [1994] and Sakkinen [2002], with essential improve-
ments on several points. Because we are also implementing our approach,
we needed to be more thorough than the earlier papers.

3. Main principles

Before going further in the description of reverse inheritance it is important
to state the main principles of our approach. The rules are presented in an
approximate order of importance. We do not claim them to be self-evident;
there can be approaches based on different principles.
Firstly, since we are designing an extension to an existing language, it is
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important that classes and programs which do not use the extension will
not be affected.

Rule 1: Genuine Extension

Eiffel classes and programs that do not exploit reverse inheritance must
not need any modifications, and their semantics must not change.

Secondly, it is very important that after a class has been defined using RI,
it can be used just as any ordinary class. Otherwise, foster classes would be
far less useful, and the additional language complexity caused by RI would
certainly not pay off.

Rule 2: Full Class Status

After a foster class has been defined, it must be usable in all respects
as if it were an ordinary class.

In particular, a foster class can be used as a parent in ordinary inheritance
and as an heir in further reverse inheritance,
Thirdly, in OI the semantics of a given class is not affected if a new class

is defined as its direct or indirect subclass (descendant in Eiffel), or if some
existing descendant is modified. In contrast, any modifications to a super-
class (ancestor in Eiffel) affect all its subclasses, and can even make some
existing descendants illegal unless their definitions are changed also. We
want RI to be a mirror image of OI in this respect, i.e., the dependencies
between classes to be the opposite of what they are in RI (see Lawson et al.

[1994]).

Rule 3: Invariant Class Structure and Behaviour

Introducing a foster class as a parent C of one or several classes C1,
. . . , Cn using reverse inheritance must not modify the structure and
behaviour of C1, . . . , Cn.

Fourthly, the reverse inheritance relationship is intended to be the exact
inverse of ordinary inheritance. This means that it should be as completely
interchangeable with ordinary inheritance as possible. In the new version of
Eiffel (ECMA International [2006]) this would imply also that conforming
and non-conforming reverse inheritance relationships must be distinguished.

Rule 4: Equivalence with Ordinary Inheritance

Declaring a reverse inheritance relationship from class A to class B
should be equivalent to declaring an ordinary inheritance relationship
from class B to class A.

Of course, this does not mean that the syntactic definitions of the two classes
would be the same in both cases.
As a consequence of this rule, it would be good if all adaptation capabilities

provided for RI had their counterparts in pure Eiffel language. However, we
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actually wish to have some adaptations that cannot be exactly translated
to OI (see Section 4). On the other hand, we did not consider it worthwhile
to implement all possible complications of Eiffel OI also in RI; Rule 7 is an
example of that.
Fifthly, we want reverse inheritance to leave the existing inheritance hier-

archy as intact as possible.

Rule 5: Minimal Change of Inheritance Hierarchy

Introducing a foster class must neither delete direct inheritance rela-
tionships (parent-heir relationships) nor create any inheritance rela-
tionships (ancestor-descendant relationships) between previously ex-
isting classes.

Note that RI may well create new inheritance paths between existing classes,
but only for existing ancestor-descendant pairs (see Section 6).
The paper Sakkinen [2002] suggested that it could be possible to define

also new parent-heir relationships, and even equivalence relationships, be-
tween existing classes (if they are feasible). However, that would change the
semantics of many programs even if they do not use RI, because Eiffel has
language constructs whose effect depends on the dynamic type of a variable,
e.g., the assignment attempt.
Sixthly, we need to define which features are candidates to be exherited

in reverse inheritance. The following rule is essentially a consequence of the
previous rules and the adaptation possibilities of OI in Eiffel extended for
RI (as just mentioned).

Rule 6: Exheritable Features

The features f1, . . . , fn of the respective, different classes C1, . . . ,
Cn are exheritable together to a feature in a common foster class if
there exists a common signature to which the signatures of all of them
conform, possibly after some adaptations. Each of the features f1, . . . ,
fn can be either immediate or inherited.

In pure Eiffel these features could be similarly factored out to a common
parent, but any extended adaptations (see above) would require new or
modified methods in the heir classes.
Some common special cases are simpler than the general case: In single

RI, all features are trivially exheritable. In multiple RI, all fi may already
have the same signature, or one of them may have a signature to which all
others can be made to conform. We will explain the possible adaptations in
Section 4.
Lastly, we want to avoid the complexity of allowing one feature in a foster

class to correspond to several features in the same exherited class, although
this would be a direct equivalent of repeated inheritance with renaming.

Rule 7: No Repeated Exheritance

Two different features of the same class must not be exherited to the
same feature in a foster class.
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The definition of the semantics of reverse inheritance in the following sec-
tions, on both the conceptual level and the concrete language level, relies on
the above seven rules.

4. Basics of our approach

Where needed to avoid ambiguities, we will call the proposed extended lan-
guage ‘RI-Eiffel’ in distinction to pure Eiffel. Details in the concrete syntax
used in our code examples are not important, and the syntax may be slightly
modified in the future.
Following the paper Lawson et al. [1994], a class defined using a RI re-

lationship is called a foster class and is preceded by the keyword foster in
order to point out the special semantics of this class with respect to normal
Eiffel classes. In fact, a foster class also requires special implementation (see
Lawson et al. [1994]). In a new language with both OI and RI, the ‘foster’
keyword would be needed no more than a ‘heir’ or ‘subclass’ keyword.
A foster class may be effective (concrete) or marked as deferred (abstract)

like any other class. It is a fully-fledged class in all respects; in particular,
further classes can be derived from it by both OI and RI. Otherwise reverse
inheritance would hardly be useful and interesting.
In order to reverse-inherit or exherit from one or several classes we use a

clause exherit in a foster class, in the same way as we use a clause inherit

in order to reuse and to extend the behaviour of one or several classes. We
did not take the keyword adopt from Lawson et al. [1994], because we have
introduced adapt and adapted (see later), and wanted to avoid confusion.
The set of exheritable features is defined by Rule 6 in Section 3. Because

it is not always desired to exherit all of them, the set of really exherited
features can be further restricted by using some rather intuitive keywords.
The keyword all in Figure 1 is actually redundant, because we take it as the
default.
In ordinary inheritance, also the implementation of every feature is copied

to the heir class by default, but in Eiffel it is also possible to copy only its
signature, i.e., make it deferred, using the clause undefine. A reasonable
approach for exheritance is exactly the reverse: the default is that a feature is
deferred in the foster class. Therefore, the keyword undefine is not needed
in RI. When the implementation of a feature should be moved (or copied)
to the foster class, that is specified explicitly by the clause moveup. We
invented this keyword, because ‘move’ is probably a rather common identifier
in programs.
The strongest reason for the above default is that usually it is not even

