
1 Lecturer at University Politehnica Timişoara, Romania,

 e-mail: chirila@cs.upt.ro, tel. 0040256404061

Generative Learning Object Assessment Items for a

Set of Computer Science Disciplines

Ciprian-Bogdan Chirila1

Abstract – Learning objects with static content are good for learning and

practice but not very recommended for assessment. The main problem is

with content repetition which: enables mechanical answer memorization by

the student and replication of answers from class neighbors which is consid-

ered as an examination fraud. The Generative Learning Object (GLO) is an

evolved concept of learning objects (LO) based on reusing the learning pat-

terns. Enhancing GLOs with dynamic content could increase their reusabil-

ity even more.

Keywords – blended learning, generative learning objects, generative tech-

niques.

1 Introduction

Generative learning objects [5] are learning objects with dynamic content where

the learning pattern can be easily reused [4]. Learning objects usually contain:

content items, practice items and assessment items. In this paper we will present

the main principles in the implementation of experimental GLO assessment mod-

ules created for different computer science disciplines like: i) data structures and

algorithms; ii) fundamentals of programming languages; iii) compiling techniques;

iv) operating systems.

The first discipline contains two modules DSA1 and DSA2 where are han-

dled: i) search algorithms, sorting algorithms, linked lists, hash tables in the for-

mer; ii) trees and graphs in the latter, using random data sets. The second disci-

pline contains one module FPL deals with basic functional programming concepts

namely list exercises based on generative trees. The third discipline contains one

module named CT which basically deals with the generation of grammars with

lexical rules and syntactical rules. The fourth discipline has one OS named module

which facilitates the learning of Unix commands. All the GLO items presented

can be used for both practice and assessment purposes.

The motivations behind our approach are multiple: i) students tend to use

more and more gadgets like smartphones, tablets, tablet PCs, laptops, thus becom-

ing "digital students" [3]; ii) the IT industry nowadays is more expending so com-

puter science disciplines are more and more important in this context; iii) the

number of students delivered by universities for the IT industry is quite low espe-

cially in eastern-European countries, loosing contracts, thus affecting the national

economy.

The objective of this paper is to present an experimental set of assessment items

with dynamic content based on several generative models and to try to extend it to

a higher level of generalization for the learning of computer programming.

The paper is structured as follows. Section 2 presents a set of assessment

items for the Data Structures disciplines. In section 3 we will show how basic

commands can be assessed in the context of Unix [13] operating system. In sec-

tion 4 we will analyse several types of generative learning items applied on the

Fundamentals of Programming Languages discipline. Section 5 presents a genera-

tive pattern for grammars generation. In section 6 we will describe the prototype

implementation. In section 7 we will present related works. Section 8 concludes

and sets the future work.

2 Assessment Items for Data Structures and Algorithms Disci-

pline

In this section we will present the DSA1 [10] and DSA2 [15] modules containing

GLO items. For starters, we decided to address the data structure discipline be-

cause we consider that it has a decent level of complexity, higher than computer

programming disciplines and also lower than compiler techniques or other more

complex computer science disciplines.

We will consider the following general data structures and their accompany-

ing algorithms: i) searching algorithms on arrays; ii) sorting algorithms on arrays;

iii) linked lists; iv) general and binary trees; v) graphs, representations and related

algorithms.

Firstly, we will present the DSA1 module where the student must write the

steps of the some proposed algorithms. For each step the student has to detail: in-

dex values, comparisons with their result, array value exchanges and matches.

The first exercise proposes a search in a generated integer array of the middle

element. The search algorithm is randomly selected from a list of three algorithms:

i) linear search; ii) binary search; iii) interpolation search. For the first search the

array can be unsorted but for the second and the third searches they can not. The

variability in this item consists in: i) the size of the array; ii) the sorting order of

the array with the constraint that for linear search is unsorted while for binary and

interpolation is sorted; iii) the position of the searched element.

