Compiler Design Lexical Analysis

 Specification of Tokensconf. dr. ing. Ciprian-Bogdan Chirila chirila@cs.upt.ro
http://www.cs.upt.ro/~chirila

Outline

- Strings and Languages
- Operations on Languages
- Regular Expressions
- Regular Definitions
- Extensions of Regular Expressions

Regular Expressions

- are important for specifying lexeme patterns
- cannot express all possible patterns
- they are effective in specifying those types of patterns that we actually need for tokens
- we will study their formal notation
- will be used in lexical analyzer generators

Strings and Languages

- Alphabet - any finite set of symbols
- example of symbols: letters, digits, punctuation
- $\{0, I\}$ - binary alphabet
- ASCII - important alphabet used in many software systems
- Unicode - ~100,000 characters alphabet

Strings and Languages

String (over an alphabet) - finite sequence of symbols drawn from that alphabet

- a.k.a."sentence" or "word" in language theory
- $|s|$ - length of string s
- "banana" has the length 6
- ε - empty string
- has the length 0

Strings and Languages

- Language - any countable set of strings over some fixed alphabet
- e.g.:
- Abstract languages: \varnothing, empty set, or $\{\varepsilon\}$
- All syntactically well-forms C programs
- The set of all grammatically correct English sentences
- Does not require that any meaning be ascribed to the strings in the language

Terms for Parts of Strings

- Prefix of string s
- Any string obtained by removing zero or more symbols from the end of s
- E.g.: ban, banana, and ε are prefixes of banana
- Suffix of string s
- Any string obtained by removing zero or more symbols from the beginning of s
- E.g.: nana, banana, and ε are suffixes of banana

Terms for Parts of Strings

- Substring of string s
- Any string obtained by deleting any prefix and any suffix from s
- E.g.: banana, nan, and ε are substrings of banana
- Proper prefixes, suffixes, and substrings of string s
- Those prefixes, suffixes, and substrings of s that are
- not ε or
- not equal to s itself
- Subsequence of s
- Any string formed by deleting zero or more not necessarily consecutive positions of s
- E.g.: baan is a subsequence of banana

Terms for Parts of Strings

- Concatenation of strings x and y
- String formed by appending y to x, denoted $x y$
- $x=$ dog, $y=$ house $=>x y=$ doghouse
- Empty string is the identity under concatenation - $\varepsilon s=s \varepsilon=s$
- Exponentiation based on concatenation as a product

$$
\cdot s^{\circ}=\varepsilon
$$

- for all $i>0$ we define s^{i} to be $s^{i-l} s$
- $s^{\prime}=s$
- $s^{2}=s s$
- $s^{3}=s S S$

Operations on Languages

- Union
- The familiar operation on sets
- Concatenation
- All strings formed by taking a string from the first language and a string from the second language, in all possible ways, and concatenating them
- (Kleene) closure L^{*} of a language L
- The set of strings formed by concatenating L zero or more times
- $L^{0}=\{\varepsilon\}$
$\circ L^{+}$is the positive closure is the same as the Kleene closure, but without the term L^{0}

Operations on Languages

Operation	Definition and Notation
Union of L and M	$L \cup M=\{s \mid s$ is in L or s is in $M\}$
Concatenation of L and M	$L M=\{s t \mid s$ is in L and t is in $M\}$
Kleene closure of L	$L^{*}=\cup_{i=0}^{\infty} L^{i}$
Positive closure of L	$L^{+}=\cup_{i=1}^{\infty} L^{i}$

Examples

- $L=\{A, B, \ldots, Z, a, b, \ldots, z\}$
- $D=\{0, I, \ldots .9\}$
- $L \cup D$ is the set of letters and digits with 62 strings of length one, either one letter or one digit;
- $L D$ is the set of 520 strings of length two, each consisting of one letter followed by one digit;
- L^{4} is the set of all 4-letter strings;
${ }^{\circ} L^{*}$ is the set of all strings of letters, including ε;
- $L(L \cup D)^{*}$ is the set of all strings of letters and digits beginning with a letter;
$\circ D^{+}$is the set of all strings of one or more digits;

Regular Expressions

- How can we describe the set of valid C identifiers?
- Regular expressions - describing all the languages that can be built from union, concatenation, and closure operators applied to the symbols of some alphabet

Regular Expressions

- if letter_ is established to stand for any letter or the underscore
- digit is established to stand for any digit
- then we could describe the language of C identifiers by:
letter_(letter_| digit)*
- the vertical bar above means union
- the parentheses are used to group subexpressions
- the star means "zero or more occurrences of"
- the juxtaposition of letter, with the remainder of the expression signifies concatenation

Regular Expressions

- The regular expressions are built recursively out of smaller regular ones
- Each regular expression r denotes a language $L(r)$, which is also defined recursively from the languages denoted by r's subexpressions
- BASIS: There are two rules that form the basis
- $I . \varepsilon$ is a regular expression, and $L(\varepsilon)$ is $\{\varepsilon\}$, that is, the language whose sole member is the empty string.
- 2. If a is a symbol in Σ, then \mathbf{a} is a regular expression, and $L(a)=$ $\{a\}$, that is, the language with one string, of length one, with a in its one position.
- Note that by convention, we use italics for symbols, and boldface for their corresponding regular expression

