
Compiler Design

Introduction

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila



Outline

 Language Processors

 The Structure of a Compiler

 The Evolution of Programming Languages

 The Science of Building a Compiler

 Applications of Compiler Technology

 Programming Language Basics

 Summary



Programming languages (PLs)

 PLs are notations to describe 

computation to

◦ people

◦ machines

 all software running on machines

◦ is written in some PL

 before running 

◦ each program must be translated into a form 

that will be executed by a computer



Lecture topic

 to design compilers

 to implement compilers

 ideas to be used in the construction of 
translators

 wide variety of languages and machines

 the principles are applicable for other 
domains

 to be reused in the computer scientist 
career



Interacting domains

 programming languages

 machine architectures

 language theory

 data structures and algorithms

 software engineering



Language Processors

 Compiler

◦ A compiler is a program that can read a 

program in one language – the source 

language – and translate it into an equivalent 

program in another language – the target 

language



Language Processors

 Compiler

◦ Reports errors in the source program that 

it detects during the translation process



Language Processors

 Interpreter

◦ Directly executes the operations specified in 

the source program on supplied inputs



Language Processors

 Hybrid compiler

◦ Java language processors combine 

compilation and interpretation



Language Processors

 Java language processors

◦ a java source program is first compiled into 
bytecodes, which are then interpreted by a 
virtual machine

◦ Bytecodes compiled on one machine can be 
interpreted on another machine

 “Write once, run anywhere”

◦ For faster processing, just-in-time compilers 
translate bytecodes into machine language 
immediately before they run the intermediate 
program to process the input



Language Processors



The Structure of a Compiler

 Compiling is a 2 part process:

◦ Analysis 

 Responsible for breaking up the source program 
into pieces and imposing a grammatical structure 
on them

 If it detects errors, it provides informative messages

 Collects data and stores it in a data structure called 
a symbol table

◦ Synthesis

 Constructs the desired target program from the 
intermediate representation and the information in 
the symbol table



The Structure of a Compiler





The Structure of a Compiler

 Lexical Analysis

◦ Reads the stream of characters making up the 

source program and groups the characters 

into meaningful sequences called lexemes

◦ For each lexeme, the output is a token which 

has the following form:

 <token-name, attribute-value>



The Structure of a Compiler

 Syntax Analysis

◦ It creates a tree-like intermediate 

representation using the first components of 

the tokens produced by the lexical analyzer

◦ Syntax tree

 each interior node represents an operation and the 

children of the node represent the arguments of 

the operation



The Structure of a Compiler

 Semantic Analysis

◦ Checks the source program for semantic 

consistency with the language definition

◦ Type checking – checks whether each 

operator has matching operands

◦ Conversions



The Structure of a Compiler

 Intermediate code generation

 Code optimization

 Code generation



The Structure of a Compiler

 Symbol-Table Management

◦ Recording variable names and collecting 
information about attributes

 storage allocated for a name, its scope, its type, number 
and types of arguments for functions, pass by value or by 
reference, returned type

 Grouping of Phases into Passes

◦ Front-end pass

 lexical analysis to intermediate code generation

◦ Code optimization

 optional pass

◦ Back-end pass

 code generation



The Evolution of Programming Languages

 1940’s

◦ First electronic computers

◦ Machine language, sequences of 0 and 1

◦ Basic operations

 move data, add 2 registers, compare 2 values

◦ Slow, hard to modify, error prone, tedious 

 1950’s

◦ Mnemonic assembly languages

◦ First step towards higher level languages with 
Fortran, Cobol, Lisp



The Evolution of Programming Languages

 Classification by 

◦ Generation

 First-generation (machine languages)

 Second-generation (assembly languages)

 Third-generation (Fortran, Cobol, Lisp, C, C++, C#, 

Java)

 Fourth-generation (NOMAD for reports, SQL for 

queries, Postscript for text formatting)

 Fifth-generation (logic and constraint based 

languages like Prolog, OPS5)



The Evolution of Programming Languages

 Classification

◦ By programming

 Imperative (how the computation is to be done)

 C, C++, C#, Java

 Declarative (what computation is to be done)

