
Compiler Design

Syntax Analysis

Introduction to Syntax Analysis

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Syntax Analysis

 Syntax Rules

 The Role of the Parser

 Types of Parsers

 Representative Grammars

 Ambiguous Grammars

 Syntax Error Handling

Syntax Analysis

 parsing methods typically used in

compilers

 basic concepts

 techniques suitable for hand

implementation

 algorithms used in automated tools

 recovery methods from common errors

Syntax Rules

 each programming language has precise rules that
prescribe the syntactic structure of well formed
programs

 e.g.: a C program
◦ functions

 declarations

 statements
 expressions

 can be expressed as
◦ context-free grammars

◦ BNF rules

 grammars offers benefits for both
◦ language designers

◦ compiler writers

Grammar Benefits

 precise syntactic specification of a
programming language

 from certain classes of grammars efficient
parsers can be automatically generated

 the structure disclosed by a grammar is
useful for
◦ translating source programs object code

◦ detecting errors

 allows a language to
◦ to evolve

◦ to be developed iteratively and incrementally

Topics

 how a parser fits into a typical compiler

 take a look at typical grammars for

arithmetic expressions

◦ carry over to most programming constructs

 error handling

◦ finding that the input can not be generated by

the grammar

The Role of the Parser

 to receive a string of tokens from the lexical
analyzer

 to verify whether the string of token names
can be generated by the grammar for a
source language

 to report any syntax errors in an intelligible
way

 to recover from commonly occurring errors

 to continue processing the remainder of the
program

The Role of the Parser

 to construct a parse tree

 to pass it to the rest of the compiler for

further processing

 to intersperse with checking and

translations actions

Types of Parsers

 Universal

◦ can parse any grammar
 Cocke-Younger-Kasami parsing methods

 Earley’s algorithm

◦ inefficient to be used in production of compilers

 Top-down - build parse trees

◦ from top (root)

◦ to the bottom (leaves)

 Bottom-up

◦ start from leaves

◦ work their way up to the root

 Both top-down and bottom-up

◦ scan the input from left to right

◦ one symbol at a time

Types of Parsers

 most efficient top-down and bottom-up

work for subclasses of grammars

◦ LL and LR are expressive enough to describe

most of the syntactic constructs in modern

programming languages

 by hand implemented parsers use LL

grammars

 tool generated parsers use the larger

class of LR grammars

Parser

 Input

◦ Stream of tokens

 Output

◦ Some representation of the parse tree

 Tasks

◦ Collecting information about various tokens

into the symbol table

◦ Performing type, domain checking,…

◦ Generating intermediate code

Representative Grammars

 constructs
◦ starting with keywords
 while, int

◦ are easy to parse

◦ keywords guide the choice of the grammar
production that must be applied to match the
input

 expressions
◦ are more challenging
 because of operators which have

 association rules

 precedence

Representative Grammars

 E – expressions of terms separated by + signs

 T – terms consisting of factors separated by * signs

 F – factors which can be parenthesized expressions or
identifiers

E -> E + T | T

T -> T * F | F

F -> (E) | id

 LR grammar

◦ suitable for bottom-up parsing

◦ can be adapted to handle additional
 operators

 levels of precedence

◦ can not be used for top-down parsing because is left recursive !!!

Representative Grammars

 Non-left-recursive variant

 Suitable for top-down parsing

E -> T E’

E’-> + T E’| ε

T -> F T’

T’-> * F T’| ε

F -> (E) | id

Ambiguous Grammar

E -> E + E | E * E | (E) | id

 operators + and * are treated alike

 the grammar permits more than one

parse for the expression

◦ a+b*c

Syntax Error Handling

 nature of syntactic errors

 general strategies of error recovery

 parsing only correct code
◦ design and implementation – greatly simplified

 assisting the programmer to locate and track down
errors

 few languages with error handling in design

 error induced behavior is not present in language
specification

 error handling is left to compiler designer

 planning it from the beginning
◦ simplifies the structure of the compiler

◦ improves the handling of errors

Common Programming Error Levels

 lexical errors

◦ misspelling of identifiers, keywords or operators
 e.g. missing quotes around text intended as string

 syntactic errors

◦ misplaced, extra, missing tokens:
 semicolons, braces

 e.g. case without enclosing switch (Java)

 semantic errors

◦ type mismatches between operators and operands

◦ e.g. return statement for a Java method with result type void

 logical errors

◦ incorrect reasoning on the part of the programmer

◦ e.g. using in C the assignment = operator instead of the
comparison == operator

Viable Prefix Property

 precision of parsing methods allows efficient

syntactic error detection

 LL and LR parsing methods detect an error

as soon as possible

 Viable Prefix Property of parsing methods is

to issue an error

◦ when the token stream can not be parsed further

according to the grammar for the language

◦ when they see a prefix at the input that can not

be completed to for a string in the language

Error Handler Goals

 report the presence of errors clearly and
accurately

 recover from errors quickly in order to detect
subsequent errors

 add minimal overhead to the processing of
correct programs

However

 accurate detection of semantic and logical errors
at compile time is in general a difficult task !!!

 common errors are simple ones

 straightforward error-handling mechanisms
suffices

Error Reporting

 the place in the source program where

the error is detected

 the actual error is probably around the 2-

3 neighbor tokens

 common strategy

◦ print the offending line

◦ point to the position where the error was

detected

Error Recovery Strategies

 when error detected -> the parser should
recover

 no strategy universally acceptable

 few methods with broad applicability
◦ to quit with an informative error message at first

error
 additional errors are uncovered if the parser restores

itself to a state where processing of the input can
continue with reasonable hopes that further processing
is meaningful

 if error number increases then the compiler
 should stop after a given error number limit

 will avoid issuing an avalanche of “spurious” messages

Panic Mode Recovery

 on discovering an error

 the parser discards input symbols

 one at a time

 until is found one of a designated set of
synchronizing tokens
◦ delimiters ; or }

◦ have a clear and unambiguous role

◦ must be selected by the compiler designer

 skips considerable amount of input

 no checking for additional errors

 simple

 guaranteed not to go on an infinite loop

Phrase-Level Recovery

 on discovering an error

 to perform local correction on the remaining input

 to replace the remaining input by some string that allows the
parser to continue

 examples

◦ to replace a comma by a semicolon

◦ to delete an extraneous semicolon

◦ to insert a missing semicolon

 the choice of local correction is left to the compiler designer

 to choose replacements that do not lead to infinite loops

 difficulty in coping with situations in which the actual error
has occurred before the detection point

Error Productions

 to equip the grammar with productions

which generate erroneous constructs

 such a parser detects the anticipated

errors when an error production is used

during parsing

 the parser can generate appropriate error

diagnostics

Global Correction

 ideally a compiler would make as few changes as possible in
processing an incorrect string

 algorithms for choosing the minimal sequence of changes to
obtain globally a least-cost correction

◦ given an incorrect input x

◦ to find a parse tree for a related string y

◦ such as the number of insertions, deletions and changes of
tokens required to transform x into y is as small as possible

 too costly to implement in time and space

 only of theoretical interest

 a closest correct program may not have the same semantics
as the intended erroneous one

 the least cost correction is used for

◦ evaluating error recovery techniques

◦ finding optimal replacement strings for phrase-level recovery

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

