
Compiler Design

Lexical Analysis

The Lexical-Analyzer Generator Lex

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Use of Lex

 Structure of Lex Programs

 Conflict Resolution in Lex

 The Lookahead Operator

Lex

 is a lexical analyzer Generator

 Flex is a more recent implementation

 allows to specify a lexical analyzer

 by specifying regular expressions to

describe patterns for tokens

Lex

 Lex language

◦ the input notation for the Lex Compiler

 Lex compiler

◦ transforms the input patterns into a transition
diagram and generates code

◦ in a file called lex.yy.c

◦ simulates transition diagrams

◦ transitions from regular expressions to
transition diagrams is subject of other
sections

Use of Lex

Use of Lex

 lex.l
◦ input file written in the Lex language

◦ describes the lexical analyzer to be generated

 The Lex compiler
◦ transforms lex.l to a C program

◦ in a file that is always called lex.yy.c

 lex.yy.c
◦ is compiled by the C compiler into a file called

a.out

◦ a working lexical analyzer that can take a stream
of input characters and produce a stream of
tokens

Use of Lex

 a.out
◦ is a subroutine of the parser

◦ is a C function that returns an integer
 which is a code for one of the possible token names

 the attribute value
◦ numeric code

◦ a pointer to the symbolic table

◦ or nothing

 is placed in a global variable yylval

 which is shared between lexical analyzer and parser

 yy refers to the Yacc parser-generator

 commonly used in conjunction with Lex

Structure of Lex Programs

declarations

%%

translation rules

%%

auxiliary functions

Structure of Lex Programs

 The declarations section includes

◦ declarations of variables

◦ manifest constants

 identifiers declared to stand for a constant

 e.g. the name of a token

◦ regular definitions

Structure of Lex Programs

 The translation rules each have the form

◦ Pattern {Action}

◦ Each pattern is a regular expression

 may use regular definitions from the declaration

section

◦ The actions are fragments of code, typically

written in C

◦ multiple variants of Lex were created

generating code for other languages

Structure of Lex Programs

 The third section holds whatever

additional functions are used in the

actions

 can be compiled separately and loaded

with the lexical analyzer

Structure of Lex Programs

 the lexical analyzer created by Lex

behaves in concert with the parser as

follows

 when called by the parser

 the lexical analyzer begins reading its

remaining input

 one character at a time

 until it finds the longest prefix of the

input that matches one of the patterns Pi

Structure of Lex Programs

 it then executes the associated action Ai

 typically, Ai will return to the parser

 but if it does not

◦ e.g. because Pi describes whitespace or

comments

 then the lexical analyzer proceeds to find

additional lexemes

 until one of the corresponding actions

causes a return to the parser

Structure of Lex Programs

 the lexical analyzer returns a single value,

the token name, to the parser

 uses the shared, integer variable yylval to

pass additional information about the

lexeme found, if needed

Lexical rules example

Example of Lex program

Declarations

Example of Lex program

Declarations
 anything between %{ and }% will be

copied directly to the file lex.yy.c

◦ not treated as regular definition

 used to place manifest constants

definitions

 to use C #define statements

 to associate unique integer codes with

each of the manifest constants LT, IF etc.

Example of Lex program

Declarations
 regular definitions use extended notation for

regular expressions

 regular definitions used in later definitions or
in patterns are surrounded by curly braces

◦ e.g. delim is defined to be the shorthand for the
character class including

 blank

 tab \t

 new line \n

◦ ws is defined to be one or more delimiters
{delim}+

Example of Lex program

Declarations
 parentheses

◦ are used for grouping meta-symbols

◦ do not stand for themselves

◦ e.g. id and number

 E in the definition of number

◦ stands for himself

Example of Lex program

Declarations
 to use Lex meta-symbols like +,*,?

 to stand for themselves we must precede

them with a backslash

◦ e.g. we use \. in the definition of number

Example of Lex program

Translation rules

Example of Lex program

Translation rules
 ws has an associated empty action

 when finding a white space

◦ we do not return to the parser

◦ we look for another lexeme

 if – simple regular expression pattern

◦ to see two letters i and f and not followed by any
letter or digit

◦ otherwise we see an identifier

 then, else

◦ are treated similarly

Example of Lex program

Translation rules
 the pattern of id is matched by keywords

like if

 when the longest matching prefix matches

multiple patterns

 Lex chooses whichever pattern is listed

first

Example Lex program

Auxiliary functions

Example Lex program

Auxiliary functions
 two functions

◦ installID()

◦ innstallNum()

 the lines that appear between %{ and }%

are copied directly to the file lex.yy.c

 may be used in the actions

Actions taken when id is matched

 to call the auxiliary function
installID() to place the lexeme

found in the symbol table

 to return a pointer to the symbol table

placed in the global variable yylval

 to be used by the parser or by a later

component of the compiler

Example Lex program

Auxiliary functions
 the installID() function has

available to it two variables

◦ yytext if a pointer to the begin of the lexeme

 similar to lexemeBegin

◦ yylength is the length of the found lexeme

 the token name ID is returned to the
parser

 the action for the number pattern is
similar
◦ uses the installNum() auxiliary function

Conflict resolution in Lex

 Rules that Lex uses to decide on the

proper lexeme to select

 when several prefixes of the input match

one or more patterns:

◦ Always prefer a longer prefix to a shorter

prefix

◦ If the longest possible prefix matches two or

more patterns

 prefer the pattern listed first in the Lex program

The Lookahead Operator

 Lex automatically reads one character

◦ ahead of the last character

◦ that forms the selected lexeme

 then retracts the input so only the

lexeme itself is consumed from the input

The Lookahead Operator

 Sometimes we want a certain pattern

◦ to be matched to the input

◦ only when it is followed by a certain other

characters

 If so, we may use the slash / in a pattern

to indicate the end of the part of the

pattern that matches the lexeme

The Lookahead Operator

 what follows / is an additional pattern

 that must be matched before we can

decide that the token in question was

seen

 but what matches this second pattern is

not part of the lexeme

Lookahead Operator Example

 in Fortran and some other languages,
keywords are not reserved

 that situation creates problems, such as a
statement

 IF(I,J) = 3 where

◦ IF is the name of an array

◦ not a keyword

 this statement contrasts with statements of
the form

IF (condition) THEN ...

◦ where IF is a keyword.

Lookahead Operator Example

 fortunately, we can be sure that the
keyword IF is always followed by a left
parenthesis

◦ some text - the condition - that may contain
parentheses

◦ a right parenthesis and

◦ a letter

 thus, we could write a Lex rule for the
keyword IF like

IF / \(.* \) {letter}

Lookahead Operator Example

 IF matches the two letters

 the slash announces that

◦ additional pattern follows

◦ will not match the lexeme

 in this pattern

◦ left parenthesis
 which is a meta-symbol

 must be escaped with backslash

◦ dot
 any character except newline

◦ dot star
 any string without new line

◦ right parenthesis

◦ letter
 regular definition representing the character class of all letters

Lookahead Operator Example

 to preprocess the input to delete the
whitespaces

IF (A<(B+C)*D) THEN

 the first two characters match if

 the next character matches \(

 the next 9 characters match .*

 the next two match \) and letter

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Tehcniques and Tools, Second Edition,

2007