 ML, Haskell, Prolog

◦ von Neumann languages

 Fortran, C

◦ Object-oriented languages

 Simula67, Smalltalk, C++, C#, Java, Ruby

◦ Scripting languages

 Awk, Javascript, Perl, PHP, Python, Ruby, Tcl



The Science of Building a Compiler

 Fundamental models

◦ Finite-state machines

◦ Regular expressions

◦ Context-free grammars

◦ Trees



The Science of Building a Compiler

 Code optimization

◦ The result must be code that is more efficient 

than the obvious code

◦ Optimization has become more important 

and complex because of massively parallel 

computers, multicore machines

◦ Graphs, matrices, linear programs are 

necessary models to produce optimized code



The Science of Building a Compiler

 Code optimization

◦ Design objectives

 Correct optimization (preserve the meaning)

 Improved performance

 Compilation time must be reasonable

 Manageable required engineering effort

 Compiler development involves both 

theory and experimentation



Applications of Compiler Technology

 High-Level programming languages 

implementation

◦ Higher-level programming languages are 

easier to program in, but are less efficient

◦ Low-level programs are harder to write, less 

portable, harder to maintain, error prone but 

they do offer more control and produce 

more efficient code (in principle)



Applications of Compiler Technology

 High-Level programming languages 
implementation

◦ Data-flow optimizations have been developed 
to analyze the flow of data and remove 
redundancies from arrays, structures, loops, 
procedure invocations

◦ Object orientation (C++, C#, Java)

 Makes programs more modular, easier to maintain

 Main features are:
 Abstraction

 Inheritance



Applications of Compiler Technology

 High-Level programming languages 

implementation

◦ Procedure inlining

 The replacement of a procedure call by the body of 

the procedure

◦ Optimizations to speed up virtual method 

dispatches



Applications of Compiler Technology

 High-Level programming languages 
implementation

◦ Example Java

 Type safe, array accesses are checked to be within 
bounds, no pointers, garbage collector

 Easier programming, but incur run-time overhead

 Optimizations to run-time include
 Eliminating unnecessary range checks

 Allocating objects not accessible beyond a procedure on 
stack instead of heap

 Minimizing overhead of garbage collection

 Dynamic optimization



Applications of Compiler Technology

 Optimizations for Computer Architectures

◦ Parallelism

 Instruction level

 Processor level

 Achieved by programmers writing multithreaded code 

for multiprocessors or parallel code can be 

automatically generated by a compiler

 Great benefits for

 Scientific computing

 Engineering applications



Applications of Compiler Technology

 Memory Hierarchies

◦ Levels of storage with different speeds and sizes

 Registers (hundreds of bytes)

 Caches (KB to MB)

 Physical memory (MB to GB)

 Secondary storage (GB, TB)

◦ Using registers correctly is the most important 

issue in optimization



Applications of Compiler Technology

 Design of new Computer Architectures
◦ In modern architecture development, compilers are developed in 

the processor-design stage and compiled code, on simulators is 

used to evaluate the architecture

◦ RISC (Reduced Instruction-Set Computer) architecture

 Simple instruction sets

 PowerPC, SPARC, Alpha, MIPS are architectures based on RISC concept

 x86 is based on CISC(Complex Instruction-Set Computer) but many of 

the ideas developed for RISC machines are used 

◦ Specialized Architectures

 Data flow machines

 Vector machines

 VLIW(Very Long Instruction Word)

 SIMD(Single Instruction, Multiple data)

 Multiprocessors with shared memory

 Multiprocessors with distributed memory



Applications of Compiler Technology

 Program Translations

◦ Binary translation

 Used for increasing the availability of software for 

different machines, with different instruction sets

 x86 to Alpha or Sparc code

 x86 to VLIW code (Transmeta Crusoe processor)

◦ Hardware Synthesis
 Hardware designs are described at register transfer level 

(RTL)

 RTL descriptions -> gates ->mapped to transistors -> physical 

layout



Applications of Compiler Technology

 Program Translations

◦ Database Query Interpreters (SQL)

