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Optimization of DFA-Based Pattern 

Matchers
 First algorithm
◦ constructs a DFA directly from a regular expression

◦ without constructing an intermediate NFA

◦ with fewer states

◦ used in Lex

 Second algorithm
◦ minimizes the number of states of any DFA

◦ combines states having the same future behavior

◦ has O(n*log(n)) efficiency

 Third algorithm
◦ produces more compact representations of 

transitions tables then the standard two dimensional 
ones



Important States of an NFA

 it has non-ε out transitions

 used when computing ε-closure(move(T,a)) –
the set of states reachable from T on input a

 the set moves(s,a) is non-empty if state s is 

important

 NFA states are twofold if

◦ have the same important states, and

◦ either both have accepting states or neither does



Augmented Regular Expression

 important states
◦ initial states in the basis part for a particular symbol 

position in the RE

◦ correspond to particular operands in the RE

 Thompson algorithm constructed NFA
◦ has only one accepting state which is non-important (has 

no out-transitions !!!)

 to concatenate a unique right endmarker # to a 
regular expression r
◦ the accepting state of the NFA r becomes important state 

in the (r)# NFA

◦ any state in the (r)# NFA with a transition to # must be 
an accepting state



Syntax Tree

 important states correspond to the 

positions in the RE that hold symbols of 

the alphabet

 RE representation as syntax tree

◦ leaves correspond to operands

◦ interior nodes correspond to operators

 cat-node – concatenation operator (dot)

 or-node – union operator |

 star-node – star operator *



Syntax Tree Example (a|b)*abb#

cat nodes 

are 

represented 

as circles



Representation Rules

 syntax tree leaves are labeled by ε or by an 
alphabet symbol

 to each leaf which is not ε we attach a 
unique integer
◦ the position of the leaf

◦ the position of it’s symbol

 a symbol may have several positions
◦ symbol a has positions 1 and 3 (on the next 

slide!!!)

 positions in the syntax tree correspond to 
NFA important states



Thompson Constructed NFA for 

(a|b)*abb#

 important states are numbered

 other states are represented by letters

 the correspondence between

◦ numbered states in the NFA and 

◦ the positions in the syntax tree 

 will be presented next



Functions Computed from the 

Syntax Tree
 in order to construct a DFA directly from 

the regular expression we have to:

◦ build the syntax tree

◦ compute 4 functions referring (r)#

 nullable

 firstpos

 lastpost

 followpos



Computed Functions

 nullable(n)

◦ true for syntax tree node n iff the 
subexpression represented by n 
 has ε in its language

 can be made null or the empty string even it can 
represent other strings

 firstpos(n)

◦ set of positions in the n rooted subtree that 
correspond to the first symbol of at least one 
string in the language of the subexpression
rooted at n



Computed Functions

 lastpos(n)
◦ set of positions in the n rooted subtree that 

correspond to the last symbol of at least one 
string in the language of the subexpression
rooted at n

 followpos(n)
◦ for a position p

◦ is the set of positions q such that

◦ x=a1a2…an in L((r)#) such that

◦ for some i there is a way to explain the 
membership of x in L((r)#) by matching ai to 
position p of the syntax tree ai+1 to position q



Example

 nullable(n)=false

 firstpos(n)={1,2,3}

 lastpos(n)={3}

 followpos(1)={1,2,3}



Computing nullable, firstpos and 

lastpos
node n nullable(n) firstpos(n) lastpos(n)

A leaf 

labeled ε
true ø ø

A leaf with 

position i

false {i} {i}

An or-node 

n=c1|c2

nullable(c1) or 

nullable(c2)

firstpos(c1) U 

firstpos(c2)

lastpos(c1) U 

lastpos(c2)

A cat-node

n=c1c2

nullable(c1) and 

nullable(c2)

if (nullable(c1))

firstpos(c1) U 

firstpos(c2)

else firstpos(c1)

if (nullable(c2))

lastpos(c2) U 

lastpos(c1)

else lastpos(c2)

A star-node

n=c1*

true firstpos(c1) lastpos(c1)



Firstpos and Lastpos Example



Computing Followpos

 A position of a regular expression can 

follow another position in two ways:

◦ if n is a cat-node c1c2 (rule 1)

 for every position i in lastpos(c1) all positions in 

firstpos(c2) are in followpos(i)

◦ if n is a star-node (rule 2)

 if i is a position in lastpos(n) then all positions in 

firstpos(n) are in followpos(i)



Followpos Example

 Applying rule 1

◦ followpos(1) incl. {3}

◦ followpos(2) incl. {3}

◦ followpos(3) incl. {4}

◦ followpos(4) incl. {5}

◦ followpos(5) incl. {6}

 Applying rule 2

◦ followpos(1) incl. {1,2}

◦ followpos(2) incl. {1,2}



Followpos Example Continued

Node n followpos(n)