possible to copy the body of a method from a heir class. That would require
all other features accessed by the method to be exherited also, but in multiple
RI they may not be even exheritable (Sakkinen [2002]). It seemed best to
us to have the same default also for attributes.
If an exherited feature is a method, a body can be written in the foster
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class just as in an ordinary class. In that case, it seems consistent with OI
to require a redefine clause for each exherited class in which the feature is
effective (either as a method or as an attribute).
In Figure 1 the features of the exherited classes that should be unified in

the foster class have the same name. In general, it is very likely that some
corresponding features have different names, and in converse that some fea-
tures with the same name should not be unified. That has been recognized
in all previous papers, and was also taken into account in Rule 6 (Section
3). It is therefore necessary that we allow renaming in an exherit clause by
rename subclauses; this facility exists for OI in standard Eiffel. Examples
of that will appear in later sections.
We already mentioned above the use of redefine in Eiffel to announce

the reimplementation (overriding) of methods. The same keyword — a bit
unfortunately — is used also to announce the redefinition (redeclaration) of
method signatures and attribute types. We allow such redefinitions also in
RI, as might be deduced from Rule 6. Since type/signature redefinitions in
OI in Eiffel are covariant, they must be the inverse in RI. This means that
the type of an attribute, as well as the the type of a parameter and the
result of a method, in the foster class must be a common ancestor of the
types of the corresponding entities in the exherited classes.
In multiple RI, the type/signature of an exherited feature must be rede-

fined in most cases in the foster class. The exceptions are cases where the
signature is exactly the same in all exherited classes (ECs) and it is not
changed in the foster class. If the signatures in all other ECs conform to the
common signature in a subset of the ECs, we could take the latter as the
default for the foster class, but for the sake of clarity we require a redefine

clause for the other ECs. — Note that even a feature that is to be deferred
in the foster class needs a redefine clause if its signature is changed.
It is a speciality of Eiffel that a method which has no parameters and

returns a result can be redefined as an attribute in a descendant class. The
opposite is not allowed, because assignment to an attribute has no counter-
part with a method. This implies for RI that a feature from the exherited
classes can always be redefined as a method in the foster class, but it can
be redefined as an attribute only if it is an attribute in all exherited classes.
Because the exherited classes often have not been developed in the same

context, it is possible that even the number of parameters, their scales or the
scale of the result or an attribute is not the same for features that represent
the same thing (see Schrefl and Neuhold [1988] for more). It should be
possible to do some adaptations to take into account these aspects and then
unify the adapted features in RI. Such adaptations do not exist in Eiffel,
because they are not needed in OI.
Adapting a feature must not change the exherited class or its objects,

according to our Rule 3. Therefore, the conversion is made on the fly, when
the feature is accessed through a variable whose type is the foster class. This
is one special characteristic of foster classes: in standard Eiffel the type of
the referencing variable does not affect the behaviour of a feature, except
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that it may affect the dynamic binding if repeated inheritance is involved.
Note that adaptation makes sense independently of whether the feature is
deferred, moved or (re)defined in the foster class.
We introduce two new keywords for expressing adaptation. In the exherit

clause, for every exherited class the features to be adapted must be listed
after the keyword adapt. After all these clauses, for every feature that needs
adaptation from at least one heir class, the adaptations must be specified
after the keyword adapted. Each adaptation subclause must specify the
name(s) of the heir class(es) to which it applies, and then the adaptation
itself.
For methods, the adaptation must specify by expressions, first the actual

parameters to be submitted to the method of the heir class, and second the
result to be returned to the caller. Formal parameters of the foster class
method can be used in both expressions, and the result from the heir class
method in the latter one. Features of the foster class can also be used, at
their state before or after the invocation of the heir class method, respec-
tively. For attributes, the adaptation must specify two conversion expres-
sions, from the heir class representation to the foster class representation
and vice versa.
We omit describing the complete syntax for adaptation expressions here.

It is important to note that they must not cause side effects, as a corollary
of Rule 3.

5. Adding a root class as a parent

The simplest cases of RI are those where the foster class is on the top of
the hierarchy, i.e., it has no explicit parent. It will then implicitly have
the universal root class ANY (which corresponds to Object in many other
languages) as parent, but we can ignore it, except in the rare case that some
exherited class has renamed, redefined or undefined some feature inherited
from ANY. Therefore, there is no interference caused by the combined use of
OI and RI in the same class. In order to illustrate such an RI relationship,
but a non-trivial one, we enhance slightly the example of Figure 1 (Section
1). Figure 2 contains only the code of the foster class.
We assume only one change in the exherited classes from Figure 1: class

RECTANGLE has a method named display instead of draw. However, it
has the same meaning as draw in class CIRCLE, and thus these two features
should be exherited together. To achieve this, display is renamed as draw in
the exheritance. By default, the feature becomes deferred in class FIGURE,
and so the class itself has to be declared as deferred (line 01 ).
The attribute location is exherited automatically because it satisfies Rule 6

from Section 3. However, to keep it as an attribute and not a deferred feature
in the foster class, it must be either explicitly moved from one exherited
class or redefined. Here we choose the latter alternative (line 10 ): for some
reason, we want it to be of type GEN POINT, which must be an ancestor
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01 deferred foster class FIGURE

02 exherit

03 CIRCLE

04 redefine location

05 adapt location

06 end

07 RECTANGLE

08 redefine location

09 rename display as draw

10 end

11 all – all exheritable features

12 feature

13 location: GEN POINT

14 adapted CIRCLE

15 to x := result.x/10, y := result.y/10

16 from x := result.x*10, y := result.y*10

17 end

18 end – class FIGURE

Fig. 2: Insertion of class FIGURE on top of two classes developed separately

of POINT (line 12 ).
Let us assume next that the class POINT has the attributes x and y of

type REAL. and that the scale of these attributes is in millimetres within
an object of type RECTANGLE, while in class CIRCLE it is in centimetres.
We decide to handle it in millimetres also in class FIGURE, and therefore
we need the adapt clause for CIRCLE. In the later adapted clause (lines
14 to 16 ), we present a tentative syntax for the adaptation of an attribute.
The to subclause specifies the conversion needed for writing (assigning to)
the attribute through a variable of type FIGURE, and the from subclause
the conversion needed for reading it.
Figure 3 is a class diagram of this situation. In this and later diagrams

we use “RI-UML”, where reverse inheritance is denoted by dashed lines and
downward pointing triangle arrowheads (upward might actually be a better
choice).
Renaming and redefinition in OI exist already in standard Eiffel, but adap-

tation in our sense has no counterpart in OI (see Section 4). The word ‘adap-
tation’ is used in a wider sense in Eiffel specifications: it includes renaming,
redefinition and undefinition. In this small example we have no adaptation
of methods; it would not even be relevant for draw, because it has neither a
result nor parameters.
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<<foster>>

