
Compiler Design

Lexical Analysis

Specification of Tokens

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Strings and Languages

 Operations on Languages

 Regular Expressions

 Regular Definitions

 Extensions of Regular Expressions

Regular Expressions

 are important for specifying lexeme

patterns

 cannot express all possible patterns

 they are effective in specifying those types

of patterns that we actually need for

tokens

 we will study their formal notation

 will be used in lexical analyzer generators

Strings and Languages

 Alphabet – any finite set of symbols
 example of symbols: letters, digits, punctuation

◦ {0, 1} – binary alphabet

◦ ASCII – important alphabet used in many

software systems

◦ Unicode – ~100,000 characters alphabet

Strings and Languages

String (over an alphabet) – finite sequence

of symbols drawn from that alphabet

 a.k.a. “sentence” or “word” in language

theory

 |s| – length of string s

◦ “banana” has the length 6

 ε – empty string

◦ has the length 0

Strings and Languages

 Language – any countable set of strings

over some fixed alphabet

◦ e.g.:

 Abstract languages: Ø, empty set, or {ε}

 All syntactically well-forms C programs

 The set of all grammatically correct English

sentences

◦ Does not require that any meaning be

ascribed to the strings in the language

Terms for Parts of Strings

 Prefix of string s

◦ Any string obtained by removing zero or

more symbols from the end of s

 E.g.: ban, banana, and ε are prefixes of banana

 Suffix of string s

◦ Any string obtained by removing zero or

more symbols from the beginning of s

 E.g.: nana, banana, and ε are suffixes of banana

Terms for Parts of Strings

 Substring of string s

◦ Any string obtained by deleting any prefix and any
suffix from s
 E.g.: banana, nan, and ε are substrings of banana

 Proper prefixes, suffixes, and substrings of string s

◦ Those prefixes, suffixes, and substrings of s that are
 not ε or

 not equal to s itself

 Subsequence of s

◦ Any string formed by deleting zero or more not
necessarily consecutive positions of s
 E.g.: baan is a subsequence of banana

Terms for Parts of Strings

 Concatenation of strings x and y
◦ String formed by appending y to x, denoted xy

◦ x = dog, y = house => xy = doghouse

◦ Empty string is the identity under concatenation
 εs = sε = s

 Exponentiation based on concatenation as a
product

 s° = ε

 for all i>0 we define si to be si-1s

 s1 = s

 s2 = ss

 s3 = sss

Operations on Languages

 Union
◦ The familiar operation on sets

 Concatenation
◦ All strings formed by taking a string from the first

language and a string from the second language, in
all possible ways, and concatenating them

 (Kleene) closure L* of a language L
◦ The set of strings formed by concatenating L

zero or more times

◦ L0 = {ε}

◦ L+ is the positive closure is the same as the
Kleene closure, but without the term L0

Operations on Languages

Examples

 L={A,B,... , Z, a,b,..., z}

 D={0,1,... 9}
◦ 𝐿 ∪ 𝐷 is the set of letters and digits with 62

strings of length one, either one letter or one
digit;

◦ 𝐿𝐷 is the set of 520 strings of length two, each
consisting of one letter followed by one digit;

◦ 𝐿4 is the set of all 4-letter strings;

◦ 𝐿∗ is the set of all strings of letters, including ε;

◦ 𝐿(𝐿 ∪ 𝐷)∗is the set of all strings of letters and
digits beginning with a letter;

◦ 𝐷+ is the set of all strings of one or more digits;

Regular Expressions

 How can we describe the set of valid C

identifiers?

 Regular expressions - describing all the

languages that can be built from union,

concatenation, and closure operators

applied to the symbols of some alphabet

Regular Expressions

 if letter_ is established to stand for any letter or
the underscore

 digit is established to stand for any digit

 then we could describe the language of C
identifiers by:

letter_ (letter_| digit)*

 the vertical bar above means union

 the parentheses are used to group
subexpressions

 the star means "zero or more occurrences of"

 the juxtaposition of letter, with the remainder of
the expression signifies concatenation

Regular Expressions

 The regular expressions are built recursively out of smaller
regular ones

 Each regular expression r denotes a language L(r), which is
also defined recursively from the languages denoted by r's
subexpressions

 BASIS: There are two rules that form the basis

◦ 1. ε is a regular expression, and L(ε) is {ε}, that is, the language
whose sole member is the empty string.

◦ 2. If a is a symbol in Σ, then a is a regular expression, and L(a) =
{a}, that is, the language with one string, of length one, with a in
its one position.
 Note that by convention, we use italics for symbols, and boldface for

their corresponding regular expression

Regular Expressions

 INDUCTION: There are four parts to the
induction whereby larger regular expressions are
built from smaller ones.

 Suppose r and s are regular expressions denoting
languages L(r) and L(s), respectively.
◦ 1. (r)|(s) is a regular expression denoting the language

L(r) U L(s).

◦ 2. (r)(s) is a regular expression denoting the language
L(r)L(s).

◦ 3. (r)* is a regular expression denoting (L(r))*.

◦ 4. (r) is a regular expression denoting L(r). This last
rule says that we can add additional pairs of
parentheses around expressions without changing the
language they denote.

Regular Expressions

 Regular expressions often contain
unnecessary pairs of parentheses

 We may drop certain pairs of parentheses if
we adopt the conventions that:

◦ a) The unary operator * has highest precedence
and is left associative

◦ b) Concatenation has second highest precedence
and is left associative

◦ c) | has lowest precedence and is left associative

 for example, we may replace the regular
expression (a)|((b)*(c)) by a|b*c

Algebraic laws for regular

expressions

Regular Definitions

 For notational convenience, we may wish to give names to
certain regular expressions and use those names in
subsequent expressions, as if the names were themselves
symbols.

 If Σ is an alphabet of basic symbols, then a regular definition is
a sequence of definitions of the form:

d1 → r1
d2 → r2

⋯
dn → rn

where:

1. Each 𝑑𝑖 is a new symbol, not in Σ and not the same as any
other of the d’s, and

2. Each 𝑟𝑖 is a regular expression over the alphabet Σ ∪
{𝑑1, 𝑑2, … , 𝑑𝑖−1}

Example – C identifiers

 C identifiers are strings of

◦ letters

◦ digits

◦ underscores

Example – unsigned numbers

Extensions of Regular Expressions

 One or more instances

 Zero or one instance

 Character classes

One or more instances

 The unary, postfix operator + represents

the positive closure of a regular

expression and its language

 That is, if r is a regular expression, then

◦ (r)+ denotes the language (L(r)) .

◦ The operator + has the same precedence and

associativity as the operator *

Zero or one instance

 The unary postfix operator ? means "zero

or one occurrence"

 That is, r? is equivalent to r|ε, or

 put another way, L(r?) = L(r) U {e}.

 The ? operator has the same precedence

and associativity as * and +

Character classes

 A regular expression a1|a2| …|an

 where the ai’s are each symbols of the alphabet,
can be replaced by the shorthand [a1a2…an]

 More importantly, when a1,a2,...,an form a logical
sequence

◦ e.g. consecutive uppercase letters, lowercase letters,
or digits,

 we can replace them by a1-an , that is, just the first
and last separated by a hyphen

 [abc] is shorthand for a|b|c

 [a-z] is shorthand for a|b|…|z

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Tehcniques and Tools, Second Edition,

2007

