
Compiler Design

Introduction

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila



Outline

 Language Processors

 The Structure of a Compiler

 The Evolution of Programming Languages

 The Science of Building a Compiler

 Applications of Compiler Technology

 Programming Language Basics

 Summary



Programming languages (PLs)

 PLs are notations to describe 

computation to

◦ people

◦ machines

 all software running on machines

◦ is written in some PL

 before running 

◦ each program must be translated into a form 

that will be executed by a computer



Lecture topic

 to design compilers

 to implement compilers

 ideas to be used in the construction of 
translators

 wide variety of languages and machines

 the principles are applicable for other 
domains

 to be reused in the computer scientist 
career



Interacting domains

 programming languages

 machine architectures

 language theory

 data structures and algorithms

 software engineering



Language Processors

 Compiler

◦ A compiler is a program that can read a 

program in one language – the source 

language – and translate it into an equivalent 

program in another language – the target 

language



Language Processors

 Compiler

◦ Reports errors in the source program that 

it detects during the translation process



Language Processors

 Interpreter

◦ Directly executes the operations specified in 

the source program on supplied inputs



Language Processors

 Hybrid compiler

◦ Java language processors combine 

compilation and interpretation



Language Processors

 Java language processors

◦ a java source program is first compiled into 
bytecodes, which are then interpreted by a 
virtual machine

◦ Bytecodes compiled on one machine can be 
interpreted on another machine

 “Write once, run anywhere”

◦ For faster processing, just-in-time compilers 
translate bytecodes into machine language 
immediately before they run the intermediate 
program to process the input



Language Processors



The Structure of a Compiler

 Compiling is a 2 part process:

◦ Analysis 

 Responsible for breaking up the source program 
into pieces and imposing a grammatical structure 
on them

 If it detects errors, it provides informative messages

 Collects data and stores it in a data structure called 
a symbol table

◦ Synthesis

 Constructs the desired target program from the 
intermediate representation and the information in 
the symbol table



The Structure of a Compiler





The Structure of a Compiler

 Lexical Analysis

◦ Reads the stream of characters making up the 

source program and groups the characters 

into meaningful sequences called lexemes

◦ For each lexeme, the output is a token which 

has the following form:

 <token-name, attribute-value>



The Structure of a Compiler

 Syntax Analysis

◦ It creates a tree-like intermediate 

representation using the first components of 

the tokens produced by the lexical analyzer

◦ Syntax tree

 each interior node represents an operation and the 

children of the node represent the arguments of 

the operation



The Structure of a Compiler

 Semantic Analysis

◦ Checks the source program for semantic 

consistency with the language definition

◦ Type checking – checks whether each 

operator has matching operands

◦ Conversions



The Structure of a Compiler

 Intermediate code generation

 Code optimization

 Code generation



The Structure of a Compiler

 Symbol-Table Management

◦ Recording variable names and collecting 
information about attributes

 storage allocated for a name, its scope, its type, number 
and types of arguments for functions, pass by value or by 
reference, returned type

 Grouping of Phases into Passes

◦ Front-end pass

 lexical analysis to intermediate code generation

◦ Code optimization

 optional pass

◦ Back-end pass

 code generation



The Evolution of Programming Languages

 1940’s

◦ First electronic computers

◦ Machine language, sequences of 0 and 1

◦ Basic operations

 move data, add 2 registers, compare 2 values

◦ Slow, hard to modify, error prone, tedious 

 1950’s

◦ Mnemonic assembly languages

◦ First step towards higher level languages with 
Fortran, Cobol, Lisp



The Evolution of Programming Languages

 Classification by 

◦ Generation

 First-generation (machine languages)

 Second-generation (assembly languages)

 Third-generation (Fortran, Cobol, Lisp, C, C++, C#, 

Java)

 Fourth-generation (NOMAD for reports, SQL for 

queries, Postscript for text formatting)

 Fifth-generation (logic and constraint based 

languages like Prolog, OPS5)



The Evolution of Programming Languages

 Classification

◦ By programming

 Imperative (how the computation is to be done)

 C, C++, C#, Java

 Declarative (what computation is to be done)