1 {1,2,3}

2 {1,2,3}

3 {4}

4 {5}

5 {6}

6 ø



Converting a Regular Expression 

Directly to a DFA
 Input
◦ a regular expression r

 Output
◦ A DFA D that recognizes L(r)

 Method
◦ to build the syntax tree T from (r)#

◦ to compute nullable, firstpos, lastpos, followpos

◦ to build
 Dstates the set of DFA states

 start state of D is firstpos(n0), where n0 is the root of T

 accepting states = those containing the # endmarker symbol

 Dtran the transition function for D



Construction of a DFA directly 

from a Regular Expression
initialize Dstates to contain only the unmarked 
state firstpos(n0), where n0 is the root of 
syntax tree T for (r)#;

while(there is an unmarked state S in Dstates)

{

mark S;

for(each input symbol a)

{

let U be the union of followpos(p) for all 
p in S that correspond to a;

if(U is not in Dstates)

add U as unmarked state to Dstates;

Dtran[S,a]=U;

}

}



Example for r=(a|b)*abb

 A=firstpos(n0)={1,2,3}

 Dtran[A,a]=

followpos(1) U followpos(3)= {1,2,3,4}=B

 Dtran[A,b]=

followpos(2)={1,2,3}=A

 Dtran[B,a]=

followpos(1) U followpos(3)=B

 Dtran[B,b]=

followpos(2) U followpos(4)={1,2,3,5}=C

 …



Example for r=(a|b)*abb



Minimizing the Number of States of 

a DFA
 equivalent automata

◦ {A,C}=123

◦ {B}=1234

◦ {D}=1235

◦ {E}=1236

 exists a

minimum

state DFA

!!!



Distinguishable States

 string x distinguishes state s from state t if 

exactly one of the states reached from s

and t by following the path x is an 

accepting state

 state s is distinguishable from state t if 

exists some string that distinguish them

 the empty string distinguishes any 

accepting state from any non-accepting

state



Minimizing the Number of States of 

a DFA
 Input

◦ DFA D with set of states S, input alphabet Σ, 

start state s0, accepting states F

 Output

◦ DFA D’ accepting the same language as D and 

having as few states as possible



Minimizing the Number of States of 

a DFA
1 Start with an initial partition Π with two groups F and S-F

2  Apply the procedure

for(each group G of Π)

{

partition G into subgroups such that states s and t are 
in the same subgroup iff for all input symbol a states s
and t have transitions on a to states in the same group 
of Π

}

3 if Πnew= Π let Πfinal= Π and continue with step 4, otherwise 
repeat step 2 with Πnew instead of Π

4 choose one state in each group of Πfinal as the representative 
for that group



Minimum State DFA Construction

 the start state of D’ is the representative of 
the group containing the start state of D

 the accepting states of D’ are the 
representatives of those groups that contain 
an accepting state of D

 if
◦ s is the representative of G from Πfinal

◦ exists a transition from s on input a is t from 
group H

◦ r is the representative of H

 then
◦ in D’ there is a transition from s to r on input a



Example

 {A,B,C,D}{E}

◦ on input a: 

 A,B,C,D->{A,B,C,D} 

 E->{A,B,C,D}

◦ on input b: 

 A,B,C->{A,B,C,D} 

 D->{E} 

 E->{A,B,C,D}



Example

 {A,B,C}{D}{E}

◦ on input a: 

 A,B,C->{A,B,C} 

 D->{A,B,C} 

 E->{A,BC}

◦ on input b: 

 A,C,->{A,B,C} 

 B->{D} 

 D->{E} 

 E->{A,B,C}



Example

 {AC}{B}{D}{E}

◦ on input a: 

 A,C->{B} 

 B->{B} 

 D->{B} 

 E->{B}

◦ on input b: 

 A,C,->{A,C} 

 B->{D} 

 D->{E} 

 E->{A,C}



Example

State a b

A B A

B B D

D B E

E B A



State Minimization in 

Lexical Analyzers
 to group together

◦ all states that recognize a particular token

◦ all states that do not indicate any token

 e.g. {0137,7} {247} {8,58} {7} {68} {ø}

◦ {0137,7} – do not indicate any token

◦ {8,58} – announce a*b+

◦ {ø} - dead state 

 has transitions to itself on input a and b

 is target state for states 8, 58, 68 on input a



State Minimization in 

Lexical Analyzers
 next, we split

◦ 0137 from 7

 they go to different groups on input a

◦ 8 from 58

 they go to different groups on input b

 dead states can be dropped

◦ if we treat missing transitions as signal to end 

token recognition



Trading Time for Space in DFA 

Simulation
 transition function of a DFA

◦ two dimensional table indexed by states and 

characters

 typical lexical analyzer has

◦ hundreds of states

◦ ASCII alphabet of 128 input characters

◦ < 1 MB

 compilers “live” in small devices too

 1 MB could be too much



Alternate Representations

 list of character-state pairs 

 ending by a default state 

◦ chosen for any input character not on the list

◦ the most frequently occurring next state

 thus, the table is reduced by a large factor
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