Compiler Design Lexical Analysis

Optimization of DFA-Based Pattern Matchers
conf. dr. ing. Ciprian-Bogdan Chirila chirila@cs.upt.ro http://www.cs.upt.ro/~chirila

Outline

- Important States of an NFA
- Functions Computed from the Syntax Tree
- Computing nullable, firstpos and lastpos
- Computing followpos
- Converting a Regular Expression Directly to a DFA
- Minimizing the Number of States of a DFA
- State Minimization of a Lexical Analyzers
- Trading Time for Space in DFA Simulation

Optimization of DFA-Based Pattern Matchers

- First algorithm
- constructs a DFA directly from a regular expression
- without constructing an intermediate NFA
- with fewer states
- used in Lex
- Second algorithm
- minimizes the number of states of any DFA
- combines states having the same future behavior
- has $\mathrm{O}\left(\mathrm{n}^{*} \log (\mathrm{n})\right)$ efficiency
- Third algorithm
- produces more compact representations of transitions tables then the standard two dimensional ones

Important States of an NFA

- it has non- ε out transitions
- used when computing ε-closure(move(T,a)) the set of states reachable from T on input a
- the set moves(s, a) is non-empty if state s is important
- NFA states are twofold if
- have the same important states, and
- either both have accepting states or neither does

Augmented Regular Expression

- important states
- initial states in the basis part for a particular symbol position in the RE

- correspond to particular operands in the RE
- Thompson algorithm constructed NFA
- has only one accepting state which is non-important (has no out-transitions !!!)
- to concatenate a unique right endmarker \# to a regular expression r
- the accepting state of the NFA r becomes important state in the (r)\# NFA
- any state in the (r)\# NFA with a transition to \# must be an accepting state

Syntax Tree

- important states correspond to the positions in the RE that hold symbols of the alphabet
- RE representation as syntax tree
- leaves correspond to operands
- interior nodes correspond to operators
- cat-node - concatenation operator (dot)
- or-node - union operator |
- star-node - star operator *

Syntax Tree Example (a|b)*abb\#

cat nodes
are
represented as circles

Representation Rules

- syntax tree leaves are labeled by ε or by an alphabet symbol
- to each leaf which is not ε we attach a unique integer
- the position of the leaf
- the position of it's symbol
- a symbol may have several positions
- symbol a has positions I and 3 (on the next slide!!!)
- positions in the syntax tree correspond to NFA important states

Thompson Constructed NFA for

 (a|b)*abb\#

- important states are numbered
- other states are represented by letters
- the correspondence between
- numbered states in the NFA and
- the positions in the syntax tree
- will be presented next

Functions Computed from the

 Syntax Tree- in order to construct a DFA directly from the regular expression we have to:
- build the syntax tree
- compute 4 functions referring (r)\#
- nullable
- firstpos
- lastpost
- followpos

Computed Functions

- nullable(n)
- true for syntax tree node n iff the subexpression represented by n
- has ε in its language
- can be made null or the empty string even it can represent other strings
- firstpos(n)
- set of positions in the n rooted subtree that correspond to the first symbol of at least one string in the language of the subexpression rooted at n

Computed Functions

- lastpos(n)
- set of positions in the n rooted subtree that correspond to the last symbol of at least one string in the language of the subexpression rooted at n
- followpos(n)
- for a position p
- is the set of positions q such that
- $x=a_{1} a_{2} \ldots a_{n}$ in $L((r) \#)$ such that
- for some i there is a way to explain the membership of x in $L((r) \#)$ by matching a_{i} to position p of the syntax tree a_{i+1} to position q

Example

- nullable(n)=false
- firstpos(n)=\{I,2,3\}
- lastpos(n)=\{3\}
- followpos(I)=\{I,2,3\}

