Compiler Design Lexical Analysis Optimization of DFA-Based Pattern Matchers

conf. dr. ing. Ciprian-Bogdan Chirila chirila@cs.upt.ro http://www.cs.upt.ro/~chirila

0

Outline

- Important States of an NFA
- Functions Computed from the Syntax Tree
- Computing nullable, firstpos and lastpos
- Computing followpos
- Converting a Regular Expression Directly to a DFA
- Minimizing the Number of States of a DFA
- State Minimization of a Lexical Analyzers
- Trading Time for Space in DFA Simulation

Optimization of DFA-Based Pattern Matchers

- First algorithm
 - constructs a DFA directly from a regular expression
 - without constructing an intermediate NFA
 - with fewer states
 - $^{\circ}\,$ used in Lex
- Second algorithm
 - minimizes the number of states of any DFA
 - combines states having the same future behavior
 - has O(n*log(n)) efficiency
- Third algorithm
 - produces more compact representations of transitions tables then the standard two dimensional ones

Important States of an NFA

- it has non-ε out transitions
- used when computing ε-closure(move(T,a)) –
 the set of states reachable from T on input a
- the set moves(s,a) is non-empty if state s is important
- NFA states are twofold if
 - have the same important states, and
 - either both have accepting states or neither does

Augmented Regular Expression

- important states
 - initial states in the basis part for a particular symbol position in the RE
 - correspond to particular operands in the RE
- Thompson algorithm constructed NFA
 - has only one accepting state which is non-important (has no out-transitions !!!)
- to concatenate a unique right endmarker # to a regular expression r
 - the accepting state of the NFA r becomes important state in the (r)# NFA
 - any state in the (r)# NFA with a transition to # must be an accepting state

Syntax Tree

- important states correspond to the positions in the RE that hold symbols of the alphabet
- RE representation as syntax tree
 - leaves correspond to operands
 - interior nodes correspond to operators
 - cat-node concatenation operator (dot)
 - or-node union operator |
 - star-node star operator *

Syntax Tree Example (a|b)*abb#

Representation Rules

- syntax tree leaves are labeled by ε or by an alphabet symbol
- to each leaf which is not ε we attach a unique integer
 - the position of the leaf
 - the position of it's symbol
- a symbol may have several positions
 - symbol a has positions I and 3 (on the next slide!!!)
- positions in the syntax tree correspond to NFA important states

Thompson Constructed NFA for (a|b)*abb#

- important states are numbered
- other states are represented by letters
- the correspondence between
 - numbered states in the NFA and
 - the positions in the syntax tree
- will be presented next

Functions Computed from the Syntax Tree

- in order to construct a DFA directly from the regular expression we have to:
 - build the syntax tree
 - compute 4 functions referring (r)#
 - nullable
 - firstpos
 - lastpost
 - followpos

Computed Functions

nullable(n)

- true for syntax tree node n iff the subexpression represented by n
 - has ε in its language
 - can be made null or the empty string even it can represent other strings

firstpos(n)

 set of positions in the n rooted subtree that correspond to the first symbol of at least one string in the language of the subexpression rooted at n

Computed Functions

- lastpos(n)
 - set of positions in the n rooted subtree that correspond to the last symbol of at least one string in the language of the subexpression rooted at n
- followpos(n)
 - for a position p
 - is the set of positions q such that
 - $x=a_1a_2...a_n$ in L((r)#) such that
 - for some i there is a way to explain the membership of x in L((r)#) by matching a_i to position p of the syntax tree a_{i+1} to position q

- nullable(n)=false
- firstpos(n)={1,2,3}
- lastpos(n)={3}
- followpos(1)={1,2,3}

Computing nullable, firstpos and lastpos

node n	nullable(n)	firstpos(n)	lastpos(n)
A leaf labeled ε	true	Ø	Ø
A leaf with position i	false	{i}	{i}
An or-node n=c ₁ c ₂	nullable(cl) or nullable(c2)	firstpos(c ₁) U firstpos(c ₂)	lastpos(c ₁) U lastpos(c ₂)
A cat-node n=c ₁ c ₂	nullable(c1) and nullable(c2)	if (nullable(c ₁)) firstpos(c ₁) U firstpos(c ₂) else firstpos(c ₁)	if (nullable(c ₂)) lastpos(c ₂) U lastpos(c ₁) else lastpos(c ₂)
A star-node n=c ₁ *	true	firstpos(c ₁)	lastpos(c ₁)

Firstpos and Lastpos Example

Computing Followpos

- A position of a regular expression can follow another position in two ways:
 - if n is a cat-node c_1c_2 (rule 1)
 - for every position i in lastpos(c₁) all positions in firstpos(c₂) are in followpos(i)
 - if n is a star-node (rule 2)
 - if i is a position in lastpos(n) then all positions in firstpos(n) are in followpos(i)

- Applying rule I followpos(1) incl. {3} followpos(2) incl. {3} followpos(3) incl. {4} followpos(4) incl. {5} followpos(5) incl. {6} Applying rule 2
 - followpos(1) incl. {1,2}
 {1,2}
 {1,2}
 {1,2}
 {1,2}
 - followpos(2) incl. {1,2}
 (1) a (1) (2) b (2) b (2)