FIGURE

+location: GEN_POINT

+draw()

CIRCLE

+radius: REAL

+location: POINT

+draw()

RECTANGLE

+height: REAL

+width: REAL

+location: POINT

+display()

Fig. 3: Class diagram for Figure 2

6. Adding a class with both reverse and ordinary inheritance

Here we study situations in which a foster class is defined “in the middle” of
an inheritance hierarchy, i.e., using both ordinary and reverse inheritance.
Because RI must not create new inheritance relationships between existing
classes (Rule 5, Section 3), every class that the new foster class inherits from
must already be a common ancestor of all classes being exherited. — Such
a foster class we will call ‘amphibious’, using a metaphor from biology: the
features of these classes come partly from above (“the land”) and partly
from below (“the water”) in the hierarchy. When needed, we call other
foster classes ‘non-amphibious’.
In the simplest case, the exherited classes have a common parent and the

foster class is inserted between the parent and its original heirs. We present a
slightly more complex case, which is a continuation of our previous example
(Fig. 3).
The classes CIRCLE and RECTANGLE have no method for moving

the objects. Suppose that they are kept as such, but the heir classes
MOVABLE CIRCLE and MOVABLE RECTANGLE that have a move
method are added. Later one wants to define MOVABLE FIGURE as their
common parent, which exherits at least the move method. It is quite natu-
ral that this new class is also an heir of FIGURE, and therefore inherits all
its features.
Figure 4 gives the code of the new foster class (the new heir classes are

trivial), and Figure 5 shows the augmented class diagram. To prevent some
possible confusions, we have changed the RI relationships of Figure 3 into
equivalent OI relationships; this is possible according to Rule 4 (Section 3).

The adaptation of the attribute location in class CIRCLE (Figure 2) makes
this example trickier. The implementation of that attribute is moved to the
amphibious class MOVABLE FIGURE from CIRCLE. Therefore no scale
conversion must be performed when location in a CIRCLE object is accessed
through a reference of type MOVABLE FIGURE. However, the inverse con-
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01 deferred foster class MOVABLE FIGURE

02 inherit FIGURE

03 redefine location

07 end

04 exherit

05 MOVABLE CIRCLE

06 moveup location

07 end

08 MOVABLE RECTANGLE

09 rename display as draw

10 end

11 feature

12 end – class MOVABLE FIGURE

Fig. 4: Inserting a class between a class and its descendants

version must be performed when a MOVABLE RECTANGLE object is ac-
cessed through a reference of that type. The case would be different if the
implementation of location were moved from MOVABLE RECTANGLE or
simply inherited from FIGURE.
In Eiffel terminology, those features of a class that are not inherited from

its parent(s) are called immediate features. In contrast, a foster class can-
not have immediate features, because all its features are exherited from its
heir(s) (even those that are also inherited). Thus it makes sense to classify
them into amphibious (those that are both inherited and exherited) and
non-amphibious features. In the rest of this section, we discuss only the
amphibious ones, because the existence of a parent class is irrelevant to the
others.
In the sequel, we will use the abbreviation ‘PC’ for the existing parent

class(es). We assume for simplicity that there is only one PC. Thus, for each
amphibious feature in the FC, there exists a PC version, an FC version, and
a version in each EC. We must study what relationships are possible between
these versions, and what are sensible default relationships.
The type (or signature in the case of a method) of the FC version can

always be the same as that of the PC version, because all EC versions
already conform to it. Therefore, we choose this as the most natural default
type for the FC version. If all EC versions have the same type, that type is
likewise trivially possible also for the FC version. In general, the FC version
can have any type that conforms to the type in PC and to which the types
in all ECs conform. In particular, if the feature has retained its original type
in any EC, it cannot be changed in the FC either.
The possibilities for the implementation of the FC version are slightly

more complicated. While the implementation of a method is a body, here
we consider the implementation of an attribute to be simply the fact of being



REVERSE INHERITANCE IN EIFFEL 13

FIGURE

+location: GEN_POINT

+draw()

CIRCLE

+radius: REAL

+location: POINT

+draw()

RECTANGLE

+height: REAL

+width: REAL

+location: POINT

+display()

MOVABLE_CIRCLE

+move(to:POINT)

MOVABLE_RECTANGLE

+move(p:POINT)

<<foster>>

MOVABLE_FIGURE

+location: POINT

+move(to:POINT)

Fig. 5: Class diagram for Figure 4

an attribute (in contrast to deferred or a parameterless method), and the
implementation of a deferred (abstract) feature to be empty.
The implementation in the FC can be the same as in the PC, except if it

is a method body and the signature is redefined; then the body must also
be redefined, as required in standard Eiffel. If the feature is an attribute in
the PC, it must be an attribute also in all ECs and in the FC, again by the
rules of standard Eiffel. Otherwise, it can be an attribute in the FC only
if it is so also in all ECs, but it can always be an effective (implemented)
method or deferred. However, exheriting the body of a method from an EC
is usually impossible, as explained in Section 4. — All in all, it is most
natural that also the default implementation for the FC version is inherited
from the PC.
If an amphibious feature is effective in the PC and redefined (i.e., reim-

plemented) in the FC, a redefine clause is required in the inheritance by
standard Eiffel rules. For consistency, we require the clause likewise if the
feature is moved from an EC.
In Figure 4, the attribute location of the PC (FIGURE ) has retained

its name in the ECs, although its type has been redefined. Therefore, it
will by default retain that name also in the FC. The name of the inherited
method draw has been changed to display in MOVABLE RECTANGLE,
and therefore we require it to be explicitly renamed in the exheritance.
This is consistent with standard Eiffel and makes things clear, although
the correspondence between EC and FC features would, in this case, be
unambiguous even without explicit renaming.
In other situations, renaming in Eiffel can cause an inherited feature to

be replicated; this happens with repeated inheritance. For instance, if a
common heir of CIRCLE and RECTANGLE is defined without renaming,
it will have the two distinct methods draw and display.
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Eiffel allows also the inverse of the previous situation, namely that two
features from the same parent class are unified into one feature in an heir
class. Likewise, two features from different parents can be unified in multiple
inheritance. We will not discuss these complications in this paper.