For this parameter several interesting particular cases from the learning point of

view can be considered: i) the middle position when the array size is odd; ii) in the

two middle positions when the array size is even and when there is not only one

middle position; iii) the first position; iv) the last position; v) the second position;

vi) the penultimate position.

The second exercise is about writing the steps of the sorting by insertion algo-

rithm. The variability of this item consists in: i) the size of the array; ii) the order

of the array elements (ordered, random, reversely ordered); iii) the direction of the

sorting (ascending or descending); iv) the use of linear insertion or binary search

insertion as sub-component of the algorithm.

3

The third exercise deals with sorting by selection and shares the same varia-

bility as the second exercise except for the iv) which is replaced by using simple

implementation or performance implementation. The two choices are just two al-

gorithm variants which are presented in the face to face lecture by the discipline

tutor.

The fourth exercise is about bubble sort and shaker sort which are related

sorting algorithms and where we keep the same variability as in the last sorting al-

gorithm.

The fifth exercise is about merge sorting algorithms applied on files. The var-

iability is completed with different variants: i) 3 files merge; ii) 4 files merge; iii)

natural merge; iv) the size of the array (8 to 12); v) the integer range of each ele-

ment (from 0 to 1000).

The sixth exercise is direct substring search. The variability items are: i) the

alphabet used for the characters (small or big caps, from A to Z); ii) the size of the

string (usually 10 to 16 characters); iii) the size of the model (5 to 8 characters);

The seventh exercise is substring search based on several algorithms: i) Knuth-

Morris; ii) Knuth-Morris-Pratt; iii) Boyer-Moore. This exercise is based on ran-

dom generation of a string and the identification of a substring model inside it.

The variability items in this case are the following: i) the alphabet used for the

characters (small or big caps, from A to Z); ii) the size of the string (usually 10 to

16 characters); iii) the size of the model (5 to 8 characters); iv) the position of the

searched model; v) with or without overflow on the searched string.

Secondly, we will present the DSA2 module dealing with trees and graphs,

where we started another set of generic exercises.

The first one deals with the general tree representation based on parent index

array. A parent index array is generated randomly and the student has to draw the

equivalent diagram tree representation and to write the first-descendant and right-

sibling arrays. The generation of the array is based on taking one parent index and

to replicate it in the parent array starting at an index higher than the parent index.

Thus, no circular references are created between the tree nodes. Of course that the

first node will have no parent since it is the root node. The variable parameters

are: i) the size of the array "n", which we limited to a maximum of 18 nodes; ii)

the name of the nodes, which are continuous letters from A to Z; iii) the index

values in the parent array; iv) the maximum number of consecutive equal parents

in the array, which will reflect the tree degree, limited to a maximum of n/3.

The second generic exercise is about inserting keys in a binary tree. We need

to generate a set of random integer keys which will allow the creation of a bal-

anced binary tree. In order to achieve this goal one simple solution is to define

three integer partitions from where an equal number of keys will be selected. The

variable parameters are: i) the number of keys in the tree, which we limit to a

maximum of 12; ii) the extent of the partitions, where we set the value of 30.

Thus, the keys will be provided from 0 to 29, 30 to 59 and from 60 to 89; iii) the

three extraction probabilities from the partitions, which we consider to be all equal

to 1/3 with the constraint that the first key should be from the second partition. As

an improvement to this exercise we could consider that the keys could be selected

from a words file repository where all words are sorted alphabetically.

The third generic exercise deals with drawing a graph diagram based on a

randomly generated adjacency matrix. The variable parameters are: i) the size of

the adjacency matrix having 6 rows and 6 columns; ii) the elements which can be

0 or 1, except the main diagonal which is all 0; iii) the grade of the graph; iv) the

name of the nodes which are random alphabet big caps letters. After the graph di-

agram is drawn then the grade of the graph is asked. The two answers can be easi-

ly verified in an automatic manner when the assessment is performed on a com-

puter. The graph diagram can be created using a diagram editor, and the node

names help us check the correct links between the nodes. The graph grade is cal-

culable out of the generated adjacency matrix.

