
Compiler Design

Lexical Analysis

Optimization of DFA-Based Pattern

Matchers
conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Important States of an NFA

 Functions Computed from the Syntax Tree

 Computing nullable, firstpos and lastpos

 Computing followpos

 Converting a Regular Expression Directly to

a DFA

 Minimizing the Number of States of a DFA

 State Minimization of a Lexical Analyzers

 Trading Time for Space in DFA Simulation

Optimization of DFA-Based Pattern

Matchers
 First algorithm
◦ constructs a DFA directly from a regular expression

◦ without constructing an intermediate NFA

◦ with fewer states

◦ used in Lex

 Second algorithm
◦ minimizes the number of states of any DFA

◦ combines states having the same future behavior

◦ has O(n*log(n)) efficiency

 Third algorithm
◦ produces more compact representations of

transitions tables then the standard two dimensional
ones

Important States of an NFA

 it has non-ε out transitions

 used when computing ε-closure(move(T,a)) –
the set of states reachable from T on input a

 the set moves(s,a) is non-empty if state s is

important

 NFA states are twofold if

◦ have the same important states, and

◦ either both have accepting states or neither does

Augmented Regular Expression

 important states
◦ initial states in the basis part for a particular symbol

position in the RE

◦ correspond to particular operands in the RE

 Thompson algorithm constructed NFA
◦ has only one accepting state which is non-important (has

no out-transitions !!!)

 to concatenate a unique right endmarker # to a
regular expression r
◦ the accepting state of the NFA r becomes important state

in the (r)# NFA

◦ any state in the (r)# NFA with a transition to # must be
an accepting state

Syntax Tree

 important states correspond to the

positions in the RE that hold symbols of

the alphabet

 RE representation as syntax tree

◦ leaves correspond to operands

◦ interior nodes correspond to operators

 cat-node – concatenation operator (dot)

 or-node – union operator |

 star-node – star operator *

Syntax Tree Example (a|b)*abb#

cat nodes

are

represented

as circles

Representation Rules

 syntax tree leaves are labeled by ε or by an
alphabet symbol

 to each leaf which is not ε we attach a
unique integer
◦ the position of the leaf

◦ the position of it’s symbol

 a symbol may have several positions
◦ symbol a has positions 1 and 3 (on the next

slide!!!)

 positions in the syntax tree correspond to
NFA important states

Thompson Constructed NFA for

(a|b)*abb#

 important states are numbered

 other states are represented by letters

 the correspondence between

◦ numbered states in the NFA and

◦ the positions in the syntax tree

 will be presented next

Functions Computed from the

Syntax Tree
 in order to construct a DFA directly from

the regular expression we have to:

◦ build the syntax tree

◦ compute 4 functions referring (r)#

 nullable

 firstpos

 lastpost

 followpos

Computed Functions

 nullable(n)

◦ true for syntax tree node n iff the
subexpression represented by n
 has ε in its language

 can be made null or the empty string even it can
represent other strings

 firstpos(n)

◦ set of positions in the n rooted subtree that
correspond to the first symbol of at least one
string in the language of the subexpression
rooted at n

Computed Functions

 lastpos(n)
◦ set of positions in the n rooted subtree that

correspond to the last symbol of at least one
string in the language of the subexpression
rooted at n

 followpos(n)
◦ for a position p

◦ is the set of positions q such that

◦ x=a1a2…an in L((r)#) such that

◦ for some i there is a way to explain the
membership of x in L((r)#) by matching ai to
position p of the syntax tree ai+1 to position q

Example

 nullable(n)=false

 firstpos(n)={1,2,3}

 lastpos(n)={3}

 followpos(1)={1,2,3}

Computing nullable, firstpos and

lastpos
node n nullable(n) firstpos(n) lastpos(n)

A leaf

labeled ε
true ø ø

A leaf with

position i

false {i} {i}

An or-node

n=c1|c2

nullable(c1) or

nullable(c2)

firstpos(c1) U

firstpos(c2)

lastpos(c1) U

lastpos(c2)

A cat-node

n=c1c2

nullable(c1) and

nullable(c2)

if (nullable(c1))

firstpos(c1) U

firstpos(c2)

else firstpos(c1)

if (nullable(c2))

lastpos(c2) U

lastpos(c1)

else lastpos(c2)

A star-node

n=c1*

true firstpos(c1) lastpos(c1)

Firstpos and Lastpos Example

Computing Followpos

 A position of a regular expression can

follow another position in two ways:

◦ if n is a cat-node c1c2 (rule 1)

 for every position i in lastpos(c1) all positions in

firstpos(c2) are in followpos(i)

◦ if n is a star-node (rule 2)

 if i is a position in lastpos(n) then all positions in

firstpos(n) are in followpos(i)

Followpos Example

 Applying rule 1

◦ followpos(1) incl. {3}

◦ followpos(2) incl. {3}

◦ followpos(3) incl. {4}

◦ followpos(4) incl. {5}

◦ followpos(5) incl. {6}

 Applying rule 2

◦ followpos(1) incl. {1,2}

◦ followpos(2) incl. {1,2}

Followpos Example Continued

Node n followpos(n)

