
Compiler Design

Lexical Analysis

Finite Automata

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Nondeterministic Finite Automata

 Transition Tables

 Acceptance of Input Strings by Automata

 Deterministic Finite Automata

Finite Automata

 lexical rules -> finite automata ->lexical analyzer

 Recognizers of each possible input string
◦ Answer yes or no

 Two flavors:
◦ Nondeterministic Finite Automata (NFA)

 No restrictions on the labels of their edges

 A symbol can label several edges out of the same state

 The empty string ε is a valid label

◦ Deterministic Finite Automata (DFA)
 for each state and each symbol only one edge is leaving that state

 NFA and DFA recognize the same languages

 Regular Languages
◦ regular expressions can describe

Nondeterministic Finite Automata

 A finite set of states S

 A set of input symbols Σ
◦ the input alphabet

◦ ε is not in Σ

 A transition function
◦ for each state and each symbol gives a set of next

states

 A state s0 from S
◦ start (initial) state

 A set of states F
◦ subset of S

◦ accepting (final) states

Finite Automata Representation

 Transition graph

◦ nodes are states

◦ labeled edges -> transition function

◦ s t

◦ graph ~ transition diagram

 the same symbol can label edges from one state to

several different states

 an edge can be labeled by ε in addition to symbols

from the input alphabet

a

Example

 (a|b)*abb

 a nondeterministic finite automaton

◦ start state 0

◦ accepting state 3

◦ the only strings getting in the accepting state are
ending in “abb”

Transition Tables

 rows correspond to states

 columns correspond to input symbols and

ε

 if the transition function has no

information about that state-input pair

the value in the table is ø
state a b ε

0 {0,1} {0} ø

1 ø {2} ø

2 ø {3} ø

3 ø ø ø

Acceptance of Input Strings by

Automata
 a string x is accepted by a NFA iff there is

one path in the transition graph

◦ from the start state

◦ to one accepting states

 the ε labels across the path are ignored

 the language defined / accepted by a NFA

◦ set of strings labeling some path from start to
accepting state

 notation L(A) – language accepted by
automaton A

Example 1

 label aabb is covered by path from state 0 to
3

 the same aabb label may lead to different
states

◦ this path leads to state 0 which is not accepting

◦ A NFA accepts a string as long exists a path from
the start state to an accepting state

◦ a path leading to non-accepting state is irrelevant

Example 2

 L(aa*|bb*)

 string aaa is accepted

Deterministic Finite Automata

 DFA – deterministic finite automaton

◦ is a NFA where

 there are no moves on input

 for each state s and input symbol a there is only
one edge out of s labeled a

◦ no more sets in the transition table

 NFA – abstract representation of an
algorithm

 DFA – concrete algorithm for string
recognition

Simulating a DFA

 Input
◦ An input string x terminated by eof character

◦ DFA D
 start state s0
 accepting states F

 transition function move

 Output
◦ yes - if D accepts

◦ no - otherwise

 Method
◦ function move(s,c) – gives the state to which is an edge

from state s on input c

◦ function nextChar – returns the next character of the input
string x

Algorithm: Simulating an DFA

s=s0;

c=nextChar();

while(c!=eof)

{

s=move(s,c);

c=nextChar();

}

if(s is in F) return “yes”;

else return “no”;

Example

 DFA accepting (a|b)*abb

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

