Compiler Design
Lexical Analysis
From Regular Expressions to Automata

conf. dr. ing. Ciprian-Bogdan Chirila
chirila@cs.upt.ro
http://www.cs.upt.ro/~chirila
Outline

- Conversion of a NFA to DFA
- Simulation of an NFA
- Construction of an NFA from a Regular Expression
From Regular Expressions to Automata

- regular expression describes
 - lexical analyzers
 - pattern processing software
- implies simulation of DFA or NFA
- NFA simulation is less straightforward

Techniques
 - to convert NFA to DFA
 - the subset construction technique
 - simulating NFA directly
 - when NFA to DFA is time consuming
 - to convert regular expression to NFA and then to DFA
Conversion of a NFA to a DFA

- subset construction
 - each state of DFA corresponds to a set of NFA states
- DFA states may be exponential in number of NFA states
- for lexical analysis NFA and DFA
 - have approximately the same number of states
 - the exponential behavior is not seen
Subset construction of an DFA from an NFA

- **Input**
 - an NFA \(N\)

- **Output**
 - DFA \(D\) accepting the same language as \(N\)

- **Method**
 - to construct a transition table \(D_{tran}\) for \(D\)
 - each state of \(D\) is a set of NFA states
 - to construct \(D_{tran}\) so \(D\) will simulate in parallel all possible moves \(N\) can make on a given input string
 - to deal with \(\varepsilon\)–transitions of \(N\) properly
Operations on NFA states

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε-closure(s)</td>
<td>set of NFA states reachable from NFA state s on ε-transition alone</td>
</tr>
<tr>
<td>ε-closure(T)</td>
<td>set of NFA states reachable from some NFA state s in set T on ε-transitions alone</td>
</tr>
<tr>
<td>move(T,a)</td>
<td>set of NFA states to which there is a transition on input symbol a from some state s in T</td>
</tr>
</tbody>
</table>
Transitions

- s_0 – start state
- N can be in any states of ε-closure(s_0)
- reading input string x
 - N can be in the set of states T after
- reading input a
 - N can go in ε-closure(move(T, a))
- accepting states of D are all sets of N states that include at least one accepting state of N
The Subset Construction

while(there is an unmarked state T in Dstates)
{
 mark T;
 for(each input symbol a)
 {
 U=ε-closure(move(T,a));
 if (U is not in Dstates)
 {
 add U as unmarked state to Dstates;
 Dtran[T,a]=U;
 }
 }
}
Computing ε-closure(T)

push all states of T onto stack;
initialize ε-closure(T) to T;
while(stack is not empty)
{
 pop t, the top element, off stack;
 for(each state u with an edge from t to u labeled ε)
 {
 if(u is not in ε-closure(T))
 {
 add u to ε-enclosure(T);
 push u onto stack;
 }
 }
}
Example \((a|b)^*abb\)

- \(A = \varepsilon\text{-closure}(0)\) or \(A = \{0, 1, 2, 4, 7\}\)
Example \((a|b)^*abb\)

- \(A=\{0,1,2,4,7\}\)
- \(D_{\text{tran}}(A,a) = \varepsilon\)-closure(move(A,a))
- from \(\{0,1,2,4,7\}\) only \(\{2,7\}\) have a transition on \(a\) to \(\{3,8\}\)
Example \((a|b)^{*}abb\)

- \(D_{\text{tran}}[A,a] = \varepsilon\text{-closure}(\text{move}(A,a)) = \varepsilon\text{-closure}\{3,8\} = \{1,2,3,4,6,7,8\}\)
- \(D_{\text{tran}}[A,a] = B\)
Example \((a|b)^*abb\)

- from \(\{0,1,2,4,7\}\) only \(\{4\}\) has a transition on \(b\) to \(\{5\}\)
- \(D\text{tran}[A,b]=\varepsilon\text{-closure}(\{5\})=\{1,2,4,5,6,7\}\)
- \(D\text{tran}[A,b]=C\)
- …
Example \((a|b)^*abb\)