1 {1,2,3}

2 {1,2,3}

3 {4}

4 {5}

5 {6}

6 ø

Converting a Regular Expression

Directly to a DFA
 Input
◦ a regular expression r

 Output
◦ A DFA D that recognizes L(r)

 Method
◦ to build the syntax tree T from (r)#

◦ to compute nullable, firstpos, lastpos, followpos

◦ to build
 Dstates the set of DFA states

 start state of D is firstpos(n0), where n0 is the root of T

 accepting states = those containing the # endmarker symbol

 Dtran the transition function for D

Construction of a DFA directly

from a Regular Expression
initialize Dstates to contain only the unmarked
state firstpos(n0), where n0 is the root of
syntax tree T for (r)#;

while(there is an unmarked state S in Dstates)

{

mark S;

for(each input symbol a)

{

let U be the union of followpos(p) for all
p in S that correspond to a;

if(U is not in Dstates)

add U as unmarked state to Dstates;

Dtran[S,a]=U;

}

}

Example for r=(a|b)*abb

 A=firstpos(n0)={1,2,3}

 Dtran[A,a]=

followpos(1) U followpos(3)= {1,2,3,4}=B

 Dtran[A,b]=

followpos(2)={1,2,3}=A

 Dtran[B,a]=

followpos(1) U followpos(3)=B

 Dtran[B,b]=

followpos(2) U followpos(4)={1,2,3,5}=C

 …

Example for r=(a|b)*abb

Minimizing the Number of States of

a DFA
 equivalent automata

◦ {A,C}=123

◦ {B}=1234

◦ {D}=1235

◦ {E}=1236

 exists a

minimum

state DFA

!!!

Distinguishable States

 string x distinguishes state s from state t if

exactly one of the states reached from s

and t by following the path x is an

accepting state

 state s is distinguishable from state t if

exists some string that distinguish them

 the empty string distinguishes any

accepting state from any non-accepting

state

Minimizing the Number of States of

a DFA
 Input

◦ DFA D with set of states S, input alphabet Σ,

start state s0, accepting states F

 Output

◦ DFA D’ accepting the same language as D and

having as few states as possible

Minimizing the Number of States of

a DFA
1 Start with an initial partition Π with two groups F and S-F

2 Apply the procedure

for(each group G of Π)

{

partition G into subgroups such that states s and t are
in the same subgroup iff for all input symbol a states s
and t have transitions on a to states in the same group
of Π

}

3 if Πnew= Π let Πfinal= Π and continue with step 4, otherwise
repeat step 2 with Πnew instead of Π

4 choose one state in each group of Πfinal as the representative
for that group

Minimum State DFA Construction

 the start state of D’ is the representative of
the group containing the start state of D

 the accepting states of D’ are the
representatives of those groups that contain
an accepting state of D

 if
◦ s is the representative of G from Πfinal

◦ exists a transition from s on input a is t from
group H

◦ r is the representative of H

 then
◦ in D’ there is a transition from s to r on input a

Example

 {A,B,C,D}{E}

◦ on input a:

 A,B,C,D->{A,B,C,D}

 E->{A,B,C,D}

◦ on input b:

 A,B,C->{A,B,C,D}

 D->{E}

 E->{A,B,C,D}

Example

 {A,B,C}{D}{E}

◦ on input a:

 A,B,C->{A,B,C}

 D->{A,B,C}

 E->{A,BC}

◦ on input b:

 A,C,->{A,B,C}

 B->{D}

 D->{E}

 E->{A,B,C}

Example

 {AC}{B}{D}{E}

◦ on input a:

 A,C->{B}

 B->{B}

 D->{B}

 E->{B}

◦ on input b:

 A,C,->{A,C}

 B->{D}

 D->{E}

 E->{A,C}

Example

State a b

A B A

B B D

D B E

E B A

State Minimization in

Lexical Analyzers
 to group together

◦ all states that recognize a particular token

◦ all states that do not indicate any token

 e.g. {0137,7} {247} {8,58} {7} {68} {ø}

◦ {0137,7} – do not indicate any token

◦ {8,58} – announce a*b+

◦ {ø} - dead state

 has transitions to itself on input a and b

 is target state for states 8, 58, 68 on input a

State Minimization in

Lexical Analyzers
 next, we split

◦ 0137 from 7

 they go to different groups on input a

◦ 8 from 58

 they go to different groups on input b

 dead states can be dropped

◦ if we treat missing transitions as signal to end

token recognition

Trading Time for Space in DFA

Simulation
 transition function of a DFA

◦ two dimensional table indexed by states and

characters

 typical lexical analyzer has

◦ hundreds of states

◦ ASCII alphabet of 128 input characters

◦ < 1 MB

 compilers “live” in small devices too

 1 MB could be too much

Alternate Representations

 list of character-state pairs

 ending by a default state

◦ chosen for any input character not on the list

◦ the most frequently occurring next state

 thus, the table is reduced by a large factor

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

