
Compiler Design 

Lexical Analysis

Summary

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila



Tokens

 Lexical analyzer 

◦ scans the source programs

◦ produces as output sequence of tokens

 Tokens

◦ name

◦ lexical value



Lexemes

 sequence of input characters that the 

token represents



Buffering

 goals

◦ to scan ahead on the input

◦ to see where the next lexeme ends

◦ to accelerate the process of scanning the 

input

 techniques

◦ using a pair of buffer cyclically

◦ ending each buffer content with a sentinel 

which warns of its end



Patterns

 description of token structure

 sequences of characters which can form 

the lexemes corresponding to the token

 language

◦ set of words, strings of characters that match 

a given pattern



Regular Expressions

 expressions used to describe patterns

 built from

◦ single characters

◦ operators

 union

 concatenation

 Kleene closure or any-number of



Regular Definitions

 complex collections of languages

 patterns that describe the tokens of a 

programming language

 sequence of statements that each define 

one variable to stand for regular 

expressions

 regular expression for one variable can 

use previously defined variables in its 

regular expression



Extended Regular-Expression 

Notation
 a number of additional operators

 short-hands in regular expressions

 to make easier to express patterns

 operators

◦ + one or more of

◦ ? zero or one of

◦ character classes 

 the union of strings each consisting of one of the 

characters



Transition Diagrams

 expresses the behavior of the lexical 
analyzer

 states

◦ representing something about the history of 
the characters seen during the current search

 arrows or transitions

◦ from one state to another

◦ indicates the possible next input characters 
that cause the lexical analyzer to make that 
change of state



Finite Automata

 formalization of transition diagrams

 include a start state

 one or more accepting states

 set of states

 input characters

 transitions among states

 accepting states
◦ indicate that the lexeme for some token has been 

found

 can make transitions on
◦ empty input

◦ characters input



Deterministic Finite Automata

 special kind of finite automata

 has exactly one transition 

◦ out of each state 

◦ for each input symbol

 transitions on empty input are not allowed

 is easily simulated

 makes good implementation of a lexical 

analyzer

 similar to a transition diagram



Nondeterministic Finite Automata

 automata which are not DFA

 easier to design than DFA’s

 possible architecture for lexical analyzer

◦ to tabulate all the states 

◦ that NFA’s for each of the possible patterns 

can be in

◦ as we scan the input characters



Conversion Among Patterns 

Representation
 to convert any RE into NFA about the 

same size

 recognizing the same language

 any NFA can be converted to DFA for 
the same pattern

◦ in the worst case the size of the automaton 
can grow exponentially

◦ never encountered in common programming 
languages

 to convert NFA and DFA into RE



Lex

 patterns for tokens

◦ regular expression notation

 lex and flex

◦ family of software systems

◦ lexical-analyzer generators

◦ converts regular expressions into lexical 

analyzer ~ DFA



Minimization of Finite Automata

 for every DFA there is a minimum-state 

DFA accepting the same language

 the minimum-language DFA is unique 

except state naming



Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, 

Jeffrey D. Ullman – Compilers, Principles, 

Techniques and Tools, Second Edition, 

2007


