
Compiler Design

Lexical Analysis

Specification of Tokens

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Strings and Languages

 Operations on Languages

 Regular Expressions

 Regular Definitions

 Extensions of Regular Expressions

Regular Expressions

 are important for specifying lexeme

patterns

 cannot express all possible patterns

 they are effective in specifying those types

of patterns that we actually need for

tokens

 we will study their formal notation

 will be used in lexical analyzer generators

Strings and Languages

 Alphabet – any finite set of symbols
 example of symbols: letters, digits, punctuation

◦ {0, 1} – binary alphabet

◦ ASCII – important alphabet used in many

software systems

◦ Unicode – ~100,000 characters alphabet

Strings and Languages

String (over an alphabet) – finite sequence

of symbols drawn from that alphabet

 a.k.a. “sentence” or “word” in language

theory

 |s| – length of string s

◦ “banana” has the length 6

 ε – empty string

◦ has the length 0

Strings and Languages

 Language – any countable set of strings

over some fixed alphabet

◦ e.g.:

 Abstract languages: Ø, empty set, or {ε}

 All syntactically well-forms C programs

 The set of all grammatically correct English

sentences

◦ Does not require that any meaning be

ascribed to the strings in the language

Terms for Parts of Strings

 Prefix of string s

◦ Any string obtained by removing zero or

more symbols from the end of s

 E.g.: ban, banana, and ε are prefixes of banana

 Suffix of string s

◦ Any string obtained by removing zero or

more symbols from the beginning of s

 E.g.: nana, banana, and ε are suffixes of banana

Terms for Parts of Strings

 Substring of string s

◦ Any string obtained by deleting any prefix and any
suffix from s
 E.g.: banana, nan, and ε are substrings of banana

 Proper prefixes, suffixes, and substrings of string s

◦ Those prefixes, suffixes, and substrings of s that are
 not ε or

 not equal to s itself

 Subsequence of s

◦ Any string formed by deleting zero or more not
necessarily consecutive positions of s
 E.g.: baan is a subsequence of banana

Terms for Parts of Strings

 Concatenation of strings x and y
◦ String formed by appending y to x, denoted xy

◦ x = dog, y = house => xy = doghouse

◦ Empty string is the identity under concatenation
 εs = sε = s

 Exponentiation based on concatenation as a
product

 s° = ε

 for all i>0 we define si to be si-1s

 s1 = s

 s2 = ss

 s3 = sss

Operations on Languages

 Union
◦ The familiar operation on sets

 Concatenation
◦ All strings formed by taking a string from the first

language and a string from the second language, in
all possible ways, and concatenating them

 (Kleene) closure L* of a language L
◦ The set of strings formed by concatenating L

zero or more times

◦ L0 = {ε}

◦ L+ is the positive closure is the same as the
Kleene closure, but without the term L0

Operations on Languages

Examples

 L={A,B,... , Z, a,b,..., z}

 D={0,1,... 9}
◦ 𝐿 ∪ 𝐷 is the set of letters and digits with 62

strings of length one, either one letter or one
digit;

◦ 𝐿𝐷 is the set of 520 strings of length two, each
consisting of one letter followed by one digit;

◦ 𝐿4 is the set of all 4-letter strings;

◦ 𝐿∗ is the set of all strings of letters, including ε;

◦ 𝐿(𝐿 ∪ 𝐷)∗is the set of all strings of letters and
digits beginning with a letter;

◦ 𝐷+ is the set of all strings of one or more digits;

Regular Expressions

 How can we describe the set of valid C

identifiers?

 Regular expressions - describing all the

languages that can be built from union,

concatenation, and closure operators

applied to the symbols of some alphabet

Regular Expressions

 if letter_ is established to stand for any letter or
the underscore

 digit is established to stand for any digit

 then we could describe the language of C
identifiers by:

letter_ (letter_| digit)*

 the vertical bar above means union

 the parentheses are used to group
subexpressions

 the star means "zero or more occurrences of"

 the juxtaposition of letter, with the remainder of
the expression signifies concatenation

Regular Expressions

 The regular expressions are built recursively out of smaller
regular ones

 Each regular expression r denotes a language L(r), which is
also defined recursively from the languages denoted by r's
subexpressions

 BASIS: There are two rules that form the basis

◦ 1. ε is a regular expression, and L(ε) is {ε}, that is, the language
whose sole member is the empty string.

◦ 2. If a is a symbol in Σ, then a is a regular expression, and L(a) =
{a}, that is, the language with one string, of length one, with a in
its one position.
 Note that by convention, we use italics for symbols, and boldface for

their corresponding regular expression

Regular Expressions

 INDUCTION: There are four parts to the
induction whereby larger regular expressions are
built from smaller ones.

 Suppose r and s are regular expressions denoting
languages L(r) and L(s), respectively.
◦ 1. (r)|(s) is a regular expression denoting the language

L(r) U L(s).

◦ 2. (r)(s) is a regular expression denoting the language
L(r)L(s).

◦ 3. (r)* is a regular expression denoting (L(r))*.

◦ 4. (r) is a regular expression denoting L(r). This last
rule says that we can add additional pairs of
parentheses around expressions without changing the
language they denote.

Regular Expressions

 Regular expressions often contain
unnecessary pairs of parentheses

 We may drop certain pairs of parentheses if
we adopt the conventions that:

◦ a) The unary operator * has highest precedence
and is left associative

◦ b) Concatenation has second highest precedence
and is left associative

◦ c) | has lowest precedence and is left associative

 for example, we may replace the regular
expression (a)|((b)*(c)) by a|b*c

Algebraic laws for regular

expressions

Regular Definitions

 For notational convenience, we may wish to give names to
certain regular expressions and use those names in
subsequent expressions, as if the names were themselves
symbols.

 If Σ is an alphabet of basic symbols, then a regular definition is
a sequence of definitions of the form:

d1 → r1
d2 → r2

⋯
dn → rn

where:

1. Each 𝑑𝑖 is a new symbol, not in Σ and not the same as any
other of the d’s, and

2. Each 𝑟𝑖 is a regular expression over the alphabet Σ ∪
{𝑑1, 𝑑2, … , 𝑑𝑖−1}

Example – C identifiers

 C identifiers are strings of

◦ letters

◦ digits

◦ underscores

Example – unsigned numbers

Extensions of Regular Expressions

 One or more instances

 Zero or one instance

 Character classes

One or more instances

 The unary, postfix operator + represents

the positive closure of a regular

expression and its language

 That is, if r is a regular expression, then

◦ (r)+ denotes the language (L(r)) .

◦ The operator + has the same precedence and

associativity as the operator *

Zero or one instance

 The unary postfix operator ? means "zero

or one occurrence"

 That is, r? is equivalent to r|ε, or

 put another way, L(r?) = L(r) U {e}.

 The ? operator has the same precedence

and associativity as * and +

Character classes

 A regular expression a1|a2| …|an

 where the ai’s are each symbols of the alphabet,
can be replaced by the shorthand [a1a2…an]

 More importantly, when a1,a2,...,an form a logical
sequence

◦ e.g. consecutive uppercase letters, lowercase letters,
or digits,

 we can replace them by a1-an , that is, just the first
and last separated by a hyphen

 [abc] is shorthand for a|b|c

 [a-z] is shorthand for a|b|…|z

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Tehcniques and Tools, Second Edition,

2007

