
Compiler Design

Lexical Analysis

Optimization of DFA-Based Pattern

Matchers
conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Important States of an NFA

 Functions Computed from the Syntax Tree

 Computing nullable, firstpos and lastpos

 Computing followpos

 Converting a Regular Expression Directly to

a DFA

 Minimizing the Number of States of a DFA

 State Minimization of a Lexical Analyzers

 Trading Time for Space in DFA Simulation

Optimization of DFA-Based Pattern

Matchers
 First algorithm
◦ constructs a DFA directly from a regular expression

◦ without constructing an intermediate NFA

◦ with fewer states

◦ used in Lex

 Second algorithm
◦ minimizes the number of states of any DFA

◦ combines states having the same future behavior

◦ has O(n*log(n)) efficiency

 Third algorithm
◦ produces more compact representations of

transitions tables then the standard two dimensional
ones

Important States of an NFA

 it has non-ε out transitions

 used when computing ε-closure(move(T,a)) –
the set of states reachable from T on input a

 the set moves(s,a) is non-empty if state s is

important

 NFA states are twofold if

◦ have the same important states, and

◦ either both have accepting states or neither does

Augmented Regular Expression

 important states
◦ initial states in the basis part for a particular symbol

position in the RE

◦ correspond to particular operands in the RE

 Thompson algorithm constructed NFA
◦ has only one accepting state which is non-important (has

no out-transitions !!!)

 to concatenate a unique right endmarker # to a
regular expression r
◦ the accepting state of the NFA r becomes important state

in the (r)# NFA

◦ any state in the (r)# NFA with a transition to # must be
an accepting state

Syntax Tree

 important states correspond to the

positions in the RE that hold symbols of

the alphabet

 RE representation as syntax tree

◦ leaves correspond to operands

◦ interior nodes correspond to operators

 cat-node – concatenation operator (dot)

 or-node – union operator |

 star-node – star operator *

Syntax Tree Example (a|b)*abb#

cat nodes

are

represented

as circles

Representation Rules

 syntax tree leaves are labeled by ε or by an
alphabet symbol

 to each leaf which is not ε we attach a
unique integer
◦ the position of the leaf

◦ the position of it’s symbol

 a symbol may have several positions
◦ symbol a has positions 1 and 3 (on the next

slide!!!)

 positions in the syntax tree correspond to
NFA important states

Thompson Constructed NFA for

(a|b)*abb#

 important states are numbered

 other states are represented by letters

 the correspondence between

◦ numbered states in the NFA and

◦ the positions in the syntax tree

 will be presented next

Functions Computed from the

Syntax Tree
 in order to construct a DFA directly from

the regular expression we have to:

◦ build the syntax tree

◦ compute 4 functions referring (r)#

 nullable

 firstpos

 lastpost

 followpos

Computed Functions

 nullable(n)

◦ true for syntax tree node n iff the
subexpression represented by n
 has ε in its language

 can be made null or the empty string even it can
represent other strings

 firstpos(n)

◦ set of positions in the n rooted subtree that
correspond to the first symbol of at least one
string in the language of the subexpression
rooted at n

Computed Functions

 lastpos(n)
◦ set of positions in the n rooted subtree that

correspond to the last symbol of at least one
string in the language of the subexpression
rooted at n

 followpos(n)
◦ for a position p

◦ is the set of positions q such that

◦ x=a1a2…an in L((r)#) such that

◦ for some i there is a way to explain the
membership of x in L((r)#) by matching ai to
position p of the syntax tree ai+1 to position q

Example

 nullable(n)=false

 firstpos(n)={1,2,3}

 lastpos(n)={3}

 followpos(1)={1,2,3}

Computing nullable, firstpos and

lastpos
node n nullable(n) firstpos(n) lastpos(n)

A leaf

labeled ε
true ø ø

A leaf with

position i

false {i} {i}

An or-node

n=c1|c2

nullable(c1) or

nullable(c2)

firstpos(c1) U

firstpos(c2)

lastpos(c1) U

lastpos(c2)

A cat-node

n=c1c2

nullable(c1) and

nullable(c2)

if (nullable(c1))

firstpos(c1) U

firstpos(c2)

else firstpos(c1)

if (nullable(c2))

lastpos(c2) U

lastpos(c1)

else lastpos(c2)

A star-node

n=c1*

true firstpos(c1) lastpos(c1)

Firstpos and Lastpos Example

Computing Followpos

 A position of a regular expression can

follow another position in two ways:

◦ if n is a cat-node c1c2 (rule 1)

 for every position i in lastpos(c1) all positions in

firstpos(c2) are in followpos(i)

◦ if n is a star-node (rule 2)

 if i is a position in lastpos(n) then all positions in

firstpos(n) are in followpos(i)

Followpos Example

 Applying rule 1

◦ followpos(1) incl. {3}

◦ followpos(2) incl. {3}

◦ followpos(3) incl. {4}

◦ followpos(4) incl. {5}

◦ followpos(5) incl. {6}

 Applying rule 2

◦ followpos(1) incl. {1,2}

◦ followpos(2) incl. {1,2}

Followpos Example Continued

Node n followpos(n)