Followpos Example Continued

Node n	followpos(n)	
I	{1,2,3}	
2	{1,2,3}	
3	{4}	
4	{5}	
5	{6}	
6	Ø	

Converting a Regular Expression Directly to a DFA

- Input
 - a regular expression r
- Output
 - A DFA D that recognizes L(r)
- Method
 - to build the syntax tree T from (r)#
 - to compute nullable, firstpos, lastpos, followpos
 - to build
 - Dstates the set of DFA states
 - start state of D is $firstpos(n_0)$, where n_0 is the root of T
 - accepting states = those containing the # endmarker symbol
 - Dtran the transition function for D

Construction of a DFA directly from a Regular Expression

initialize Dstates to contain only the unmarked state firstpos(n₀), where n₀ is the root of syntax tree T for (r)#;

while(there is an unmarked state S in Dstates)
{

```
mark S;
for(each input symbol a)
{
    let U be the union of followpos(p) for all
    p in S that correspond to a;
    if(U is not in Dstates)
        add U as unmarked state to Dstates;
    Dtran[S,a]=U;
```

Example for r=(a|b)*abb

- A=firstpos(n₀)={1,2,3}
- Dtran[A,a]=
 followpos(1) U followpos(3)= {1,2,3,4}=B
- Dtran[A,b]=
 followpos(2)={1,2,3}=A
- Dtran[B,a]=
 followpos(1) U followpos(3)=B
- Dtran[B,b]=
 followpos(2) U followpos(4)={1,2,3,5}=C

Example for r=(a|b)*abb

Minimizing the Number of States of a DFA

- equivalent automata
 - {A,C}=123
 - {B}=1234
 - {D}=1235
 - ∘ {E}=1236
- exists a

minimum state DFA !!!

Distinguishable States

- string x distinguishes state s from state t if exactly one of the states reached from s and t by following the path x is an accepting state
- state s is distinguishable from state t if exists some string that distinguish them
- the empty string distinguishes any accepting state from any non-accepting state

Minimizing the Number of States of a DFA

Input

- DFA D with set of states S, input alphabet Σ , start state s₀, accepting states F
- Output
 - DFA D' accepting the same language as D and having as few states as possible

Minimizing the Number of States of a DFA

I Start with an initial partition Π with two groups F and S-F

2 Apply the procedure

```
for(each group G of \Pi)
```

partition G into subgroups such that states s and t are in the same subgroup iff for all input symbol a states s and t have transitions on a to states in the same group of Π

- 3 if $\Pi_{new} = \Pi$ let $\Pi_{final} = \Pi$ and continue with step 4, otherwise repeat step 2 with Π_{new} instead of Π
- 4 choose one state in each group of Π_{final} as the representative for that group

Minimum State DFA Construction

- the start state of D' is the representative of the group containing the start state of D
- the accepting states of D' are the representatives of those groups that contain an accepting state of D
- if
 - \circ s is the representative of G from Π_{final}
 - exists a transition from s on input a is t from group H
 - r is the representative of H
- then
 - $\,\circ\,$ in D' there is a transition from s to r on input a

- {A,B,C,D}{E}
 - on input a:
 - A,B,C,D->{A,B,C,D}
 - E->{A,B,C,D}
 - on input **b**:
 - A,B,C->{A,B,C,D}
 - D->{E}
 - E->{A,B,C,D}

- {A,B,C}{D}{E}
 - on input a:
 - A,B,C->{A,B,C}
 - D->{A,B,C}

• on input **b**:

• B->{D}

• D->{E}

• E->{A,B,C}

• A,C,->{A,B,C}

- E->{A,BC}

- {AC}{B}{D}{E}
 - on input a:
 - A,C->{B}
 - B->{B}
 - D->{B}
 - E->{B}
 - on input **b**:
 - A,C,->{A,C}
 - B->{D}
 - D->{E}
 - E->{A,C}

State	a	b
A	В	Α
В	В	D
D	В	Е
E	В	Α

State Minimization in^a Lexical Analyzers

to group together

- all states that recognize a particular token
- all states that do not indicate any token
- e.g. {0137,7} {247} {8,58} {7} {68} {Ø}
 - {0137,7} do not indicate any token
 - {8,58} announce a*b+
 - {Ø} dead state
 - has transitions to itself on input a and b
 - is target state for states 8, 58, 68 on input a

State Minimization in^{star} Lexical Analyzers

- next, we split
 - 0137 from 7

- they go to different groups on input a
- 8 from 58
 - they go to different groups on input b
- dead states can be dropped
 - if we treat missing transitions as signal to end token recognition

Trading Time for Space in DFA Simulation

- transition function of a DFA
 - two dimensional table indexed by states and characters
- typical lexical analyzer has
 - hundreds of states
 - ASCII alphabet of 128 input characters

• < I MB

- compilers "live" in small devices too
- I MB could be too much

Alternate Representations

- list of character-state pairs
- ending by a default state
 - chosen for any input character not on the list
 - the most frequently occurring next state
- thus, the table is reduced by a large factor

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman – Compilers, Principles, Techniques and Tools, Second Edition, 2007