Compiler Design
Syntax Analysis
Introduction to Syntax Analysis

conf. dr. ing. Ciprian-Bogdan Chirila
chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Qutline

* Syntax Analysis

* Syntax Rules

* The Role of the Parser
 Types of Parsers

e Representative Grammars
e Ambiguous Grammars

e Syntax Error Handling

Syntax Analysis

e parsing methods typically used in
compilers

e basic concepts

e techniques suitable for hand
implementation

* algorithms used in automated tools
* recovery methods from common errors

Syntax Rules

* each programming language has precise rules that
prescribe the syntactic structure of well formed
programs

e e.g.. a C program
° functions

declarations

statements
* expressions

e can be expressed as
° context-free grammars
> BNF rules
e grammars offers benefits for both
° language designers
> compiler writers

Grammar Benefits

* precise syntactic specification of a
programming language

» from certain classes of grammars efficient
parsers can be automatically generated

* the structure disclosed by a grammar is
useful for
° translating source programs object code
> detecting errors

* allows a language to
° to evolve
° to be developed iteratively and incrementally

Topics

* how a parser fits into a typical compiler
* take a look at typical grammars for
arithmetic expressions
° carry over to most programming constructs
e error handling

> finding that the input can not be generated by
the grammar

The Role of the Parser

* to receive a string of tokens from the lexical
analyzer

* to verify whether the string of token names
can be generated by the grammar for a
source language

* to report any syntax errors in an intelligible
way

* to recover from commonly occurring errors

* to continue processing the remainder of the
program

The Role of the Parser

® {0 construct a parse tree

* to pass it to the rest of the compiler for
further processing

* to intersperse with checking and
translations actions

' token b | : .
source | Texical 1 parse Rest of intermediate
Parser bt---- - — -
program | Analyzer fe—————— ' tree ! Front End |representation
get next ! !
token
Symbol

3
fy]

Types of Parsers

e Universal

° can parse any grammar
Cocke-Younger-Kasami parsing methods
Earley’s algorithm

o inefficient to be used in production of compilers
e Top-down - build parse trees
> from top (root)
° to the bottom (leaves)
Bottom-up
° start from leaves
> work their way up to the root
e Both top-down and bottom-up
° scan the input from left to right
> one symbol at a time

Types of Parsers

* most efficient top-down and bottom-up
work for subclasses of grammars

> LL and LR are expressive enough to describe
most of the syntactic constructs in modern
programming languages
* by hand implemented parsers use LL
grammars

» tool generated parsers use the larger
class of LR grammars

Parser

* Input
> Stream of tokens
e Output
> Some representation of the parse tree

e Tasks

o Collecting information about various tokens
into the symbol table

> Performing type, domain checking,...

> GGenerating intermediate code

Representative Grammars

® constructs
o starting with keywords
while, int
° are easy to parse

> keywords guide the choice of the grammar
production that must be applied to match the
input
* expressions

° are more challenging

because of operators which have
* association rules
* precedence

Representative Grammars

e E — expressions of terms separated by + signs
e T — terms consisting of factors separated by * signs

e F —factors which can be parenthesized expressions or
identifiers

E->E+T | T
T ->T *F | F
F -> (E) | id

* LR grammar
° suitable for bottom-up parsing

° can be adapted to handle additional
operators
levels of precedence

° can not be used for top-down parsing because is left recursive !!!

Representative Grammars

* Non-left-recursive variant
e Suitable for top-down parsing

E -> T E’
E'->+ TE| ¢
T -> F T’

T'-> * F T'| ¢
F -> (E) | id

Ambiguous Grammar

E->E+E | E*E | (E) | id
 operators + and * are treated alike

* the grammar permits more than one
parse for the expression

o a+b¥*c

Syntax Error Handling

e nature of syntactic errors

» general strategies of error recovery

e parsing only correct code
> design and implementation — greatly simplified

e assisting the programmer to locate and track down
errors

 few languages with error handling in design

 error induced behavior is not present in language
specification

 error handling is left to compiler designer

e planning it from the beginning
o simplifies the structure of the compiler
° improves the handling of errors

Common Programming Error Levels

e lexical errors

> misspelling of identifiers, keywords or operators
e.g. missing quotes around text intended as string

syntactic errors

> misplaced, extra, missing tokens:
semicolons, braces
e.g. case without enclosing switch (Java)

semantic errors

° type mismatches between operators and operands

° e.g.return statement for a Java method with result type void
* logical errors

° incorrect reasoning on the part of the programmer

° e.g.using in C the assignment = operator instead of the
comparison == operator

Viable Prefix Property

 precision of parsing methods allows efficient
syntactic error detection

e LL and LR parsing methods detect an error
as soon as possible

* Viable Prefix Property of parsing methods is
to issue an error

> when the token stream can not be parsed further
according to the grammar for the language

> when they see a prefix at the input that can not
be completed to for a string in the language

Error Handler Goals

* report the presence of errors clearly and
accurately

* recover from errors quickly in order to detect
subsequent errors

e add minimal overhead to the processing of
correct programs

However

 accurate detection of semantic and logical errors
at compile time is in general a difficult task !!!

e common errors are simple ones

o straightforward error-handling mechanisms
suffices

Error Reporting

e the place in the source program where
the error is detected

e the actual error is probably around the 2-
3 neighbor tokens

° common strategy
o print the offending line

° point to the position where the error was
detected

Error Recovery Strategies

* when error detected -> the parser should
recover

* no strategy universally acceptable
» few methods with broad applicability

° to quit with an informative error message at first
error

additional errors are uncovered if the parser restores
itself to a state where processing of the input can

continue with reasonable hopes that further processing
is meaningful

if error number increases then the compiler
* should stop after a given error number limit
* will avoid issuing an avalanche of “spurious” messages

Panic Mode Recovery

on discovering an error
the parser discards input symbols
one at a time

until is found one of a designated set of
synchronizing tokens

> delimiters ; or }
° have a clear and unambiguous role
> must be selected by the compiler designer

skips considerable amount of input

no checking for additional errors

simple

guaranteed not to go on an infinite loop

Phrase-Level Recovery

e on discovering an error
e to perform local correction on the remaining input

e to replace the remaining input by some string that allows the
parser to continue

e examples

° to replace a comma by a semicolon

° to delete an extraneous semicolon

° to insert a missing semicolon
 the choice of local correction is left to the compiler designer
e to choose replacements that do not lead to infinite loops

e difficulty in coping with situations in which the actual error
has occurred before the detection point

Error Productions

* to equip the grammar with productions
which generate erroneous constructs

 such a parser detects the anticipated
errors when an error production is used

C

ot
C

uring parsing
ne parser can generate appropriate error

lagnostics

Global Correction

¢ ideally a compiler would make as few changes as possible in
processing an incorrect string

e algorithms for choosing the minimal sequence of changes to
obtain globally a least-cost correction

° given an incorrect input X
° to find a parse tree for a related string y

° such as the number of insertions, deletions and changes of
tokens required to transform x into y is as small as possible

e too costly to implement in time and space
* only of theoretical interest

* a closest correct program may not have the same semantics
as the intended erroneous one

 the least cost correction is used for
> evaluating error recovery techniques
> finding optimal replacement strings for phrase-level recovery

Bibliography

 Alfred V.Aho, Monica S. Lam, Ravi Sethi,
Jeffrey D. Ullman — Compilers, Principles,

Techniques and Tools, Second Edition,
2007