7. Assertions in foster classes

Assertions are a key feature of Eiffel, and their treatment in RI should be
compatible with the choices made initially in the language. We concentrate
on the most important and interesting kinds of assertions, namely method
pre- and postconditions. Class invariants are equally important, but they
can be regarded as postconditions that are checked for all methods of the
class.
In Eiffel, the semantics of the assertions for a redefined feature (in OI)

were earlier defined as follows (Meyer [1997], p. 573):

◦ A routine redeclaration may only replace the original precondition by
one equal or weaker, and the original postcondition by one equal or
stronger.

This was enforced in a simple way: in a redefinition one could only specify an
incremental precondition that was ORed (by the compiler) with all precon-
ditions in the parents, and an incremental postcondition that was ANDed
with all postconditions in the parents.
In Lawson et al. [1994] the authors directly inverse for RI the rules defined

for OI, thus:

◦ The precondition of a feature in a foster class must be no weaker than
the precondition of each corresponding feature in the classes it adopts.

◦ The postcondition of a feature in a foster class must be no stronger
than the postcondition of each corresponding feature in the classes it
adopts.

They conclude then that all preconditions should be ANDed together and
all postconditions ORed together. This leads to difficulties explained in that
paper: assertions of a foster class may refer to features that do not appear
in that class. This is especially a problem for preconditions since the only
possible precondition then is false, which will always fail. The exheritance of
a method would therefore often be considered impossible, especially if it has
elaborate preconditions in some heir class. The only possible postcondition
is true, which will never cause so bad problems, but is unnecessarily weak
in many cases.
Amphibious features were not considered at all in Lawson et al. [1994]

(see Section 6). The above problem can be avoided very simply for an
amphibious method: we inherit the post- and precondition from the PC
(or PCs) by default, so they automatically fulfill the rules. Also, if the
body of the method can otherwise be moved from some EC, its pre- and
postconditions there already obey the standard Eiffel rule and thus will not
cause problems Sakkinen [2002].



REVERSE INHERITANCE IN EIFFEL 15

For non-amphibious methods the problem with pre- and postconditions is
real. We did actually work out a solution, getting a clue from the refined
treatment of preconditions in multiple inheritance in ECMA International
[2006] (Subsection 8.10.5.). It is based on the following deduction: If the
method is called on an object of the heir class through a variable of a par-
ent class type, only the precondition of that parent will be ensured to hold.
Any other inherited precondition might not be satisfied, and then the cor-
responding postcondition need not get satisfied either.
Unfortunately, our solution is rather complicated and would typically re-

quire very clumsy code in clients of the foster class. Therefore we do not
present it here, but accept the fact that precondition conflicts will sometimes
make the exheritance of some methods impossible in multiple RI.

8. Further aspects

In Section 6 we discussed the situations in which the features inherited by the
ECs from a common ancestor are necessarily exherited by the FC because
it also inherits that ancestor. The ECs can also have common features
inherited from ancestors that the FC does not inherit. Such situations, like
the former ones, had not been considered at all in the older papers Pedersen
[1989] Lawson et al. [1994]. However, in Sakkinen [2002] it was taken as
granted that inherited features can be exherited, just like exherited features
can be inherited.
However, this is not self-evident when an existing language is extended.

Namely, suppose that a feature in the ECs is an attribute inherited from a
parent class PC, and it should be exherited into the FC also as an attribute.
From the OI viewpoint, this means that attributes inherited from unrelated
parents should be unified. This was not allowed in earlier versions of Eiffel
for attributes, although it was for routines. The restriction was lifted in
Eiffel 3, so we can allow the exheritance of inherited features in all cases.
Note that the exheritance of inherited features can be achieved nicely with

an amphibious class if we want to get all features of some common ancestor
into the FC, as in the example of section 6. In other situations, it would
be possible to avoid it by first defining suitable auxiliary FCs and finally an
amphibious FC, but that would often be tedious and complicated.
The hardest problems have appeared with repeated inheritance. Such prob-

lems were analysed already in Lawson et al. [1994], but no convenient general
solution was found.
In one example of Lawson et al. [1994] the class RECTANGLE has a fea-

ture boundary and CIRCLE has a feature circumference. They also have a
common subclass CIRCULAR RECTANGLE, which thus has both of these
as distinct features. When the foster class FIGURE is defined, these features
are exherited to become one feature perimeter.1

1 This example serves as an illustration, but it is quite contrived: we cannot imagine what
a circular rectangle could be.
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Now, when an object of class CIRCULAR RECTANGLE is assigned to a
variable of type FIGURE and the feature perimeter invoked through that
variable, the problem is whether the dynamic binding should select bound-
ary or circumference. The same problem would appear with OI; in Eiffel
one of the alternatives must then be designated with a select clause when
CIRCULAR RECTANGLE is defined.
It is claimed in Lawson et al. [1994] that select clauses would not always

work in RI: if there are more than two ECs, there can be common descen-
dants of two of more of them that do not inherit just the EC whose feature
was selected. In fact, we could add a third EC TRIANGLE to their ex-
ample and select from it — there would then be no applicable selection in
CIRCULAR RECTANGLE.
The paper Lawson et al. [1994] suggests “a simple, though incomplete,

solution”: the order in which the ECs are given in the definition of the FC
should be the preference order for selecting features. The authors consider
it incomplete because the same preference order might in some cases not be
desired for all common descendants of the ECs. We believe that different
preference orders might quite often be desired also for different exherited
features, thus this approach really does not look suitable.
We propose a better solution: if a foster class can in such cases contain

extended select clauses specifying indirect descendants, all ambiguities can
be resolved, e.g.:

select CIRCULAR RECTANGLE.boundary

Admittedly, this could become tedious in larger class hierarchies.
The above problem does not concern any descendants of ECs that are

defined after the FC. This is because the class hierarchy from their view-
point is exactly equivalent to one built by ordinary inheritance only, and so
ambiguities can be resolved by normal select clauses.
When we studied how more tricky MI structures should be handled in RI,

we found out an interesting anomaly in traditional Eiffel, i.e., in OI. For
instance, suppose that two classes A and B have a common parent P, and
two child classes C and D have both A and B among their parents. If a
feature f inherited from P is replicated in C and D, the existing simple se-

lect clause is not sufficient to disambiguate between its versions in common
descendants of C and D. — It seems that the rules of the new Eiffel standard
ECMA International [2006] indirectly prohibit such inheritance structures.
However, no compiler conforming to the standard is available yet.
Yet another interesting aspect is how to handle the keyword precursor

in a method body of an exherited class. Its meaning is similar to super

in many other languages, but it can only refer to an inherited version of
the same method. This implies that if precursor appears in an exherited
method, the method is necessarily amphibious in the foster class.
In Figure 6 we present an extremely simple example of this situation,

derived from the one of Figure 5.
Method move exists in class FIGURE, and is redefined in the subclass
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CIRCLE

+move(p:POINT)

FIGURE

+move(p:POINT)

M_FIGURE

exherit f

redefine f

... ? ...