Computing nullable, firstpos and

 lastpos| node \mathbf{n} | nullable(n) | firstpos(n) | lastpos(n) |
| :---: | :---: | :---: | :---: |
| A leaf
 labeled ε | true | \varnothing | \varnothing |
| A leaf with
 position i | false | $\{i\}$ | $\{i\}$ |
| An or-node
 $n=c_{1} \mid c_{2}$ | nullable(cl) or
 nullable(c2) | firstpos $\left(c_{1}\right) \cup$
 firstpos $\left(c_{2}\right)$ | lastpos $\left(c_{1}\right) \cup$
 lastpos $\left(c_{2}\right)$ |
| A cat-node
 $n=c_{1} c_{2}$ | nullable(cl) and
 nullable(c2) | if (nullable $\left.\left(c_{1}\right)\right)$
 firstpos $\left(c_{1}\right) \cup$
 firstpos $\left(c_{2}\right)$
 else firstpos $\left(c_{1}\right)$ | if (nullable $\left.\left(c_{2}\right)\right)$
 lastpos $\left(c_{2}\right) \cup$
 lastpos $\left(c_{1}\right)$
 else lastpos $\left(c_{2}\right)$ |
| A star-node
 $n=c_{1} *$ | true | firstpos $\left(c_{1}\right)$ | lastpos $\left(c_{1}\right)$ |

Firstpos and Lastpos Example

Computing Followpos

- A position of a regular expression can follow another position in two ways:
\circ if n is a cat-node $c_{1} c_{2}$ (rule I)
- for every position i in lastpos($\left.\mathrm{c}_{1}\right)$ all positions in firstpos(c_{2}) are in followpos(i)
- if n is a star-node (rule 2)
- if i is a position in lastpos(n) then all positions in firstpos(n) are in followpos(i)

Followpos Example

- Applying rule I
- followpos(I) incl. $\{3\}$
- followpos(2) incl. $\{3\}$
- followpos(3) incl. \{4\}
- followpos(4) incl. $\{5\}$
- followpos(5) incl. \{6\}
- Applying rule 2

- followpos(I) incl. $\{1,2\} \quad\{1,2\} \mid(1,2\}$

Followpos Example Continued

Converting a Regular Expression Directly to a DFA
 - Input

- a regular expression r
- Output
- A DFA D that recognizes $L(r)$
- Method
- to build the syntax tree T from (r)\#
- to compute nullable, firstpos, lastpos, followpos
- to build
- Dstates the set of DFA states
- start state of D is firstpos $\left(n_{0}\right)$, where n_{0} is the root of T
- accepting states = those containing the \# endmarker symbol
- Dtran the transition function for D

Construction of a DFA directly from a Regular Expression

initialize Dstates to contain only the unmarked state firstpos $\left(n_{0}\right)$, where n_{0} is the root of syntax tree T for (r) \#;
while(there is an unmarked state S in Dstates)
\{
mark S;
for (each input symbol a)
\{
let U be the union of followpos(p) for all p in S that correspond to a;
if(U is not in Dstates) add U as unmarked state to Dstates;
Dtran[S,a]=U;
\}
\}

Example for $r=(a \mid b)^{*} a b b$

- $A=$ firstpos $\left(n_{0}\right)=\{1,2,3\}$
- $\operatorname{Dtran}[\mathrm{A}, \mathrm{a}]=$ followpos(I) U followpos(3)= $\{1,2,3,4\}=B$
- $\operatorname{Dtran}[\mathrm{A}, \mathrm{b}]=$ followpos(2)=\{1,2,3\}=A
- Dtran[B,a]= followpos(I) U followpos(3)=B
- Dtran[B,b]= followpos(2) U followpos(4)=\{I,2,3,5\}=C

Example for $r=(a \mid b)^{*} a b b$

Minimizing the Number of States of a DFA

- equivalent automata
- $\{\mathrm{A}, \mathrm{C}\}=123$
- $\{B\}=1234$
- $\{\mathrm{D}\}=1235$
- $\{E\}=1236$

- exists a minimum state DFA !!!

