
Compiler Design

Lexical Analysis

Design of a Lexical-Analyzer

Generator

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 The Structure of the Generated Analyzer

 Pattern Matching Based on NFA’s

 DFA’s for Lexical Analyzers

 Implementing the Lookahead Operator

Objectives

 to present the architecture of Lex

 to discuss two approaches

◦ NFA based

◦ DFA based

 implementation of Lex

The Structure of the Generated

Lexical Analyzer
 fixed program that simulates an automaton

◦ deterministic

◦ nondeterministic

 transition table for the automaton

 functions that are passed directly through
Lex to the output (we will see next)

 actions from the input program

◦ as fragments of code

◦ to be invoked at the appropriate time by the
automaton simulator

Architecture of a Lexical Analyzer

Generated by Lex

The Generation Process

 each regular expression pattern is

transformed into NFA

 all NFAs are combined into one

◦ new ε-transitions are added to NFAs Ni for

pattern pi

Example

Example

 patterns

◦ a {action A1 for pattern p1}

◦ abb {action A2 for pattern p2}

◦ a*b+ {action A3 for pattern p3}

 when several prefixes on the input matches

multiple patterns

◦ always prefer a longer prefix to a shorter prefix

◦ if the longest possible prefix matches multiple

patterns choose the pattern listed first

 the lexeme “abb” is taken by the second rule

Conflict Resolution

 the three patterns present some conflicts

 abb matches p2 and p3

◦ we consider it a lexeme for p2

◦ p2 is listed above p3

 aabbbb…

◦ we take the longest lexeme until another a is

reached

◦ we will report the lexeme from the initial a

followed by as many b as there are

Example

Pattern Matching Based on NFA’s

 NFA simulation algorithm
S=ε-closure(s0);

c=nextChar();

while(c!=eof)

{

S=ε-enclosure(move(S,c));

c=nextChar();

}

if(S∩F!=ø) return “yes”;

else return “no”;

Example input a a b a

Example input a a b a

Example input a a b a

Example input a a b a

 pattern a*b+ was found !!!

DFAs Architecture for Lexical

Analyzers
 to convert NFA for all patterns into DFA

◦ by using the subset construction algorithm

 within each DFA state having one or

more NFA accepting states

◦ to determine the first pattern whose

accepting state is represented

◦ to make that pattern the output of the DFA

state

The Subset Construction Algorithm

while(there is an unmarked state T in Dstates)

{

mark T;

for(each input symbol a)

{

U=ε-closure(move(T,a));

if (U is not in Dstates)

add U as unmarked state to Dstates;

Dtran[T,a]=U;

}

}

NFA Example

NFA to DFA Example

DFA Simulation Example a b b a

DFA Simulation Example a b b a

DFA Simulation Example a b b a

Dead States in DFA’s

 the automaton not quite a DFA

◦ no transitions on every state x every input

 we have omitted

◦ transitions to the dead state Ø

◦ from the dead state Ø to itself

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

