
Compiler Design

Lexical Analysis

The Role of Lexical Analyzer
conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Lexical Analysis vs. Parsing

 Tokens, Patterns and Lexemes

 Attributes for Tokens

 Lexical Errors

Lexical Analysis

 Manual approach – by hand
◦ To make a diagram for the lexeme of each token

◦ To identify the occurrence of each lexeme

◦ To return the information about the identified token

 Automatic approach - lexical-analyzer generator
◦ Compiles lexeme patterns into code that functions as a

lexical analyzer

◦ e.g. Lex, Flex, JavaCC, ANTLR, JLex, Jflex, C# Lex, C#
Flex,...

◦ Steps
 Regular expressions - notation for lexeme patterns

 Nondeterministic automata

 Deterministic automata

 Driver - code which simulates automata

The Role of the Lexical Analyzer

 Read input characters

 To group them into lexemes

 Produce as output a sequence of tokens

◦ input for the syntactical analyzer

 Interact with the symbol table

◦ Insert identifiers

The Role of the Lexical Analyzer

 to strip out

◦ comments

◦ whitespaces: blank, newline, tab, …

◦ other separators

 to correlate error messages generated by

the compiler with the source program

◦ to keep track of the number of newlines seen

◦ to associate a line number with each error

message

Lexical Analyzer Process

 Scanning

◦ to not require input tokenization

◦ deletion of comments

◦ compaction of consecutive white spaces into

one

 Lexical analysis

◦ to produce sequence of tokens as output

Lexical Analysis vs. Parsing

 Simplicity of design
◦ Separation of lexical from syntactical analysis ->

simplify at least one of the tasks

◦ e.g. parser dealing with white spaces -> complex

◦ Cleaner overall language design

 Improved compiler efficiency
◦ Liberty to apply specialized techniques that serves

only lexical tasks, not the whole parsing

◦ Speedup reading input characters using specialized
buffering techniques

 Enhanced compiler portability
◦ Input device peculiarities are restricted to the lexical

analyzer

Tokens, Patterns, Lexemes

 Token - pair of:

◦ token name – abstract symbol representing a kind of lexical unit
 keyword, identifier, …

◦ optional attribute value

 Pattern

◦ description of the form that the lexeme of a token may take

◦ e.g.
 for a keyword the pattern is the character sequence forming that

keyword

 for identifiers the pattern is a complex structure that is matched by many
strings

 Lexeme

◦ a sequence of characters in the source program matching a
pattern for a token

Examples of Tokens

Token Informal Description Sample Lexemes

if characters i, f if

else characters e, l, s, e else

comparison < or > or <= or >= or == or != <=, !=

id Letter followed by letters and

digits

pi, score, D2

number Any numeric constant 3.14159, 0, 02e23

literal Anything but “, surrounded by “ “core dumped”

Examples of Tokens

 One token for each keyword

◦ Keyword pattern = keyword itself

 Tokens for operators

◦ Individually or in classes

 One token for all identifiers

 One or more tokens for constants

◦ Numbers, literal strings

 Tokens for each punctuation symbol

◦ () , ;

Attributes for Tokens

 more than one lexeme can match a pattern

 token number matches 0, 1, 100, 77,…

 lexical analyzer must return
◦ Not only the token name

◦ Also an attribute value describing the lexeme
represented by the token

 token id may have associated information like
◦ lexeme

◦ type

◦ location – in order to issue error messages

 token id attribute
◦ pointer to the symbol table for that identifier

Tricky Problems in Token

Recognition
 Fortran 90 example

◦ assignment

DO 5 I = 1.25

DO5I = 1.25

◦ do loop

DO 5 I = 1,25

Example of Attribute Values

 E = M * C ** 2

◦ <id, pointer to symbol table entry for E>

◦ <assign_op>

◦ <id, pointer to symbol-table entry for M>

◦ <mult_op>

◦ <id, pointer to symbol-table entry for C>

◦ <exp_op>

◦ <number, integer value 2>

Lexical Errors

 can not be detected by the lexical analyzer
alone
◦ fi (a == f(x)) …

 lexical analyzer is unable to proceed
◦ none of the patterns matches any prefix of the

remaining input

◦ “panic mode” recovery strategy
 delete one/successive characters from the remaining

input

 insert a missing character into the remaining input

 replace a character

 transpose two adjacent characters

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