<table>
<thead>
<tr>
<th>NFA State</th>
<th>DFA State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{0,1,2,4,7}</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>{1,2,3,4,6,7,8}</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>{1,2,4,5,6,7}</td>
<td>C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>{1,2,4,5,6,7,9}</td>
<td>D</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>{1,2,3,5,6,7,10}</td>
<td>E</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>
Simulation of an NFA

- strategy in text editing programs
 - to construct a NFA from a regular expression
 - to simulate NFA using on-the-fly subset construction

- Input
 - input string x terminated by eof
 - NFA N
 - start state s_0
 - accepting states F
 - transition function move

- Output
 - yes / no

- Method
 - to keep the current states S reached from s_0
 - if c is the next input read by nextChar()
 - we compute $\text{move}(S,c)$ and then we use ε-closure()
Algorithm: Simulating an NFA

01 $S = \varepsilon$-closure(s_0);
02 $c = \text{nextChar}()$;
03 while ($c \neq \text{eof}$) {
04 $S = \varepsilon$-enclosure($\text{move}(S, c)$);
05 $c = \text{nextChar}()$;
06 }
07 if ($S \cap F \neq \emptyset$) return "yes";
08 else return "no";
Implementation of NFA Simulation

- two stacks each holding a set of NFA states
- a boolean array `alreadyOn`
- a two dimensional array `move[s,a]`
NFA Simulation Data Structures

- two stacks each holding a set of NFA states
 - used for the values of S in both sides of assign
 - right side – oldStates
 - left side – newStates
 - $S = \varepsilon$-enclosure(move(S,c));
 - newStates->oldStates
NFA Simulation Data Structures

- boolean array *alreadyOn*
 - indexed by NFA states
 - indicates which states are in *newStates*
 - array and stack hold the same information
 - it is much faster to interrogate the array than to search the stack

- two dimensional array *move*[s,a]*
 - the entries are set of states
 - implemented by linked lists
Implementation of step 1

01 $S=\varepsilon$-closure(s_0);

addState(s)
{
 push s onto newStates;
 alreadyOn[s]=TRUE;
 for(t on move[s,ε])
 if(!alreadyOn(t))
 addState(t);
}
Implementation of step 4

04 \[S = \varepsilon\text{-enclosure}(\text{move}(S, c)); \]

for (s on oldStates)
{
 for (t on move[s, c])
 if (!alreadyOn[t])
 addState(t);
 pop s from oldStates;
}

for (s on newStates)
{
 pop s from newStates;
 push s onto oldStates;
 alreadyOn[s] = FALSE;
}
Construction of an NFA from a Regular Expression

- to convert a regular expression to a NFA
- McNaughton-Yamada-Thompson algorithm
- syntax-directed
 - it works recursively up the parse tree of the regular expression
- for each subexpression a NFA with a single accepting state is built
Construction of an NFA from a Regular Expression

- **Input**
 - regular expression r over an alphabet Σ

- **Output**
 - An NFA accepting $L(r)$

- **Method**
 - to parse r into constituent subexpressions
 - basis rules for handling subexpressions with no operators
 - inductive rules for creating larger NFAs from subexpressions NFAs
 - union, concatenation, closure
Basis Rules for Constructing NFA

- for expression ε

 ![Diagram for expression ε]

- for expression a

 ![Diagram for expression a]
NFA for the Union of Two Regular Expressions

- $r = s \mid t$
- $N(s)$ and $N(t)$ are NFA’s for regular expressions s and t
NFA for the Concatenation of Two Regular Expressions

- $r = st$
- $N(s)$ and $N(t)$ are NFA’s for regular expressions s and t
Induction Rules for Constructing NFA

- \(r = s^* \)
- \(N(s) \) is the NFA for the regular expression \(s \)

- \(r = (s) \)
 - \(L(r) = L(s) \)
 - \(N(s) \) is equivalent to \(N(r) \)
Example

parse tree for (a|b)*abb
Example

- NFA for r1

- NFA for r2
Example

- NFA for $r_3 = r_1 \mid r_2$
Example

- NFA for $r5=(r3)^*$
Example

- NFA for $r7 = r5r6$

...
Bibliography