
Compiler Design

Lexical Analysis

The Lexical-Analyzer Generator Lex

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Use of Lex

 Structure of Lex Programs

 Conflict Resolution in Lex

 The Lookahead Operator

Lex

 is a lexical analyzer Generator

 Flex is a more recent implementation

 allows to specify a lexical analyzer

 by specifying regular expressions to

describe patterns for tokens

Lex

 Lex language

◦ the input notation for the Lex Compiler

 Lex compiler

◦ transforms the input patterns into a transition
diagram and generates code

◦ in a file called lex.yy.c

◦ simulates transition diagrams

◦ transitions from regular expressions to
transition diagrams is subject of other
sections

Use of Lex

Use of Lex

 lex.l
◦ input file written in the Lex language

◦ describes the lexical analyzer to be generated

 The Lex compiler
◦ transforms lex.l to a C program

◦ in a file that is always called lex.yy.c

 lex.yy.c
◦ is compiled by the C compiler into a file called

a.out

◦ a working lexical analyzer that can take a stream
of input characters and produce a stream of
tokens

Use of Lex

 a.out
◦ is a subroutine of the parser

◦ is a C function that returns an integer
 which is a code for one of the possible token names

 the attribute value
◦ numeric code

◦ a pointer to the symbolic table

◦ or nothing

 is placed in a global variable yylval

 which is shared between lexical analyzer and parser

 yy refers to the Yacc parser-generator

 commonly used in conjunction with Lex

Structure of Lex Programs

declarations

%%

translation rules

%%

auxiliary functions

Structure of Lex Programs

 The declarations section includes

◦ declarations of variables

◦ manifest constants

 identifiers declared to stand for a constant

 e.g. the name of a token

◦ regular definitions

Structure of Lex Programs

 The translation rules each have the form

◦ Pattern {Action}

◦ Each pattern is a regular expression

 may use regular definitions from the declaration

section

◦ The actions are fragments of code, typically

written in C

◦ multiple variants of Lex were created

generating code for other languages

Structure of Lex Programs

 The third section holds whatever

additional functions are used in the

actions

 can be compiled separately and loaded

with the lexical analyzer

Structure of Lex Programs

 the lexical analyzer created by Lex

behaves in concert with the parser as

follows

 when called by the parser

 the lexical analyzer begins reading its

remaining input

 one character at a time

 until it finds the longest prefix of the

input that matches one of the patterns Pi

Structure of Lex Programs

 it then executes the associated action Ai

 typically, Ai will return to the parser

 but if it does not

◦ e.g. because Pi describes whitespace or

comments

 then the lexical analyzer proceeds to find

additional lexemes

 until one of the corresponding actions

causes a return to the parser

Structure of Lex Programs

 the lexical analyzer returns a single value,

the token name, to the parser

 uses the shared, integer variable yylval to

pass additional information about the

lexeme found, if needed

Lexical rules example

Example of Lex program

Declarations

Example of Lex program

Declarations
 anything between %{ and }% will be

copied directly to the file lex.yy.c

◦ not treated as regular definition

 used to place manifest constants

definitions

 to use C #define statements

 to associate unique integer codes with

each of the manifest constants LT, IF etc.

Example of Lex program

Declarations
 regular definitions use extended notation for

regular expressions

 regular definitions used in later definitions or
in patterns are surrounded by curly braces

◦ e.g. delim is defined to be the shorthand for the
character class including

 blank

 tab \t

 new line \n

◦ ws is defined to be one or more delimiters
{delim}+

Example of Lex program

Declarations
 parentheses

◦ are used for grouping meta-symbols

◦ do not stand for themselves

◦ e.g. id and number

 E in the definition of number

◦ stands for himself

Example of Lex program

Declarations
 to use Lex meta-symbols like +,*,?

 to stand for themselves we must precede

them with a backslash

◦ e.g. we use \. in the definition of number

Example of Lex program

Translation rules

Example of Lex program

Translation rules
 ws has an associated empty action

 when finding a white space

◦ we do not return to the parser

◦ we look for another lexeme

 if – simple regular expression pattern

◦ to see two letters i and f and not followed by any
letter or digit

◦ otherwise we see an identifier

 then, else

◦ are treated similarly

Example of Lex program

Translation rules
 the pattern of id is matched by keywords

like if

 when the longest matching prefix matches

multiple patterns

 Lex chooses whichever pattern is listed

first

Example Lex program

Auxiliary functions

Example Lex program

Auxiliary functions
 two functions

◦ installID()

◦ innstallNum()

 the lines that appear between %{ and }%

are copied directly to the file lex.yy.c

 may be used in the actions

Actions taken when id is matched

 to call the auxiliary function
installID() to place the lexeme

found in the symbol table

 to return a pointer to the symbol table

placed in the global variable yylval

 to be used by the parser or by a later

component of the compiler

Example Lex program

Auxiliary functions
 the installID() function has

available to it two variables

◦ yytext if a pointer to the begin of the lexeme

 similar to lexemeBegin

◦ yylength is the length of the found lexeme

 the token name ID is returned to the
parser

 the action for the number pattern is
similar
◦ uses the installNum() auxiliary function

Conflict resolution in Lex

 Rules that Lex uses to decide on the

proper lexeme to select

 when several prefixes of the input match

one or more patterns:

◦ Always prefer a longer prefix to a shorter

prefix

◦ If the longest possible prefix matches two or

more patterns

 prefer the pattern listed first in the Lex program

The Lookahead Operator

 Lex automatically reads one character

◦ ahead of the last character

◦ that forms the selected lexeme

 then retracts the input so only the

lexeme itself is consumed from the input

The Lookahead Operator

 Sometimes we want a certain pattern

◦ to be matched to the input

◦ only when it is followed by a certain other

characters

 If so, we may use the slash / in a pattern

to indicate the end of the part of the

pattern that matches the lexeme

The Lookahead Operator

 what follows / is an additional pattern

 that must be matched before we can

decide that the token in question was

seen

 but what matches this second pattern is

not part of the lexeme

Lookahead Operator Example

 in Fortran and some other languages,
keywords are not reserved

 that situation creates problems, such as a
statement

 IF(I,J) = 3 where

◦ IF is the name of an array

◦ not a keyword

 this statement contrasts with statements of
the form

IF (condition) THEN ...

◦ where IF is a keyword.

Lookahead Operator Example

 fortunately, we can be sure that the
keyword IF is always followed by a left
parenthesis

◦ some text - the condition - that may contain
parentheses

◦ a right parenthesis and

◦ a letter

 thus, we could write a Lex rule for the
keyword IF like

IF / \(.* \) {letter}

Lookahead Operator Example

 IF matches the two letters

 the slash announces that

◦ additional pattern follows

◦ will not match the lexeme

 in this pattern

◦ left parenthesis
 which is a meta-symbol

 must be escaped with backslash

◦ dot
 any character except newline

◦ dot star
 any string without new line

◦ right parenthesis

◦ letter
 regular definition representing the character class of all letters

Lookahead Operator Example

 to preprocess the input to delete the
whitespaces

IF (A<(B+C)*D) THEN

 the first two characters match if

 the next character matches \(

 the next 9 characters match .*

 the next two match \) and letter

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Tehcniques and Tools, Second Edition,

2007

