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Regular Expressions

 are important for specifying lexeme 

patterns

 cannot express all possible patterns

 they are effective in specifying those types 

of patterns that we actually need for 

tokens

 we will study their formal notation

 will be used in lexical analyzer generators



Strings and Languages

 Alphabet – any finite set of symbols 
 example of symbols: letters, digits, punctuation

◦ {0, 1} – binary alphabet

◦ ASCII – important alphabet used in many 

software systems

◦ Unicode – ~100,000 characters alphabet



Strings and Languages

String (over an alphabet) – finite sequence 

of symbols drawn from that alphabet

 a.k.a. “sentence” or “word” in language 

theory

 |s| – length of string s

◦ “banana” has the length 6

 ε – empty string 

◦ has the length 0



Strings and Languages

 Language – any countable set of strings 

over some fixed alphabet

◦ e.g.:

 Abstract languages: Ø, empty set, or {ε} 

 All syntactically well-forms C programs

 The set of all grammatically correct English 

sentences

◦ Does not require that any meaning be 

ascribed to the strings in the language



Terms for Parts of Strings

 Prefix of string s

◦ Any string obtained by removing zero or 

more symbols from the end of s

 E.g.: ban, banana, and ε are prefixes of banana

 Suffix of string s

◦ Any string obtained by removing zero or 

more symbols from the beginning of s

 E.g.: nana, banana, and ε are suffixes of banana



Terms for Parts of Strings

 Substring of string s

◦ Any string obtained by deleting any prefix and any 
suffix from s
 E.g.: banana, nan, and ε are substrings of banana

 Proper prefixes, suffixes, and substrings of string s

◦ Those prefixes, suffixes, and substrings of s that are
 not ε or

 not equal to s itself

 Subsequence of s

◦ Any string formed by deleting zero or more not 
necessarily consecutive positions of s
 E.g.: baan is a subsequence of banana



Terms for Parts of Strings

 Concatenation of strings x and y
◦ String formed by appending y to x, denoted xy

◦ x = dog, y = house => xy = doghouse

◦ Empty string is the identity under concatenation
 εs = sε = s

 Exponentiation based on concatenation as a 
product

 s° = ε 

 for all i>0 we define si to be si-1s

 s1 = s 

 s2 = ss

 s3 = sss



Operations on Languages

 Union
◦ The familiar operation on sets

 Concatenation
◦ All strings formed by taking a string from the first 

language and a string from the second language, in 
all possible ways, and concatenating them

 (Kleene) closure L* of a language L
◦ The set of strings formed by concatenating L 

zero or more times

◦ L0 = {ε}

◦ L+ is the positive closure is the same as the 
Kleene closure, but without the term L0



Operations on Languages



Examples

 L={A,B,... , Z, a,b,..., z} 

 D={0,1,... 9} 
◦ 𝐿 ∪ 𝐷 is the set of letters and digits with 62 

strings of length one, either one letter or one 
digit;

◦ 𝐿𝐷 is the set of 520 strings of length two, each 
consisting of one letter followed by one digit;

◦ 𝐿4 is the set of all 4-letter strings;

◦ 𝐿∗ is the set of all strings of letters, including ε;

◦ 𝐿(𝐿 ∪ 𝐷)∗is the set of all strings of letters and 
digits beginning with a letter;

◦ 𝐷+ is the set of all strings of one or more digits;



Regular Expressions

 How can we describe the set of valid C 

identifiers?

 Regular expressions - describing all the 

languages that can be built from union, 

concatenation, and closure operators 

applied to the symbols of some alphabet



Regular Expressions

 if letter_ is established to stand for any letter or 
the underscore

 digit is established to stand for any digit

 then we could describe the language of C 
identifiers by: 

letter_ ( letter_| digit )* 

 the vertical bar above means union

 the parentheses are used to group 
subexpressions

 the star means "zero or more occurrences of"

 the juxtaposition of letter, with the remainder of 
the expression signifies concatenation



Regular Expressions

 The regular expressions are built recursively out of smaller 
regular ones

 Each regular expression r denotes a language L(r), which is 
also defined recursively from the languages denoted by r's 
subexpressions 

 BASIS: There are two rules that form the basis 

◦ 1. ε is a regular expression, and L(ε) is {ε}, that is, the language 
whose sole member is the empty string. 

◦ 2. If a is a symbol in Σ, then a is a regular expression, and L(a) = 
{a}, that is, the language with one string, of length one, with a in 
its one position. 
 Note that by convention, we use italics for symbols, and boldface for 

their corresponding regular expression



Regular Expressions

 INDUCTION: There are four parts to the 
induction whereby larger regular expressions are 
built from smaller ones. 

 Suppose r and s are regular expressions denoting 
languages L(r) and L(s), respectively. 
◦ 1. (r)|(s) is a regular expression denoting the language 

L(r) U L(s). 

◦ 2. (r)(s) is a regular expression denoting the language 
L(r)L(s).

◦ 3. (r)* is a regular expression denoting (L(r))*. 

◦ 4. (r) is a regular expression denoting L(r). This last 
rule says that we can add additional pairs of 
parentheses around expressions without changing the 
language they denote.



Regular Expressions

 Regular expressions often contain 
unnecessary pairs of parentheses

 We may drop certain pairs of parentheses if 
we adopt the conventions that: 

◦ a) The unary operator * has highest precedence 
and is left associative 

◦ b) Concatenation has second highest precedence 
and is left associative 

◦ c) | has lowest precedence and is left associative  

 for example, we may replace the regular 
expression (a)|((b)*(c)) by a|b*c



Algebraic laws for regular 

expressions



Regular Definitions

 For notational convenience, we may wish to give names to 
certain regular expressions and use those names in 
subsequent expressions, as if the names were themselves 
symbols. 

 If Σ is an alphabet of basic symbols, then a regular definition is 
a sequence of definitions of the form: 

d1 → r1
d2 → r2

⋯
dn → rn

where:

1. Each 𝑑𝑖 is a new symbol, not in Σ and not the same as any 
other of the d’s, and

2. Each 𝑟𝑖 is a regular expression over the alphabet Σ ∪
{𝑑1, 𝑑2, … , 𝑑𝑖−1}



Example – C identifiers

 C identifiers are strings of

◦ letters

◦ digits

◦ underscores



Example – unsigned numbers



Extensions of Regular Expressions

 One or more instances

 Zero or one instance

 Character classes



One or more instances

 The unary, postfix operator + represents 

the positive closure of a regular 

expression and its language

 That is, if r is a regular expression, then 

◦ ( r )+ denotes the language (L(r)) . 

◦ The operator + has the same precedence and 

associativity as the operator *



Zero or one instance

 The unary postfix operator ? means "zero 

or one occurrence" 

 That is, r? is equivalent to r|ε, or 

 put another way, L(r?) = L(r) U {e}. 

 The ? operator has the same precedence 

and associativity as * and +



Character classes

 A regular expression a1|a2| …|an

 where the ai’s are each symbols of the alphabet, 
can be replaced by the shorthand [a1a2…an]

 More importantly, when a1,a2,...,an form a logical 
sequence

◦ e.g. consecutive uppercase letters, lowercase letters, 
or digits, 

 we can replace them by a1-an , that is, just the first 
and last separated by a hyphen

 [abc] is shorthand for a|b|c

 [a-z] is shorthand for a|b|…|z
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