The fourth generic exercise deals with node graph searches: i) depth-first

search and ii) breadth-first search. The matrix generation algorithm is the same.

The variable parameter is the starting node for both searches.

The fifth generic exercise is about determining the minimum coverage tree in

a weighted graph. The graph generation algorithm is the same as the previous one

except the values which are not only 0 or 1 but from 0 to 100. In order to have a

balanced number distribution the values are generated with the formula:

rand()\%2 ? 0 : rand()\%100.

3 Assessment Items for Operating Systems Discipline

The proposed exercises will test the writing of some the Unix [13] commands: i)

to create 3 directories with different random names; ii) to enter one of the three di-

rectories; iii) to create and edit a few files with writing some lines in them; iv) to

copy a randomly selected file in some random target directory; v) to move some

files with a random extension specification into a random target directory; vi) to

assess the size of a file with a random name; vii) to change the access rights of an

existing random file with a random set of given rights; viii) to delete recursively a

given folder. These assessment items can be automatically evaluated by a simple

parsing for white space eliminations. The presented assessment items can be also

reused in the context of system calls where the student must write programs to ful-

fill the generated tasks. The answer program checking involves a more complex

parsing and pattern recognition.

4 Assessment Items for Fundamentals of Programming Lan-

guages Discipline

For the Fundamentals of Programming Languages discipline we created four as-

sessment items dedicated to its Lisp [11,16] laboratory. The first exercise item

generates a multilevel list based on random dictionary words where the student

has to apply the CAR and CDR primitives in order to extract the first occurrence

of a certain letter from that word. The variable parameters in this assessment item

are: i) the word selected randomly from a dictionary, which has a certain length;

ii) the extracted letter which will be selected randomly from the second half of the

5

word. This exercise is more complex since we have to generate a tree where the

inner nodes are non-important marked by stars * and the leaf nodes must contain,

in order, the words letters. Such a generated result is presented in Figure 1.

 (((P)(O))((((((L I)(T))(E))(H))(N))((I C)(A))))

Fig. 1. Generated Multi-Level List

A different assessment item was designed in order to stimulate student crea-

tivity. The exercise generates randomly a multilevel list and the student has to

write a Lisp expression creating that list and using three primitives i) append; ii)

list; iii) reverse. The word proposed for the exercise is (A B) expressed as a list.

The variant parameters are: i) the word used in the exercise; ii) the number of

nodes in the tree - equivalent with the multilevel list; iii) the degree of the tree; iv)

the height of the tree. In figure 2 we present an example of the generated multi-

level list based on the word (A B). Unless the word is not a palindrome the re-

sponse expression is unique for each tree and thus can be assessed automatically.

((B A (A B) (A B A B) (A B) (A B A B)) ((A B) (B A B A)))

Fig. 2. Generated Multi-Level Word List

In Figure 3 we can see a generated simple expression based on a binary tree

containing arithmetical operators and one letter identifier operands, implemented

by an array with left child at 2*i and right child at 2*i+1 if the parent is at index i.

These expressions must be implemented as Lisp functions by students. The varia-

ble parameters are: i) the number of operators, we set between 4 and 6; ii) the

name of the identifier operands.

F3=((n + g) - (p + r))

Fig. 3. Generated Simple Expressions

For the complex expression we use the same generation idea but the number

of operators will be between 7 and 12. In Figure 4 we can see a generated complex

expression.

