
Compiler Design 

Lexical Analysis

Summary

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila



Tokens

 Lexical analyzer 

◦ scans the source programs

◦ produces as output sequence of tokens

 Tokens

◦ name

◦ lexical value



Lexemes

 sequence of input characters that the 

token represents



Buffering

 goals

◦ to scan ahead on the input

◦ to see where the next lexeme ends

◦ to accelerate the process of scanning the 

input

 techniques

◦ using a pair of buffer cyclically

◦ ending each buffer content with a sentinel 

which warns of its end



Patterns

 description of token structure

 sequences of characters which can form 

the lexemes corresponding to the token

 language

◦ set of words, strings of characters that match 

a given pattern



Regular Expressions

 expressions used to describe patterns

 built from

◦ single characters

◦ operators

 union

 concatenation

 Kleene closure or any-number of



Regular Definitions

 complex collections of languages

 patterns that describe the tokens of a 

programming language

 sequence of statements that each define 

one variable to stand for regular 

expressions

 regular expression for one variable can 

use previously defined variables in its 

regular expression



Extended Regular-Expression 

Notation
 a number of additional operators

 short-hands in regular expressions

 to make easier to express patterns

 operators

◦ + one or more of

◦ ? zero or one of

◦ character classes 

 the union of strings each consisting of one of the 

characters



Transition Diagrams

 expresses the behavior of the lexical 
analyzer

 states

◦ representing something about the history of 
the characters seen during the current search

 arrows or transitions

◦ from one state to another

◦ indicates the possible next input characters 
that cause the lexical analyzer to make that 
change of state



Finite Automata

 formalization of transition diagrams

 include a start state

 one or more accepting states

 set of states

 input characters

 transitions among states

 accepting states
◦ indicate that the lexeme for some token has been 

found

 can make transitions on
◦ empty input

◦ characters input



Deterministic Finite Automata

 special kind of finite automata

 has exactly one transition 

◦ out of each state 

◦ for each input symbol

 transitions on empty input are not allowed

 is easily simulated

 makes good implementation of a lexical 

analyzer

 similar to a transition diagram



Nondeterministic Finite Automata

 automata which are not DFA

 easier to design than DFA’s

 possible architecture for lexical analyzer

◦ to tabulate all the states 

◦ that NFA’s for each of the possible patterns 

can be in

◦ as we scan the input characters



Conversion Among Patterns 

Representation
 to convert any RE into NFA about the 

same size

 recognizing the same language

 any NFA can be converted to DFA for 
the same pattern

◦ in the worst case the size of the automaton 
can grow exponentially

◦ never encountered in common programming 
languages

 to convert NFA and DFA into RE



Lex

 patterns for tokens

◦ regular expression notation

 lex and flex

◦ family of software systems

◦ lexical-analyzer generators

◦ converts regular expressions into lexical 

analyzer ~ DFA



Minimization of Finite Automata

 for every DFA there is a minimum-state 

DFA accepting the same language

 the minimum-language DFA is unique 

except state naming



Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, 

Jeffrey D. Ullman – Compilers, Principles, 

Techniques and Tools, Second Edition, 

2007