Distinguishable States

- string \times distinguishes state s from state t if exactly one of the states reached from s and t by following the path x is an accepting state
- state s is distinguishable from state t if exists some string that distinguish them
- the empty string distinguishes any accepting state from any non-accepting state

Minimizing the Number of States of a DFA

- Input
- DFA D with set of states S, input alphabet Σ, start state s_{0}, accepting states F
- Output
- DFA D' accepting the same language as D and having as few states as possible

Minimizing the Number of States of a DFA

I Start with an initial partition Π with two groups F and S-F
2 Apply the procedure for(each group G of П)
\{
partition G into subgroups such that states s and t are in the same subgroup iff for all input symbol a states s and t have transitions on a to states in the same group of Π
\}
3 if $\Pi_{\text {new }}=\Pi$ let $\Pi_{\text {final }}=\Pi$ and continue with step 4, otherwise repeat step 2 with $\Pi_{\text {new }}$ instead of Π
4 choose one state in each group of $\Pi_{\text {final }}$ as the representative for that group

Minimum State DFA Construction

- the start state of D^{\prime} is the representative of the group containing the start state of D
- the accepting states of D' are the representatives of those groups that contain an accepting state of D
- if
$\circ s$ is the representative of G from $\Pi_{\text {final }}$
- exists a transition from s on input a is t from group H
$\circ r$ is the representative of H
- then
- in D' there is a transition from s to r on input a

Example

- $\{A, B, C, D\}\{E\}$
${ }^{\circ}$ on input a:

- $A, B, C, D->\{A, B, C, D\}$
- E->\{A,B,C,D\}
${ }^{\circ}$ on input b:
- $A, B, C->\{A, B, C, D\}$
- $D->\{E\}$
- E->\{A,B,C,D\}

Example

- $\{A, B, C\}\{D\}\{E\}$
${ }^{\circ}$ on input a:

- A,B,C->\{A,B,C\}
- $D->\{A, B, C\}$
- $\mathrm{E}->\{\mathrm{A}, \mathrm{BC}\}$
- on input b:
- A,C,->\{A,B,C\}
- B->\{D\}
- D->\{E\}
- E-> $\{A, B, C\}$

Example

- $\{A C\}\{B\}[D\} E\}$
- on input a:

- $A, C->\{B\}$
- $B->\{B\}$
- $D->\{B\}$
- $E->\{B\}$
- on input b:

$$
\begin{aligned}
& \text { - A,C,->\{A,C\} } \\
& \text { - } \mathrm{B}->\{\mathrm{D}\} \\
& \text { - } D->\{E\} \\
& \text { - } \mathrm{E}->\{\mathrm{A}, \mathrm{C}\}
\end{aligned}
$$

Example

State	\mathbf{a}	\mathbf{b}
A	B	A
B	B	D
D	B	E
E	B	A

State Minimization in Lexical Analyzers to group together

- all states that recognize a particular token
- all states that do not indicate any token
- e.g. $\{0 \mid 37,7\}\{247\}\{8,58\}\{7\}\{68\}\{\varnothing\}$
- $\{0 \mid 37,7\}$ - do not indicate any token
- $\{8,58\}$ - announce a*b+
- $\{\varnothing\}$ - dead state
- has transitions to itself on input a and b
- is target state for states $8,58,68$ on input a

State Minimization in Lexical Analyzers next, we split

- 0137 from 7
- they go to different groups on input a
- 8 from 58
- they go to different groups on input b
- dead states can be dropped
- if we treat missing transitions as signal to end token recognition

Trading Time for Space in DFA Simulation

- transition function of a DFA
- two dimensional table indexed by states and characters
- typical lexical analyzer has
- hundreds of states
- ASCII alphabet of 128 input characters
- < I MB
- compilers "live" in small devices too
- I MB could be too much

Alternate Representations

- list of character-state pairs
- ending by a default state
- chosen for any input character not on the list
- the most frequently occurring next state
- thus, the table is reduced by a large factor

Bibliography

- Alfred V.Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman - Compilers, Principles, Techniques and Tools, Second Edition, 2007