F4=((((g * p) * (q - b)) * ((g - i) - x)) +

((e * x) - (j * e)))

Fig. 4. Generated Complex Expressions

5 Assessment Items for Compiling Techniques Discipline

For the Compiling Techniques [2] discipline we designed one complex exercise

which has the goal of generating randomly a variable grammar made of a lexical

analyzer and a syntactical analyzer having a limited difficulty level. We designed

a generic program structure described by a grammar having a lexical analyzer

which contains: i) the identifier rule with different set of letters, digits and name;

ii) keywords for starting and ending program blocks having fixed semantics, but

variant synonym names; iii) separators selectable randomly from a given set; iv)

operators selectable randomly from a given list; v) delimiters selectable randomly

from a given set; vi) integer constants in different forms; vii) real constants in dif-

ferent forms.

letter ::= a..z | A..Z

dig ::= 0..7

operator ::= +

separator ::= ,

del1 ::= [

del2 ::=]

identifier ::= (letter|dig)*

int_literal ::= dig+

nr_real ::= dig+.dig+

start_keyword ::= ON

stop_keyword ::= OFF

Fig. 5. Generated Lexical Rules

In the syntactical analyzer rule set we created: i) left-recursive expressions

with randomly selected operators and operands, the operands can randomly be

identifiers or integer constants or real constants; ii) instruction lists; iii) different

instructions like assignments, calls etc; iv) starting grammar rule built with ran-

dom keywords. An example of a generated set of syntactic rules is presented in

Figure 6.

programs ::= programs start_keyword ListaInstr stop_keyword

 separator | start_keyword stop_keyword

InstrList ::= InstrList Instr | Instr

Instr ::= identifier := E | identifier del1 E del2 := E

E ::= E operator int_literal | E operator identifier

 | int_literal | identifier

Fig. 6. Generated Syntactic Rules

The skeleton of our compiler is quite simple but following these ideas we can

build a larger compiler skeleton. Briefly, the variable parameters are: i) the names

for the lexical and syntactical rules; ii) the right-hand side of the lexical rules with

7

variations for each token class; iii) the randomly included subtrees in the right-

hand side of syntactical rules.

6 Prototype Implementation

The prototype is implemented in C and has two versions: i) the first one generat-

ing HTML code so the components behave as CGIs; ii) the second one generating

LaTex code for translating in PDF format ready to print. The former result is good

for online posting of free exercises, while the latter is good for written exams. Re-

garding the balance between the server and client side we can mention that the

current implementation based on CGIs runs on the server side. We consider that is

not a very difficult task to translate the code into JavaScript [12] or Flash Ac-

tionScript [1] which runs on the client side in order to enable a better graphical

representation.

The action results can be memorized into the Learning Record Store (LRS) using

the Experience API (xAPI) [14].

7 Related Works

According to [6] a GLO is "an articulated and executable learning design that pro-

duces a class of learning objects". Our approach adheres fully to these ideas.

In [4] are presented the design principles for creating dynamic and reusable

LOs. The principles are based on a set of distilled ideas from pedagogy and soft-

ware engineering. The case study is made on a Java learning discipline. With our

approach we showed that GLOs can be used for several other computer science

disciplines to a certain extent.

In [5] are presented design and development tools for the GLOs as second

generation learning objects underpinning pedagogical patters. In our approach we

reuse pedagogical patterns in a competence oriented learning and assessment.

In [7] they consider that GLOs are generic and reusable LOs from which spe-

cific content can be generated on demand. GLOs are characterized by variability

which can be modeled using feature diagrams and they also need specification

languages, parameterization languages, metaprogramming techniques for genera-

tion. In our approach the parameters are expressed through program variables,

their values are set by random values within a certain range, so LO instantiation is

automatic.

In [8] GLO generated LO sequences by metaprogramming are expressed us-

ing sequence feature diagrams. In our approach the metamodel is not explicit but it

is embedded into the prototype modules code.

8 Conclusions and Future Work

In this paper we presented five modules containing generic learning assessment

items dedicated to a set of disciplines that we consider belonging the core for

computer programming. In our approach we identified a number of problems that

must be considered challenges for future work.

The assessment items test only the good understanding of the data structure or

algorithm functioning which are essential for programming but not programming

itself with that data structure. The generative assessment items seem to cover only

a small part of the content a student must know. The part which is not covered in-

volves the application of the data structures and algorithms in industrial strength

programs.

