Compiler Design Lexical Analysis Specification of Tokens

0

conf. dr. ing. Ciprian-Bogdan Chirila chirila@cs.upt.ro http://www.cs.upt.ro/~chirila

Outline

- Strings and Languages
- Operations on Languages
- Regular Expressions
- Regular Definitions
- Extensions of Regular Expressions

- are important for specifying lexeme patterns
- cannot express all possible patterns
- they are effective in specifying those types of patterns that we actually need for tokens
- we will study their formal notation
- will be used in lexical analyzer generators

Strings and Languages

- Alphabet any finite set of symbols
 - example of symbols: letters, digits, punctuation
 - {0, I} binary alphabet
 - ASCII important alphabet used in many software systems
 - Unicode ~100,000 characters alphabet

Strings and Languages

String (over an alphabet) – finite sequence of symbols drawn from that alphabet

- a.k.a. "sentence" or "word" in language theory
- |s| length of string s
 - "banana" has the length 6
- ε empty string
 - has the length 0

Strings and Languages

- Language any countable set of strings over some fixed alphabet
 - e.g.:
 - Abstract languages: Ø, empty set, or {ε}
 - All syntactically well-forms C programs
 - The set of all grammatically correct English sentences
 - Does not require that any meaning be ascribed to the strings in the language

Terms for Parts of Strings

- Prefix of string s
 - Any string obtained by removing zero or more symbols from the end of s
 - E.g.: ban, banana, and ϵ are prefixes of banana
- Suffix of string s
 - Any string obtained by removing zero or more symbols from the beginning of s
 - E.g.: nana, banana, and ε are suffixes of banana

Terms for Parts of Strings

- Substring of string s
 - Any string obtained by deleting any prefix and any suffix from s
 - E.g.: banana, nan, and ε are substrings of banana
- Proper prefixes, suffixes, and substrings of string s
 - Those prefixes, suffixes, and substrings of s that are
 - not ɛ or
 - not equal to s itself
- Subsequence of s
 - Any string formed by deleting zero or more not necessarily consecutive positions of s
 - E.g.: baan is a subsequence of banana

Terms for Parts of Strings

- Concatenation of strings x and y
 - String formed by appending y to x, denoted xy
 - x = dog, y = house => xy = doghouse
 - Empty string is the identity under concatenation
 εs = sε = s
- Exponentiation based on concatenation as a product
 - s° = ɛ
 - for all i>0 we define s^i to be $s^{i-1}s$
 - s¹ = s

•
$$s^2 = ss$$

• s³ = sss

Operations on Languages

- Union
 - The familiar operation on sets
- Concatenation
 - All strings formed by taking a string from the first language and a string from the second language, in all possible ways, and concatenating them
- (Kleene) closure L* of a language L
 - The set of strings formed by concatenating L zero or more times
 - $L^0 = \{\varepsilon\}$
 - L^+ is the positive closure is the same as the Kleene closure, but without the term L^0

Operations on Languages

OPERATION	DEFINITION AND NOTATION
Union of L and M	$L \cup M = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$
Concatenation of L and M	$LM = \{st \mid s \text{ is in } L \text{ and } t \text{ is in } M\}$
Kleene closure of L	$L^* = \cup_{i=0}^{\infty} L^i$
Positive closure of L	$L^+ = \cup_{i=1}^{\infty} L^i$

Examples

- L={A,B,..., Z, a,b,..., z}
- D={0,1,...9}
 - L ∪ D is the set of letters and digits with 62 strings of length one, either one letter or one digit;
 - *LD* is the set of 520 strings of length two, each consisting of one letter followed by one digit;
 - L^4 is the set of all 4-letter strings;
 - L^* is the set of all strings of letters, including ϵ ;
 - $L(L \cup D)^*$ is the set of all strings of letters and digits beginning with a letter;
 - D^+ is the set of all strings of one or more digits;

- How can we describe the set of valid C identifiers?
- Regular expressions describing all the languages that can be built from union, concatenation, and closure operators applied to the symbols of some alphabet

- if *letter* is established to stand for any letter or the underscore
- digit is established to stand for any digit
- then we could describe the language of C identifiers by:

letter_ (letter_| digit)*

- the vertical bar above means union
- the parentheses are used to group subexpressions
- the star means "zero or more occurrences of"
- the juxtaposition of *letter*, with the remainder of the expression signifies concatenation