 ML, Haskell, Prolog

◦ von Neumann languages

 Fortran, C

◦ Object-oriented languages

 Simula67, Smalltalk, C++, C#, Java, Ruby

◦ Scripting languages

 Awk, Javascript, Perl, PHP, Python, Ruby, Tcl



The Science of Building a Compiler

 Fundamental models

◦ Finite-state machines

◦ Regular expressions

◦ Context-free grammars

◦ Trees



The Science of Building a Compiler

 Code optimization

◦ The result must be code that is more efficient 

than the obvious code

◦ Optimization has become more important 

and complex because of massively parallel 

computers, multicore machines

◦ Graphs, matrices, linear programs are 

necessary models to produce optimized code



The Science of Building a Compiler

 Code optimization

◦ Design objectives

 Correct optimization (preserve the meaning)

 Improved performance

 Compilation time must be reasonable

 Manageable required engineering effort

 Compiler development involves both 

theory and experimentation



Applications of Compiler Technology

 High-Level programming languages 

implementation

◦ Higher-level programming languages are 

easier to program in, but are less efficient

◦ Low-level programs are harder to write, less 

portable, harder to maintain, error prone but 

they do offer more control and produce 

more efficient code (in principle)



Applications of Compiler Technology

 High-Level programming languages 
implementation

◦ Data-flow optimizations have been developed 
to analyze the flow of data and remove 
redundancies from arrays, structures, loops, 
procedure invocations

◦ Object orientation (C++, C#, Java)

 Makes programs more modular, easier to maintain

 Main features are:
 Abstraction

 Inheritance



Applications of Compiler Technology

 High-Level programming languages 

implementation

◦ Procedure inlining

 The replacement of a procedure call by the body of 

the procedure

◦ Optimizations to speed up virtual method 

dispatches



Applications of Compiler Technology

 High-Level programming languages 
implementation

◦ Example Java

 Type safe, array accesses are checked to be within 
bounds, no pointers, garbage collector

 Easier programming, but incur run-time overhead

 Optimizations to run-time include
 Eliminating unnecessary range checks

 Allocating objects not accessible beyond a procedure on 
stack instead of heap

 Minimizing overhead of garbage collection

 Dynamic optimization



Applications of Compiler Technology

 Optimizations for Computer Architectures

◦ Parallelism

 Instruction level

 Processor level

 Achieved by programmers writing multithreaded code 

for multiprocessors or parallel code can be 

automatically generated by a compiler

 Great benefits for

 Scientific computing

 Engineering applications



Applications of Compiler Technology

 Memory Hierarchies

◦ Levels of storage with different speeds and sizes

 Registers (hundreds of bytes)

 Caches (KB to MB)

 Physical memory (MB to GB)

 Secondary storage (GB, TB)

◦ Using registers correctly is the most important 

issue in optimization



Applications of Compiler Technology

 Design of new Computer Architectures
◦ In modern architecture development, compilers are developed in 

the processor-design stage and compiled code, on simulators is 

used to evaluate the architecture

◦ RISC (Reduced Instruction-Set Computer) architecture

 Simple instruction sets

 PowerPC, SPARC, Alpha, MIPS are architectures based on RISC concept

 x86 is based on CISC(Complex Instruction-Set Computer) but many of 

the ideas developed for RISC machines are used 

◦ Specialized Architectures

 Data flow machines

 Vector machines

 VLIW(Very Long Instruction Word)

 SIMD(Single Instruction, Multiple data)

 Multiprocessors with shared memory

 Multiprocessors with distributed memory



Applications of Compiler Technology

 Program Translations

◦ Binary translation

 Used for increasing the availability of software for 

different machines, with different instruction sets

 x86 to Alpha or Sparc code

 x86 to VLIW code (Transmeta Crusoe processor)

◦ Hardware Synthesis
 Hardware designs are described at register transfer level 

(RTL)

 RTL descriptions -> gates ->mapped to transistors -> physical 

layout



Applications of Compiler Technology

 Program Translations

◦ Database Query Interpreters (SQL)