Regular Expressions

- INDUCTION: There are four parts to the induction whereby larger regular expressions are built from smaller ones.
- Suppose r and s are regular expressions denoting languages $L(r)$ and $L(s)$, respectively.
- I. $(r) \mid(s)$ is a regular expression denoting the language $L(r) \cup L(s)$.
- 2. $(r)(s)$ is a regular expression denoting the language $L(r) L(s)$.
- 3. $(r)^{*}$ is a regular expression denoting $(L(r))^{*}$.
- 4. (r) is a regular expression denoting $L(r)$. This last rule says that we can add additional pairs of parentheses around expressions without changing the language they denote.

Regular Expressions

- Regular expressions often contain unnecessary pairs of parentheses
- We may drop certain pairs of parentheses if we adopt the conventions that:
- a) The unary operator * has highest precedence and is left associative
- b) Concatenation has second highest precedence and is left associative
- c) | has lowest precedence and is left associative
- for example, we may replace the regular expression (a)|(b)*(c)) by a|b*c

Algebraic laws for regular expressions

LAW	DESCRIPTION
$r\|s=s\| r$	\mid is commutative
$r\|(s \mid t)=(r \mid s)\| t$	\mid is associative
$r(s t)=(r s) t$	Concatenation is associative
$r(s \mid t)=r s\|r t ;(s \mid t) r=s r\| t r$	Concatenation distributes over
$\epsilon r=r \epsilon=r$	ϵ is the identity for concatenation
$r^{*}=(r \mid \epsilon)^{*}$	ϵ is guaranteed in a closure
$r^{* *}=r^{*}$	$*$ is idempotent

Regular Definitions

- For notational convenience, we may wish to give names to certain regular expressions and use those names in subsequent expressions, as if the names were themselves symbols.
- If Σ is an alphabet of basic symbols, then a regular definition is a sequence of definitions of the form:

$$
\begin{gathered}
\mathrm{d}_{1} \rightarrow \mathrm{r}_{1} \\
\mathrm{~d}_{2} \rightarrow \mathrm{r}_{2} \\
\ldots \\
\mathrm{~d}_{\mathrm{n}} \rightarrow \mathrm{r}_{\mathrm{n}}
\end{gathered}
$$

where:
I. Each d_{i} is a new symbol, not in Σ and not the same as any other of the d's, and
2. Each r_{i} is a regular expression over the alphabet ΣU $\left\{d_{1}, d_{2}, \ldots, d_{i-1}\right\}$

Example - C identifiers

- C identifiers are strings of
- letters
- digits
- underscores

$$
\begin{aligned}
\text { letter_ } & \rightarrow \mathrm{A}|\mathrm{~B}| \cdots|\mathrm{Z}| \mathrm{a}|\mathrm{~b}| \cdots|\mathrm{z}|- \\
\text { digit } & \rightarrow 0|1| \cdots \mid 9 \\
\text { id } & \rightarrow \text { letter_(letter- } \mid \text { digit })^{*}
\end{aligned}
$$

Example - unsigned numbers

$$
\begin{aligned}
\text { digit } & \rightarrow 0|1| \cdots \mid 9 \\
\text { digits } & \rightarrow \text { digit digi** } \\
\text { optionalFraction } & \rightarrow \cdot \text { digits } \mid \epsilon \\
\text { optionalExponent } & \rightarrow(\mathrm{E}(+|-| \epsilon) \text { digits }) \mid \epsilon \\
\text { number } & \rightarrow \text { digits optionalFraction optionalExponent }
\end{aligned}
$$

Extensions of Regular Expressions

- One or more instances
- Zero or one instance
- Character classes

One or more instances

- The unary, postfix operator + represents the positive closure of a regular expression and its language
- That is, if r is a regular expression, then
${ }^{\circ}(r)^{+}$denotes the language $(L(r))$.
- The operator ${ }^{+}$has the same precedence and associativity as the operator *

Zero or one instance

- The unary postfix operator ? means "zero or one occurrence"
- That is, r ? is equivalent to $r \mid \varepsilon$, or
- put another way, $L(r$? $)=L(r) \cup\{e\}$.
- The ? operator has the same precedence and associativity as * and +

Character classes

- A regular expression $a_{1}\left|a_{2}\right| \ldots \mid a_{n}$
- where the a_{i} 's are each symbols of the alphabet, can be replaced by the shorthand [$\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{n}$]
- More importantly, when $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$ form a logical sequence
- e.g. consecutive uppercase letters, lowercase letters, or digits,
- we can replace them by $a_{1}-a_{n}$, that is, just the first and last separated by a hyphen
- [abc] is shorthand for a|b|c
- [a-z] is shorthand for a|b|...|z

Bibliography

- Alfred V.Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman - Compilers, Principles, Tehcniques and Tools, Second Edition, 2007

