
Compiler Design

Lexical Analysis

Design of a Lexical-Analyzer

Generator

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 The Structure of the Generated Analyzer

 Pattern Matching Based on NFA’s

 DFA’s for Lexical Analyzers

 Implementing the Lookahead Operator

Objectives

 to present the architecture of Lex

 to discuss two approaches

◦ NFA based

◦ DFA based

 implementation of Lex

The Structure of the Generated

Lexical Analyzer
 fixed program that simulates an automaton

◦ deterministic

◦ nondeterministic

 transition table for the automaton

 functions that are passed directly through
Lex to the output (we will see next)

 actions from the input program

◦ as fragments of code

◦ to be invoked at the appropriate time by the
automaton simulator

Architecture of a Lexical Analyzer

Generated by Lex

The Generation Process

 each regular expression pattern is

transformed into NFA

 all NFAs are combined into one

◦ new ε-transitions are added to NFAs Ni for

pattern pi

Example

Example

 patterns

◦ a {action A1 for pattern p1}

◦ abb {action A2 for pattern p2}

◦ a*b+ {action A3 for pattern p3}

 when several prefixes on the input matches

multiple patterns

◦ always prefer a longer prefix to a shorter prefix

◦ if the longest possible prefix matches multiple

patterns choose the pattern listed first

 the lexeme “abb” is taken by the second rule

Conflict Resolution

 the three patterns present some conflicts

 abb matches p2 and p3

◦ we consider it a lexeme for p2

◦ p2 is listed above p3

 aabbbb…

◦ we take the longest lexeme until another a is

reached

◦ we will report the lexeme from the initial a

followed by as many b as there are

Example

Pattern Matching Based on NFA’s

 NFA simulation algorithm
S=ε-closure(s0);

c=nextChar();

while(c!=eof)

{

S=ε-enclosure(move(S,c));

c=nextChar();

}

if(S∩F!=ø) return “yes”;

else return “no”;

Example input a a b a

Example input a a b a

Example input a a b a

Example input a a b a

 pattern a*b+ was found !!!

DFAs Architecture for Lexical

Analyzers
 to convert NFA for all patterns into DFA

◦ by using the subset construction algorithm

 within each DFA state having one or

more NFA accepting states

◦ to determine the first pattern whose

accepting state is represented

◦ to make that pattern the output of the DFA

state

The Subset Construction Algorithm

while(there is an unmarked state T in Dstates)

{

mark T;

for(each input symbol a)

{

U=ε-closure(move(T,a));

if (U is not in Dstates)

add U as unmarked state to Dstates;

Dtran[T,a]=U;

}

}

NFA Example

NFA to DFA Example

DFA Simulation Example a b b a

DFA Simulation Example a b b a

DFA Simulation Example a b b a

Dead States in DFA’s

 the automaton not quite a DFA

◦ no transitions on every state x every input

 we have omitted

◦ transitions to the dead state Ø

◦ from the dead state Ø to itself

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