... ? ...

move (a: POINT) is

   do

     Precursor (a)

     ...

   end

Fig. 6: Example of the precursor keyword

CIRCLE so that the new version of the routine body contains a statement
precursor. This implies that the method must be effective (have a body)
already in the parent class. Class M FIGURE is then defined as an am-
phibious foster class, and we study what the semantics of precursor should
be to equal the corresponding OI structure.
There are four different cases for the version of move in M FIGURE, but

they should not affect the behaviour of instances of CIRCLE (Rule 3 in
Section 3):

(1) The implementation of move is the one of FIGURE, i.e., move is in-
herited from FIGURE and not redefined in M FIGURE. Thus, there
is no problem because precursor still refers to the same version as
before.

(2) The implementation of move is the one of CIRCLE, i.e., move is un-
defined when inherited from FIGURE, and moved from CIRCLE to
M FIGURE (keyword moveup is used in the exheritance clause).
Again, precursor refers to the same version as before.

(3) Feature move is deferred in M FIGURE, i.e., move is undefined when
inherited from FIGURE and not moved from CIRCLE. In this case,
there is only one effective precursor version for the move of CIRCLE,
namely that of FIGURE, so again there is no problem.

(4) The implementation of move is in M FIGURE, i.e., the body of move
is redefined there. In this case there are two precursor versions for the
move of CIRCLE, and so a plain precursor is ambiguous. The ambi-
guity is resolved if we interpret this situation to be the same as if we
had the qualified reference precursor {FIGURE} in the corresponding
OI structure.

Let us suppose a more complex situation, such that a class C has two
or more parents which have different versions of some method f, and f is
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redefined in C. Then any use of precursor in the redefined method must
already be qualified with the name of a parent class. It is thus clear that a
later defined amphibious FC cannot affect the interpretation of precursor
in any way.
Generic classes have been an important part of Eiffel from the beginning,

and are well integrated with other language mechanisms. Therefore, they
must be handled in a convenient and natural way also in RI. To keep things
simple and the main issues in focus, we restrict the treatment here to classes
with only one generic parameter. We will assume that parameter to be
constrained; that is no restriction, because an unconstrained formal generic
is equivalent to one with the class ANY as constraint.
For technical reasons, the Eiffel literature does not speak about generated

classes but generated types. As in several other languages including Java,
but unlike Ada, they cannot be named, but they must always be referred to
by the name of the generic class and the actual generic parameters.2

If G[B] and G[A] are two types generated from the generic class G, then
G[B] is regarded as a descendant of G[A] in Eiffel if and only if B is a
descendant of A. Of course, this must hold also if the relationship between
B and A is caused by RI. It is also clear that exheriting a generic class G[T-
¿C] to a generic foster class H[T] does not cause any new issues for RI. The
other interactions between RI and genericity are not quite so obvious.
It is possible to define a generic class as an heir of a non-generic class.

Therefore, we must allow a non-generic foster class to exherit a generic class
G. It could seem that the generic features of G[T-¿C] (i.e., those whose
type or signature depends on the formal generic parameter T) could not be
exheritable, but actually they can. It suffices to choose some ancestor D
of the constraining type C and substitute all occurrences of T by D in the
foster class.
The converse of the above, namely defining a non-generic class as an heir

of a generic class, is impossible in Eiffel; it could not even make any sense
because the formal generic parameter would just disappear. On the other
hand, a non-generic class can well be an heir of a generated type in OI. Thus
we should allow a generated type to become a parent of a non-generic class
in RI. How it can be done is best explained by using an example, as follows.
Suppose that we want the attribute f: R of an EC A to be generic in the

FC G[T-¿C], i.e., become redefined as f: T. A generated type G[X] can then
be considered to be a parent of the EC if and only if X, which is necessarily
a descendant of the constraint type C, is also an ancestor of R. As long as
these conditions hold X and C can be chosen otherwise freely. We suggest
the following syntax:
foster class G[T-¿C][X]

exherit A redefine f . . . feature f: T . . .
If several attributes of the FC are defined to have the same formal generic

2 In C++, a typedef declaration can be used as a convenient shorthand like for any
other type, but it does not create a distinct type.
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as their type, the above conditions must hold with respect to them all. In
multiple RI, X and C must fulfill the conditions with respect to the types of
the feature(s) in all ECs, of course.
An attribute has only one type, even if may be constructed using several

layers of generic derivation. In contrast, there can appear many entities of
different kinds having different types in a routine: formal arguments, result
and (in an effective routine) local variables. Nevertheless, this does not yet
cause an essential difference between an attribute and a deferred routine
without pre- and postconditions. The arguments and result (if any) can be
treated in the same way as attributes.
For an effective routine in the EC that should be made generic and moved

to the FC, we need stronger constraints. The reason is that the body of
the routine may access all entities in its scope, and normally does access at
least some of them. Clearly, if the type of any such entity would change to a
proper ancestor of the original type in some type generated from the generic
FC, that could break explicit or implicit assumptions of the routine. The
same applies to those entities that are accessed by the pre- or postcondition
of a routiner.
The additional restriction is therefore the following: If the type R of any

entity that would be accessed by the body, precondition or postcondition
of some exherited routine also in the FC, is changed to a formal generic T
in the FC, the type T must be constrained by R. If R is expressed as like

Current, the constraint is the corresponding EC.
Reverse inheritance is such a “crosscutting concern” for a language that its

possible mutual interferences with many other constructs must be checked.
Here we only briefly list some further interesting mechanisms and aspects of
Eiffel, which we have handled in our work:
THIS SHOULD BE REVISED LATER!

◦ Anchored types, which are mostly just convenient shorthand, except
for the important special case ’like Current ’.

◦ Non-conforming inheritance, which has recently been added to Eiffel,
but at the time of writing was not yet implemented in ISE Eiffel. It is
rather like protected inheritance in C++.