1 {1,2,3}

2 {1,2,3}

3 {4}

4 {5}

5 {6}

6 ø

Converting a Regular Expression

Directly to a DFA
 Input
◦ a regular expression r

 Output
◦ A DFA D that recognizes L(r)

 Method
◦ to build the syntax tree T from (r)#

◦ to compute nullable, firstpos, lastpos, followpos

◦ to build
 Dstates the set of DFA states

 start state of D is firstpos(n0), where n0 is the root of T

 accepting states = those containing the # endmarker symbol

 Dtran the transition function for D

Construction of a DFA directly

from a Regular Expression
initialize Dstates to contain only the unmarked
state firstpos(n0), where n0 is the root of
syntax tree T for (r)#;

while(there is an unmarked state S in Dstates)

{

mark S;

for(each input symbol a)

{

let U be the union of followpos(p) for all
p in S that correspond to a;

if(U is not in Dstates)

add U as unmarked state to Dstates;

Dtran[S,a]=U;

}

}

Example for r=(a|b)*abb

 A=firstpos(n0)={1,2,3}

 Dtran[A,a]=

followpos(1) U followpos(3)= {1,2,3,4}=B

 Dtran[A,b]=

followpos(2)={1,2,3}=A

 Dtran[B,a]=

followpos(1) U followpos(3)=B

 Dtran[B,b]=

followpos(2) U followpos(4)={1,2,3,5}=C

 …

Example for r=(a|b)*abb

Minimizing the Number of States of

a DFA
 equivalent automata

◦ {A,C}=123

◦ {B}=1234

◦ {D}=1235

◦ {E}=1236

 exists a

minimum

state DFA

!!!

Distinguishable States

 string x distinguishes state s from state t if

exactly one of the states reached from s

and t by following the path x is an

accepting state

 state s is distinguishable from state t if

exists some string that distinguish them

 the empty string distinguishes any

accepting state from any non-accepting

state

Minimizing the Number of States of

a DFA
 Input

◦ DFA D with set of states S, input alphabet Σ,

start state s0, accepting states F

 Output

◦ DFA D’ accepting the same language as D and

having as few states as possible

Minimizing the Number of States of

a DFA
1 Start with an initial partition Π with two groups F and S-F

2 Apply the procedure

for(each group G of Π)

{

partition G into subgroups such that states s and t are
in the same subgroup iff for all input symbol a states s
and t have transitions on a to states in the same group
of Π

}

3 if Πnew= Π let Πfinal= Π and continue with step 4, otherwise
repeat step 2 with Πnew instead of Π

4 choose one state in each group of Πfinal as the representative
for that group

Minimum State DFA Construction

 the start state of D’ is the representative of
the group containing the start state of D

 the accepting states of D’ are the
representatives of those groups that contain
an accepting state of D

 if
◦ s is the representative of G from Πfinal

◦ exists a transition from s on input a is t from
group H

◦ r is the representative of H

 then
◦ in D’ there is a transition from s to r on input a

Example

 {A,B,C,D}{E}

◦ on input a:

 A,B,C,D->{A,B,C,D}

 E->{A,B,C,D}

◦ on input b:

 A,B,C->{A,B,C,D}

 D->{E}

 E->{A,B,C,D}

Example

 {A,B,C}{D}{E}

◦ on input a:

 A,B,C->{A,B,C}

 D->{A,B,C}

 E->{A,BC}

◦ on input b:

 A,C,->{A,B,C}

 B->{D}

 D->{E}

 E->{A,B,C}

Example

 {AC}{B}{D}{E}

◦ on input a:

 A,C->{B}

 B->{B}

 D->{B}

 E->{B}

◦ on input b:

 A,C,->{A,C}

 B->{D}

 D->{E}

 E->{A,C}

Example

State a b

A B A

B B D

D B E

E B A

State Minimization in

Lexical Analyzers
 to group together

◦ all states that recognize a particular token

◦ all states that do not indicate any token

 e.g. {0137,7} {247} {8,58} {7} {68} {ø}

◦ {0137,7} – do not indicate any token

◦ {8,58} – announce a*b+

◦ {ø} - dead state

 has transitions to itself on input a and b

 is target state for states 8, 58, 68 on input a

State Minimization in

Lexical Analyzers
 next, we split

◦ 0137 from 7

 they go to different groups on input a

◦ 8 from 58

 they go to different groups on input b

 dead states can be dropped

◦ if we treat missing transitions as signal to end

token recognition

Trading Time for Space in DFA

Simulation
 transition function of a DFA

◦ two dimensional table indexed by states and

characters

 typical lexical analyzer has

◦ hundreds of states

◦ ASCII alphabet of 128 input characters

◦ < 1 MB

 compilers “live” in small devices too

 1 MB could be too much

Alternate Representations

 list of character-state pairs

 ending by a default state

◦ chosen for any input character not on the list

◦ the most frequently occurring next state

 thus, the table is reduced by a large factor

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