Regarding the Operating System discipline we consider the following chal-

lenges: i) to generate script specifications to work with files and processes and to

combine safely the possible operations; ii) to assess automatically the correctness

of the written scripts. Using repeatedly the same generative assessment items it

may transform the evaluation into a tedious activity.

The items are quite complex in creation and implementation, because they re-

quire programming knowledge for the values generation so the authors must have

programmer skills. Another challenge deriving from this idea is to simplify the

implementation of such GLO items by using specialized templates or generative

wizards constructing the output step by step.

As future work we consider integrating the designed GLOs into a Learning

Management System like Moodle [9]. Thus, the GLOs will be available to a larger

number of tutors and implicitly students.

For the motivational part we can think of integration with social networks.

Thus, the learning activity result can be posted online and get support and approv-

al by the other members of the community. They may try themselves some inter-

esting e-learning topics.

Another future work is related to gamification, namely to use gaming me-

chanics to transform some GLOs into games. DSA modules are more likely to be

able to be gamified since it involves lots of diagrams and interactions between

nodes.

In order to support learning and training together with evaluation, some as-

sessment items could be equipped with assistance and feedback in order to be re-

used as training items.

Acknowledgements

This paper is supported by the Sectorial Operational Programme Human Re-

sources development (SOP HRD), financed from the European Social Fund and

by the Romanian Government under the project number

POSDRU/159/1.5/S/134378 initiated in 2014.

References

1. Adobe Systems. Flash ActionScript. http://www.adobe.com, 1998.

2. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition, Pearson Education, 2006.

9

3. Diana Andone, Jon Dron, Lyn Pemberton, and Chris Boyne. E-learning environments for digitally-

minded students. Journal of Interactive Learning Research, 18(1):41–53, 2007.

4. Tom Boyle. Design principles for authoring dynamic, reusable learning objects. Australian Journal
of Educational Technology, 18(1):46–58, 2003.

5. Tom Boyle. The design and development of second generation learning objects. In Proceedings of

World Conference on Educational Multimedia, Hypermedia & Telecommunications, 2006.

6. Centre for Excellence for the design, development and use of learning objects. Reusable learning

objects cetl - rlo-cetl. http://www.rlo-cetl.ac.uk/whatwedo/glos/glodevelopment.php, 2014.

7. Robertas Damaeviius and Vytautastuikys. On the technological aspects of generative learning
object development. Lecture Notes in Computer Science, 5090:337–348, 2008.

8. Robertas Damaeviius and Vytautas tuikys. Using sequence feature diagrams and

metaprogramming techniques. In 2009 Ninth IEEE International Conference on Advanced
Learning Technologies, 2009.

9. Martin Dougiamas. Modular object-oriented dynamic learning environment (Moodle).

http://www.moodle.org, 2002.

10. Donald E. Knuth - Art of Computer Programming, Volume 3: Sorting and Searching (2nd

Edition), 800 pages, Addison-Wesley Professional, 2 edition (May 4, 1998), ISBN-10:

0201896850, ISBN-13: 978-0201896855, 1998.

11. John McCarthy. History of Lisp. History Of Programming Languages, Artificial Intelligence

Laboratory Stanford University, February 1979.

12. Mozilla Foundation. JavaScript. https://www.mozilla.org, 2011.

13. Dennis Ritchie, Ken Thompson. The UNIX Time-Sharing System. Communications of ACM, vol.

17, no. 7, pp. 365--375, July 1974.

14. Rustici Software. Tin can api. http://tincanapi.com/, 2014.

15. Robert Sedgewick, Philippe Flajolet - An Introduction to the Analysis of Algorithms (2nd

Edition). 592 pages, Addison-Wesley Professional; 2 edition (January 28, 2013), ISBN-10:
032190575X, ISBN-13: 978-0321905758, 2013.

16. David S. Touretzky. Common LISP: A Gentle Introduction to Symbolic Computation (Dover

Books on Engineering), January 24, 2013.