◦ once features and frozen features.

9. Eiffel extension implementation

This section gives an overview of the Eiffel extension implementation for
reverse inheritance, which is still under development Chirilă et al. [2009]3,
but functional enough to allow some first experiments, as will be shown in
Section 10.
Two main approaches could have been chosen: to modify the Eiffel com-

piler itself or to translate RI-Eiffel source code to pure Eiffel, which can

3 Readers may see the progress from the website:
https://nyx.unice.fr/projects/transformer
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then be handled by a standard Eiffel compiler. The handling of exheritance
clauses is quite similar in both cases, but depending on the approach, it
happens either in the compiler or in a preprocessing phase. The amount of
work needed for the first approach would have been far too much for a small
research project, so the second one was chosen.
We would expect the further evolution of an RI-Eiffel program to happen

on the untransformed RI-Eiffel code. However, evolution can proceed also
using the transformed pure Eiffel program, which is effectively a refactored
program, as a baseline. Note that even this does not prevent using RI in
new classes; that will only require the transformation to be performed again.
Because this choice relies on model transformation, it seemed to be a

good side benefit to experiment with some existing model-driven approach.
Capturing the know-how attached to RI into models (i.e., decoupling the
RI specification better from a language platform) will hopefully allow us to
reuse it more efficiently for different versions of Eiffel, or even other object-
oriented languages. Finally, the effort made for the formalization of RI using
this approach could be good preliminary work for the first approach, i.e.,
the implementation of built-in RI in an Eiffel compiler.
We chose a transformation language based on Prolog, in which conditional

transformations (CTs) are specified in a formal declarative approach Kniesel
and Koch [2004] Kniesel [2006] Kniesel [2008]. Our complete transformation
consists of three steps: i) transformation from RI-Eiffel to Prolog facts,
ii) transformation from this reification of the RI-Eiffel program into the
representation (still in Prolog) of the corresponding pure Eiffel program,
and iii) transformation of the latter reification into pure Eiffel syntax.
Regarding the specification of RI semantics, the most interesting trans-

formation is ii but the two others (front end and back end) are not trivial,
either. They abstract away from the concrete syntax, which varies between
different Eiffel versions and compilers. Steps i and iii are designed for the
GOBO open-source Eiffel compiler Bezault [2007]. Some modifications may
be needed for other compilers, because they understand slightly different de
facto dialects of Eiffel.
The starting point in the process is a collection of source classes in which

reverse inheritance is used. They are processed by an Eiffel parser en-
hanced with the RI extensions. It generates an abstract syntax tree (AST),
which is then represented by Prolog facts similarly to a normalized relational
database (step i). For example, for every class there will be facts stating
the formal generics, the inheritance and exheritance sections, the feature
section, and so on.
To illustrate, we show in Figure 7 the Prolog facts corresponding to the

foster class declared in Figure 1. The first argument of most facts is a
number which identifies the fact and allows to reference it in other facts.
For example, line 01 defines the cluster gui where the classes are located.
Line 02 corresponds to the declaration of class FIGURE in this cluster;
the last argument is a list of formal arguments, which in our example is
empty because the class is not generic. Line 03 states that class FIGURE is
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01 exists(cluster(1,’gui’)).

02 exists(classDecl(100,1,’FIGURE’,[])).

03 exists(deferredClass(100)). exists(foster(100)).

04 exists(exheritance(401,100,201)).

05 exists(classType(201,200)).

06 exists(exheritance(402,100,301)).

07 exists(classType(301,300)).

08 exists(onlyFeature(501,401,221)).

09 exists(onlyFeature(502,401,222)).

10 exists(onlyFeature(503,402,321)).

11 exists(onlyFeature(504,402,322)).

Fig. 7: Prolog rules representing the foster class

deferred and a foster class. Lines 04 and 05 define the exheritance relation
between the FIGURE foster class and the CIRCLE subclass. The only
clauses from lines 08 -11 are used for the selection of the features to be
exherited from the subclasses.
Next (step ii), the model in the factbase is transformed using conditional

transformations. A CT consists of a precondition and a transformation; if
the precondition is true, the transformation is executed. For example, before
exheriting a feature, it must be tested that the corresponding feature signa-
tures from the exherited classes are compatible: their final names are equal
and their formal arguments and return types are compatible. The transfor-
mations create an equivalent class hierarchy through the elimination of the
RI constructs. All foster classes will thus be transformed into effective or
deferred ordinary classes; after this we will call them new classes. All exher-
itance links between classes will be transformed into ordinary inheritance
links.
The current implementation focuses for now on class hierarchies in which

foster classes have no superclasses (except the implicit superclass) ANY.
In particular, the following subtransformations were implemented: feature
exheritance, type exheritance, genericity issues, feature moveup, feature
adaptations, modifier adjustments, class relationship transformations, RI
elements removal.
Feature exheritance computes the sets of features having the same name

after eventual renaming and being exherited. For each such set a new feature
is created in the foster class.
Type exheritance analyses the candidate feature signatures and computes

the new features signatures: i) a signature is defined as a list, encapsulating
the formal arguments types and the return type, ii) these types are analysed
and iii) the new signature is computed as follows. Class types are defined
in Eiffel either by a concrete class or by an instantiated formal generic.
When all candidate class types are equal then the result is that common
type. Class types having actual generics imply a recursive verification of
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actuals compatibility and the synthesis of the representant type, since any
type of Eiffel can be an actual generic. Actuals may refer to class types
having actual generics but they obey the same rules as any ordinary class
types. Like types are special types since they refer to an anchor which
can be the keyword Current, a feature or a formal argument. When we
compute the representant type we take into account the final types of the
candidate anchors. If a type anchor is exherited we exherit the anchored
type reestablishing its anchor in the foster class. We consider also expanded
and bit types4, which do not imply special handling.
Feature adaptations like renaming, redefining, adapt are treated by trans-

formations. Renaming in the context of RI is translated into the context of
OI by renaming back the feature to the names within the ECs. An undefine
clause is set on every OI branch for features having an implementation in
the foster class and a deferred one in the corresponding subclass. A fea-
ture redefined on a RI branch will become redefined in the context of OI.
Since the RI/OI branch identifiers are not changed, the redefinition clauses
implemented as redefine facts, will not be affected.
In order to get the flavour of one transformation, let us take one imple-

menting the translation of the exheritance clauses into inheritance clauses.
In Figure 8 between lines 03 -07 the precondition is stated. It iterates on

01 ct(transformExhIntoInh(FosterClassId),

02 condition((

03 exists(foster(FosterClassId)),

04 exists(classType(FosterClassTypeId, FosterClassId)),

05 exists(exheritance(ExheritanceId, FosterClassId,

ExheritedClassTypeId)),

06 exists(classType(ExheritedClassTypeId, ExheritedClassId)))),

07 transformation((

08 delete(exheritance(ExheritanceId, FosterClassId,

ExheritedClassTypeId)),

09 add(inheritance(ExheritanceId, ExheritedClassId,

FosterClassTypeId))))).