◦ Compiled Simulation

 Instead of writing a simulator that interprets the 

design, it is faster to compile the design to machine 

code that simulates that design 

 Compiled simulations run orders of magnitude 

faster than interpreter approaches

 Used in tools that simulate designs written in 

Verilog or VHDL



Applications of Compiler Technology

 Software Productivity Tools

◦ Data-flow analysis to find errors

 Type checking

 Operation applied to wrong type of object

 Parameters passed do not match signature of method

 Check for security flaws

 Bounds checking

 Buffer overflows can cause security breaches in C

 Memory-Management tools

 Garbage collection solves memory management errors



Programming Language Basics

 Static/Dynamic Distinction

◦ Static policy

 Issues decided at compile time

◦ Dynamic policy

 Issues decided at run time

Example:

public static int x; (Java)

Here x is a class variable (there is only one copy of x, 
at one location, no matter how many objects of the 
class are created). 

If it wouldn’t have been static, each object would have 
a different location for x and the compiler would 
determine them at run time (instance variable).



Programming Language Basics

 Environments and States

◦ Binding of names to locations

 Dynamic generally, but global variables can be given 

a location once and for all

◦ Binding of locations to values

 Dynamic with the exception of declared constants

 #define ARRAYSIZE 500 (static)



Programming Language Basics

 Names, identifiers, variables

◦ Compile-time names

◦ Identifier

 String of characters, letters or digits that refers to a 

data object, a procedure, a class, a type

 All identifiers are names, not all names are identifiers

◦ Variable

 It refers to a particular location of the store

 Run-time location denoted by names



Programming Language Basics

 Static Scope and Block Structure
◦ In C the scope is determined by where the declaration appears

◦ In C++, JAVA, C# we have public, private, protected



Programming Language Basics

 Dynamic Scope

◦ Macro expansion in C preprocessor

◦ Output: 2 3

◦ Another example of dynamic policy would be 
method resolution in object-oriented 
programming



Programming Language Basics

 Parameter Passing Mechanisms

◦ Call by value

 The actual parameter is evaluated or copied

 The value is placed in the location belonging to the 

corresponding formal parameter of the called 

procedure

◦ Call by reference

 The address of the actual parameter is passed to 

the callee as the value of the corresponding formal 

parameter

 Necessary when the formal parameter is a large 

object, array of structure in C/C++



Programming Language Basics

 Aliasing

◦ Call by reference

 2 formal parameters -> same location (they are 

aliases of one another)

◦ Essential if a compiler is to optimize a 

program



Summary

 Language Processors
◦ Profilers, debuggers, loaders, linkers, assemblers, 

interpreters, compilers are included in an 
integrated development environment

 Compiler phases
◦ A compiler works as a sequence of phases, each 

of which modifies the source program from one 
form to another

 Machine and Assembly Languages
◦ 1st machine languages

◦ 2nd assembly languages

◦ Slow programming, error prone



Summary

 Modeling in Compiler Design
◦ Automata, grammars, regular expressions, trees are 

models found useful

 Code Optimization
◦ Important for the study of compilation

 Higher-Level Languages
◦ Languages take more and more tasks such as memory 

management, type-consistency checking, parallel 
execution of code

 Compilers and Computer Architecture
◦ Compilers influence architecture

◦ Modern innovations in architecture depend on 
compilers to use hardware capabilities effectively



Summary

 Software productivity and software security
◦ Program-analysis tasks such as detecting bugs, discovering 

vulnerabilities

 Scope rules
◦ Static scope (lexical scope) if it’s possible to determine the 

scope of a declaration by looking only at the program

◦ Dynamic scope

 Environments and states
◦ Environments

 Associations of names with locations in memory and then with 
values

 map names to locations in store

◦ States
 Map locations to their values



Summary

 Block Structure
◦ Nested blocks -> block structure

 Parameter passing
◦ Parameters are passed either by value of by 

reference.

◦ When dealing with large objects passed by value, 
the values passed are references to objects 
themselves, resulting in an effective call by 
reference

 Aliasing 
◦ When passing by reference, 2 formal parameters 

can refer to the same object, thus allowing a 
change in one variable to change another



Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, 

Jeffrey D. Ullman – Compilers, Principles, 

Techniques and Tools, Second Edition, 

2007


