
Compiler Design

Lexical Analysis

Input Bufering
conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Input Buffering

◦ Buffer Pairs

◦ Sentinels

Input Buffering

 How to speed the reading of source program ?

 to look one additional character ahead

 e.g.
◦ to see the end of an identifier you must see a character

 which is not a letter or a digit

 not a part of the lexeme for id

◦ in C
 - ,= , <

 ->, ==, <=

 two buffer scheme that handles large lookaheads
safely

 sentinels – improvement which saves time checking
buffer ends

Buffer Pairs

 Buffer size N

 N = size of a disk block (4096)

 read N characters into a buffer
◦ one system call

◦ not one call per character

 read < N characters we encounter eof

 two pointers to the input are maintained
◦ lexemeBegin – marks the beginning of the current

lexeme

◦ forward – scans ahead until a pattern match is
found

Sentinels

 forward pointer

◦ to test if it is at the end of the buffer

◦ to determine what character is read (multiway
branch)

 sentinel

◦ added at each buffer end

◦ can not be part of the source program

◦ character eof is a natural choice

 retains the role of entire input end

 when appears other than at the end of a buffer it means
that the input is at an end

Lookahead Code with Sentinels
switch(*forward++)

{

case eof:

if(forward is at the end of the first buffer)

{

reload second buffer;

forward = beginning of the second buffer;

}

elseif(forward is at the end of the second buffer)

{

reload first buffer;

forward = beginning the first buffer;

}

else

/* eof within a buffer marks the end of input */

terminate lexical analysis;

break;

cases for the other characters

}

Potential Problems

 usually

◦ lexemes are short

◦ 1-2 characters lookahead are sufficient

 problem: running out of buffer space

◦ when N = 3,4,5 x 1000

◦ long character strings > N

 solution: concatenation of string components by grammar
rules (like in Java using the + operator to catenate multiline
strings)

 long lookahead

◦ languages where keywords are not reserved

◦ in PL/I:
 DECLARE (ARG1, ARG2,…)

 ambiguous identifier resolved by the parser (keyword or procedure
name)

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