Fig. 8: Transforming Exheritance Into Inheritance Clauses

all foster classes (line 03 ) and their corresponding class types (line 04 ) in-
volved in exheritance relationships (line 05 ) pointing to exherited classes
types (line 06 ). In the transformation sequence all iterated exheritance
clauses are deleted (line 08 ) and replaced with inheritance clauses (line 09 ).
The final step (iii) is to generate pure Eiffel source code from the trans-

formed Prolog facts. This operation is done by an unparsing utility written
in Prolog, which has an unparsing rule for each fact from the logic model.
For example, in figure 9 we present how the undefine clauses are unparsed.

4 Bit types have been removed from the new standard.
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Line 02 detects whetherthere exists any clause undefine for a given inher-

01 unparseUndefine(InheritanceId):-

02 exists(undefine( ,InheritanceId, ))->(tab(8),

writef(’undefine’),nl,

03 findall(FeatName,(exists(undefine( ,InheritanceId,FeatId)),

04 exists(featureDecl(FeatId, ,FeatName))),FeatNameList),

05 printList(FeatNameList,’,’),nl);true.

Fig. 9: Unparsing the undefine clauses

itance branch, and prints the undefine keyword on the output. Next, be-
tween lines 03 -04 all the undefined feature names are collected in a name
list FeatNameList. Finally, in line 05 the feature name list is printed out
using the comma as separator.
The adaptations mentioned in Sections 4 and 5 (Fig. 3) cannot be done

by this approach without violating Rule 4(Section 3) slightly, because no
corresponding mechanisms exist in pure Eiffel and additional methods are
required.
The Eiffel program that produces the Prolog facts (step i). currently

contains about 90 000 lines of source code. The model transformations (step
ii) and the Eiffel code (re)generation (step iii) together are accomplished
with about 8000 lines of Prolog.

10. Experimenting with Reverse Inheritance

In previous sections we intended to show the main facets of our approach
to reverse inheritance and its implementation. The aim of this section is to
experiment with reverse inheritance for improving reuse in the Eiffel stan-
dard library5. The whole library contains around 300 classes, and its kernel
around 120 classes. We take only a small excerpt of kernel classes for a case
study (Figure 10). Their names should be self-explanatory enough.
Every class inherits 31 features originating from the root class ANY. If

we do not count these, but all other inherited features together with im-
mediate features,6 class DISPOSABLE has 2 features, DIRECTORY 42,
IO MEDIUM 89, FILE 276, and class PLAIN TEXT FILE 287 features.
We thus show only a very small part of them.
As Figure 10 shows, the classesDIRECTORY and class PLAIN TEXT FILE

have common functionalities, but they have not been factored into common
ancestor classes. The subset of features shows that both classes can open
a file or directory in the reading mode (open read), close it (close), and
move the cursor to the first position (start). Class DIRECTORY allows

5 This library comes with EiffelStudio and may be found at
http://www.eiffel.com/products/studio/
6 As if the hierarchy were flattened.
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IO_MEDIUM

#last_string: STRING

+read_line()

+laststring(): STRING

FILE

+read_line()

+start()

+open_read()

+close()

DIRECTORY

#last_entry: STRING

+read_entry()

+start()

+open_read()

+close()

PLAIN_TEXT_FILE

+read_line()

+start()

+open_read()

DISPOSABLE

+dispose()

....

....

Fig. 10: Excerpt of Eiffel library

access to the names of the files or directories that a directory contains. The
routine read entry reads the next entry and makes it accessible through the
attribute last entry. Class PLAIN TEXT FILE provides read line and last-
string. They work in the same way as read entry and last entry : read line
retrieves the next line of the file and laststring is a function allowing access
to it.
Let us suppose that we want to write a method that will print the contents

of a file, whether it is a directory (like the UNIX command “ls”) or an ordi-
nary file (like the UNIX command “cat”). The appropriate file object would
the most naturally be given to the method as a parameter. Unfortunately,
with the existing class hierarchy the type of that formal parameter cannot
be more specific than DISPOSABLE. We must thus inspect the type of the
actual parameter and write code branches for the two cases; in addition,
the case that the type is neither FILE nor DIRECTORY (or a descendant)
must be handled in some way.
The erroneous third case can be eliminated if the method has three formal

parameters: one of each file type and a third to tell which of them is intended.
This is quite ugly and error-prone. The cleanest solution, obviously, is to
write two different methods. In all three alternatives the same code must be
written twice, only with one method name changed; this is something that
inheritance is commonly supposed to prevent.
With reverse inheritance, we can handle this situation nicely by defining

a common parent class GEN FILE that exherits all common methods from
the two classes, with appropriate renaming. This would be sufficient for
the current purpose, but we note that two of those common methods are
originally declared in the abstract class IO MEDIUM. Therefore, we decide
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to define first another foster class GEN IO MEDIUM and then GEN FILE
as its heir (see Figure 11). If the exheritance of inherited features (except
amphibious ones) was not allowed, such a structure would be necessary.

IO_MEDIUM

#last_string: STRING

+read_line()

+laststring(): STRING

FILE

+read_line()

+start()

+open_read()

+close()

DIRECTORY

#last_entry: STRING

+read_entry()

+start()

+open_read()

+close()

PLAIN_TEXT_FILE

+read_line()

+start()

+open_read()

DISPOSABLE

+dispose()

<<foster>>

GEN_IO_MEDIUM

+read_line()

+laststring(): STRING

<<foster>>

GEN_FILE

+read_line()

+start()

+open_read()