- The regular expressions are built recursively out of smaller regular ones
- Each regular expression r denotes a language L(r), which is also defined recursively from the languages denoted by r's subexpressions
- **BASIS**: There are two rules that form the basis
 - I. ε is a regular expression, and $L(\varepsilon)$ is { ε }, that is, the language whose sole member is the empty string.
 - 2. If a is a symbol in Σ, then a is a regular expression, and L(a) = {a}, that is, the language with one string, of length one, with a in its one position.
 - Note that by convention, we use italics for symbols, and boldface for their corresponding regular expression

- INDUCTION: There are four parts to the induction whereby larger regular expressions are built from smaller ones.
- Suppose r and s are regular expressions denoting languages L(r) and L(s), respectively.
 - I. (r)|(s) is a regular expression denoting the language L(r) U L(s).
 - 2. (r)(s) is a regular expression denoting the language L(r)L(s).
 - 3. (r)* is a regular expression denoting $(L(r))^*$.
 - 4. (r) is a regular expression denoting L(r). This last rule says that we can add additional pairs of parentheses around expressions without changing the language they denote.

- Regular expressions often contain unnecessary pairs of parentheses
- We may drop certain pairs of parentheses if we adopt the conventions that:
 - a) The unary operator * has highest precedence and is left associative
 - b) Concatenation has second highest precedence and is left associative
 - c) | has lowest precedence and is left associative
- for example, we may replace the regular expression (a)|((b)*(c)) by a|b*c

Algebraic laws for regular expressions

LAW	DESCRIPTION
r s=s r	is commutative
r (s t) = (r s) t	is associative
r(st) = (rs)t	Concatenation is associative
$r(s t) = rs rt; \ (s t)r = sr tr$	Concatenation distributes over
$\epsilon r = r\epsilon = r$	ϵ is the identity for concatenation
$r^* = (r \epsilon)^*$	ϵ is guaranteed in a closure
$r^{**} = r^*$	* is idempotent

Regular Definitions

- For notational convenience, we may wish to give names to certain regular expressions and use those names in subsequent expressions, as if the names were themselves symbols.
- If Σ is an alphabet of basic symbols, then a regular definition is a sequence of definitions of the form:

$$d_1 \rightarrow r_1$$
$$d_2 \rightarrow r_2$$
$$\dots$$
$$d_n \rightarrow r_n$$

where:

I. Each d_i is a new symbol, not in Σ and not the same as any other of the d's, and

2. Each r_i is a regular expression over the alphabet $\Sigma \cup \{d_1, d_2, \dots, d_{i-1}\}$

Example – C identifiers

- C identifiers are strings of
 - letters
 - digits
 - underscores

Example – unsigned numbers

 $optional Fraction \rightarrow digits \mid \epsilon$

 $digit \rightarrow 0 \mid 1 \mid \cdots \mid 9$ $digits \rightarrow digit \ digit^*$ optionalExponent \rightarrow (E (+ | - | ϵ) digits) | ϵ number \rightarrow digits optionalFraction optionalExponent

Extensions of Regular Expressions

• One or more instances

- Zero or one instance
- Character classes

One or more instances

- The unary, postfix operator + represents the positive closure of a regular expression and its language
- That is, if r is a regular expression, then
 - $^\circ$ (r)⁺ denotes the language (L(r)) .
 - The operator ⁺ has the same precedence and associativity as the operator ^{*}

Zero or one instance

- The unary postfix operator ? means "zero or one occurrence"
- That is, r? is equivalent to r|ε, or
- put another way, $L(r?) = L(r) \cup \{e\}$.
- The ? operator has the same precedence and associativity as * and +

Character classes

- A regular expression $a_1|a_2| \dots |a_n|$
- where the a_i's are each symbols of the alphabet, can be replaced by the shorthand [a₁a₂...a_n]
- More importantly, when a₁,a₂,...,a_n form a logical sequence
 - e.g. consecutive uppercase letters, lowercase letters, or digits,
- we can replace them by a₁-a_n, that is, just the first and last separated by a hyphen
- [abc] is shorthand for a|b|c
- [a-z] is shorthand for a|b|...|z

Bibliography

 Alfred V.Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman – Compilers, Principles, Tehcniques and Tools, Second Edition, 2007