◦ Compiled Simulation

 Instead of writing a simulator that interprets the 

design, it is faster to compile the design to machine 

code that simulates that design 

 Compiled simulations run orders of magnitude 

faster than interpreter approaches

 Used in tools that simulate designs written in 

Verilog or VHDL



Applications of Compiler Technology

 Software Productivity Tools

◦ Data-flow analysis to find errors

 Type checking

 Operation applied to wrong type of object

 Parameters passed do not match signature of method

 Check for security flaws

 Bounds checking

 Buffer overflows can cause security breaches in C

 Memory-Management tools

 Garbage collection solves memory management errors



Programming Language Basics

 Static/Dynamic Distinction

◦ Static policy

 Issues decided at compile time

◦ Dynamic policy

 Issues decided at run time

Example:

public static int x; (Java)

Here x is a class variable (there is only one copy of x, 
at one location, no matter how many objects of the 
class are created). 

If it wouldn’t have been static, each object would have 
a different location for x and the compiler would 
determine them at run time (instance variable).



Programming Language Basics

 Environments and States

◦ Binding of names to locations

 Dynamic generally, but global variables can be given 

a location once and for all

◦ Binding of locations to values

 Dynamic with the exception of declared constants

 #define ARRAYSIZE 500 (static)



Programming Language Basics

 Names, identifiers, variables

◦ Compile-time names

◦ Identifier

 String of characters, letters or digits that refers to a 

data object, a procedure, a class, a type

 All identifiers are names, not all names are identifiers

◦ Variable

 It refers to a particular location of the store

 Run-time location denoted by names



Programming Language Basics

 Static Scope and Block Structure
◦ In C the scope is determined by where the declaration appears

◦ In C++, JAVA, C# we have public, private, protected



Programming Language Basics

 Dynamic Scope

◦ Macro expansion in C preprocessor

◦ Output: 2 3

◦ Another example of dynamic policy would be 
method resolution in object-oriented 
programming



Programming Language Basics

 Parameter Passing Mechanisms

◦ Call by value

 The actual parameter is evaluated or copied

 The value is placed in the location belonging to the 

corresponding formal parameter of the called 

procedure

◦ Call by reference

 The address of the actual parameter is passed to 

the callee as the value of the corresponding formal 

parameter

 Necessary when the formal parameter is a large 

object, array of structure in C/C++



Programming Language Basics

 Aliasing

◦ Call by reference

 2 formal parameters -> same location (they are 

aliases of one another)

◦ Essential if a compiler is to optimize a 

program



Summary

 Language Processors
◦ Profilers, debuggers, loaders, linkers, assemblers, 

interpreters, compilers are included in an 
integrated development environment

 Compiler phases
◦ A compiler works as a sequence of phases, each 

of which modifies the source program from one 
form to another

 Machine and Assembly Languages
◦ 1st machine languages

◦ 2nd assembly languages

◦ Slow programming, error prone



Summary

 Modeling in Compiler Design
◦ Automata, grammars, regular expressions, trees are 

models found useful

 Code Optimization
◦ Important for the study of compilation

 Higher-Level Languages
◦ Languages take more and more tasks such as memory 

management, type-consistency checking, parallel 
execution of code

 Compilers and Computer Architecture
◦ Compilers influence architecture

◦ Modern innovations in architecture depend on 
compilers to use hardware capabilities effectively



Summary

 Software productivity and software security
◦ Program-analysis tasks such as detecting bugs, discovering 

vulnerabilities

 Scope rules
◦ Static scope (lexical scope) if it’s possible to determine the 

scope of a declaration by looking only at the program

◦ Dynamic scope

 Environments and states
◦ Environments

 Associations of names with locations in memory and then with 
values

 map names to locations in store

◦ States
 Map locations to their values



Summary

 Block Structure
◦ Nested blocks -> block structure

 Parameter passing
◦ Parameters are passed either by value of by 

reference.

◦ When dealing with large objects passed by value, 
the values passed are references to objects 
themselves, resulting in an effective call by 
reference

 Aliasing 
◦ When passing by reference, 2 formal parameters 

can refer to the same object, thus allowing a 
change in one variable to change another



Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, 

Jeffrey D. Ullman – Compilers, Principles, 

Techniques and Tools, Second Edition, 

2007