Fig. 11: Adaptation of the Eiffel Library

It seemed sensible to make GEN IO MEDIUM also an heir of DISPOS-
ABLE. If there should later appear a need of descendants that do not have
the feature dispose, we can define a new foster class that exherits all but
that feature from GEN IO MEDIUM.
The source code of these foster classes is shown in Figure 12. The only

clause of line 04 ) in Figure 12 seems to exclude only the attribute last string,
and that on line 19 looks superfluous. However, the library classes have
much more features not shown in our diagrams, as mentioned above, and
many of them would also be exherited otherwise.
We applied the transformation approach described in Section 9 to this

example. The result is presented in diagram form in Figure 13. Our compiler
etransformer generated around 150 000 Prolog facts, whose total size is
around 6 MBytes, in less than 7 seconds. The transformation that changed
all RI into OI, and the generation of standard Eiffel classes, took about
90 seconds. The reason for the very large number of facts is that also the
ancestors of the shown classes had to be analyzed. (????) We have all
reason to believe that an optimized implementation fully integrated in the
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01 deferred foster class GEN IO MEDIUM
02 inherit
03 DISPOSABLE
04 exherit
05 IO MEDIUM
06 only read line, laststring
07 end
08 end – class GEN IO MEDIUM

09 deferred foster class GEN FILE
10 inherit
11 GEN IO MEDIUM
12 exherit
13 DIRECTORY
14 rename
15 read entry as read line,
16 lastentry as laststring
17 end
18 FILE
19 only open read, start, read line,
20 laststring, close
21 end – class GEN FILE

Fig. 12: Foster classes for adapting the library

Eiffel compiler would have a much smaller overhead.
————————————————————–

This should belong better to Section 9:
The generated classes (see Figure 13) are recorded in a temporary direc-

tory. Then this directory is given to the Eiffel compiler in order to get the
application ready to be executed. Presently the process is not fully autom-
atized and the different steps (fact generation, transformation and source
(re)generation, Eiffel compilation) are initiated manually by the user but
this can be done easily and be fully integrated.
————————————————————–

Not revised yet:
Summary. This experiment of our approach suggests a number of com-

ments. It stresses that our first intent is not to refactor a class-hierarchy
but to adapt its content in order to reuse it for the purpose of a given ap-
plication. Nevertheless our approach by model transformation allows also
to generate a new pure eiffel hierarchy without any reverse inheritance re-
lationship. This new hierarchy could be considered as an evolution of the
original one and replace it.
The rules that had been set (e.g. no additional inheritance path, no in-

troduction of new features in foster classes, attribute may not be merged
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IO_MEDIUM

#last_string: STRING

+read_line()

+laststring(): STRING

FILE

+read_line()

+start()

+open_read()

+close()

DIRECTORY

#last_entry: STRING

+read_entry()

+start()

+open_read()

+close()

PLAIN_TEXT_FILE

+read_line()

+start()

+open_read()

DISPOSABLE

+dispose()

<<foster>>

GEN_IO_MEDIUM

+read_line()

+laststring(): STRING

GEN_FILE

+read_line()

+start()

+open_read()

+close()

Fig. 13: Eiffel Library after transformation

when they do not have a common seed...), may appear as a limitation - for
example we had been forced to create two foster classes GEN IO MEDIUM
and GEN FILE instead of one. But these rules are necessary in order to
preserve the original semantics of existing Eiffel constructs and the strong-
typing. The main outcome is that the behaviour of existing classes is not
modified so that it doest not impact the robustness of existing code.
Reverse-inheritance is more than another approach for improving the reuse;

it is the counterpart of ordinary inheritance. Accordingly, reverse inheri-
tance is not designed to solve all the problems related to reusability. But,
it is fully integrated in the language making it more understandable by Eif-
fel progammers. The various clause provided for this new relationship and
their possible combinations are in line with the complexity but also the
expressiveness of ordinary inheritance.

11. Conclusion and Perspectives

This paper proceeded from previous proposals to introduce a generaliza-
tion relationship, reverse inheritance (RI), to object-oriented programming,
in particular to the Eiffel language. Its main goal is to improve the non-
destructive reuse of classes by adding new abstraction levels in the middle
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or on top of a class hierarchy, whereas ordinary inheritance (OI) is devoted
to extending the hierarchy at the bottom.
Reverse inheritance is an almost exact inverse of ordinary inheritance. In

the design of this new relationship we gave particular attention to its or-
thogonal integration with all other language constructs, and we also strove
to keep the traditional language flavour and code readability of Eiffel. We
gave preference to robustness and simplicity over expressiveness of the adap-
tation mechanism. In our work, we have covered virtually the whole Eiffel
language. Unfortunately, the paper length limitation forced us to omit here
even some very interesting aspects, such as pre- and postconditions and
genericity. We intend to cover those issues in forthcoming papers.
We think that RI can have several useful application possibilities besides

those already mentioned in Section 1. One example is interface inheritance,
which is often recommended in theoretical papers, but not offered by any
well-known language. In our approach, it can be achieved simply by exher-
iting all public features of a class as abstract (deferred). Another example
is bridging the gap between subobject-oriented (as in C++) and attribute-
oriented (as in Eiffel) multiple inheritance: any set of attributes of a class
can be made into a subobject by exheriting them into the same foster class.
Introducing and using RI in an object-oriented language can also have

negative effects. One is that it may decrease the readability of code: with OI
you don’t know the descendants of a class, and with RI you don’t know even
all its ancestors, as Peter Grogono remarked at the ECOOP 2002 Inheritance
Workshop (Black et al. [2002]). Also, the set of features that a parent class
inherits in RI is not as straightforward as the set of features that a child class
inherits in OI (see Section 3). Fortunately, such problems can be handled
quite well by modern programming environments.
Some people who have commented on our work have claimed that reverse

inheritance makes separate compilation impossible. That could indeed be a
drawback in adding RI to some other languages, but in Eiffel the separate
compilation of classes is not generally possible anyway.
Another negative effect is that RI makes a language larger and more com-

plex. That disadvantage can be minimised if a language is originally de-
signed with RI, or at least RI is designed to be as completely as possible a
mirror image of OI. Because this paper proposes an extension to an existing
language, we have striven to achieve the latter goal (see Section 3).
In the design of RI it did not appear convenient to keep the syntax so

similar to that for OI as we had originally done. We could also not maintain
complete symmetry between OI and RI. That was because RI clearly requires
stronger adaptations between parents (superclasses) and heirs (subclasses)
than are offered for OI in Eiffel or other well-known languages.
Eiffel was a good target for introducing RI, but we intend to look also on

other languages and propose adapted solutions for reverse inheritance. That
should be rather simple but nevertheless interesting for single-inheritance
languages such as C# or Java. It would be very interesting for C++, but
probably too difficult because the language is already very complicated,
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especially its mechanisms of multiple inheritance. A large part of the ad-
vantages of RI concern typing, and therefore it would be far less useful for
dynamically typed languages such as Smalltalk and CLOS.
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