
Compiler Design

Syntax Analysis

Introduction to Syntax Analysis

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Syntax Analysis

 Syntax Rules

 The Role of the Parser

 Types of Parsers

 Representative Grammars

 Ambiguous Grammars

 Syntax Error Handling

Syntax Analysis

 parsing methods typically used in

compilers

 basic concepts

 techniques suitable for hand

implementation

 algorithms used in automated tools

 recovery methods from common errors

Syntax Rules

 each programming language has precise rules that
prescribe the syntactic structure of well formed
programs

 e.g.: a C program
◦ functions

 declarations

 statements
 expressions

 can be expressed as
◦ context-free grammars

◦ BNF rules

 grammars offers benefits for both
◦ language designers

◦ compiler writers

Grammar Benefits

 precise syntactic specification of a
programming language

 from certain classes of grammars efficient
parsers can be automatically generated

 the structure disclosed by a grammar is
useful for
◦ translating source programs object code

◦ detecting errors

 allows a language to
◦ to evolve

◦ to be developed iteratively and incrementally

Topics

 how a parser fits into a typical compiler

 take a look at typical grammars for

arithmetic expressions

◦ carry over to most programming constructs

 error handling

◦ finding that the input can not be generated by

the grammar

The Role of the Parser

 to receive a string of tokens from the lexical
analyzer

 to verify whether the string of token names
can be generated by the grammar for a
source language

 to report any syntax errors in an intelligible
way

 to recover from commonly occurring errors

 to continue processing the remainder of the
program

The Role of the Parser

 to construct a parse tree

 to pass it to the rest of the compiler for

further processing

 to intersperse with checking and

translations actions

Types of Parsers

 Universal

◦ can parse any grammar
 Cocke-Younger-Kasami parsing methods

 Earley’s algorithm

◦ inefficient to be used in production of compilers

 Top-down - build parse trees

◦ from top (root)

◦ to the bottom (leaves)

 Bottom-up

◦ start from leaves

◦ work their way up to the root

 Both top-down and bottom-up

◦ scan the input from left to right

◦ one symbol at a time

Types of Parsers

 most efficient top-down and bottom-up

work for subclasses of grammars

◦ LL and LR are expressive enough to describe

most of the syntactic constructs in modern

programming languages

 by hand implemented parsers use LL

grammars

 tool generated parsers use the larger

class of LR grammars

Parser

 Input

◦ Stream of tokens

 Output

◦ Some representation of the parse tree

 Tasks

◦ Collecting information about various tokens

into the symbol table

◦ Performing type, domain checking,…

◦ Generating intermediate code

Representative Grammars

 constructs
◦ starting with keywords
 while, int

◦ are easy to parse

◦ keywords guide the choice of the grammar
production that must be applied to match the
input

 expressions
◦ are more challenging
 because of operators which have

 association rules

 precedence

Representative Grammars

 E – expressions of terms separated by + signs

 T – terms consisting of factors separated by * signs

 F – factors which can be parenthesized expressions or
identifiers

E -> E + T | T

T -> T * F | F

F -> (E) | id

 LR grammar

◦ suitable for bottom-up parsing

◦ can be adapted to handle additional
 operators

 levels of precedence

◦ can not be used for top-down parsing because is left recursive !!!

Representative Grammars

 Non-left-recursive variant

 Suitable for top-down parsing

E -> T E’

E’-> + T E’| ε

T -> F T’

T’-> * F T’| ε

F -> (E) | id

Ambiguous Grammar

E -> E + E | E * E | (E) | id

 operators + and * are treated alike

 the grammar permits more than one

parse for the expression

◦ a+b*c

Syntax Error Handling

 nature of syntactic errors

 general strategies of error recovery

 parsing only correct code
◦ design and implementation – greatly simplified

 assisting the programmer to locate and track down
errors

 few languages with error handling in design

 error induced behavior is not present in language
specification

 error handling is left to compiler designer

 planning it from the beginning
◦ simplifies the structure of the compiler

◦ improves the handling of errors

Common Programming Error Levels

 lexical errors

◦ misspelling of identifiers, keywords or operators
 e.g. missing quotes around text intended as string

 syntactic errors

◦ misplaced, extra, missing tokens:
 semicolons, braces

 e.g. case without enclosing switch (Java)

 semantic errors

◦ type mismatches between operators and operands

◦ e.g. return statement for a Java method with result type void

 logical errors

◦ incorrect reasoning on the part of the programmer

◦ e.g. using in C the assignment = operator instead of the
comparison == operator

Viable Prefix Property

 precision of parsing methods allows efficient

syntactic error detection

 LL and LR parsing methods detect an error

as soon as possible

 Viable Prefix Property of parsing methods is

to issue an error

◦ when the token stream can not be parsed further

according to the grammar for the language

◦ when they see a prefix at the input that can not

be completed to for a string in the language

Error Handler Goals

 report the presence of errors clearly and
accurately

 recover from errors quickly in order to detect
subsequent errors

 add minimal overhead to the processing of
correct programs

However

 accurate detection of semantic and logical errors
at compile time is in general a difficult task !!!

 common errors are simple ones

 straightforward error-handling mechanisms
suffices

Error Reporting

 the place in the source program where

the error is detected

 the actual error is probably around the 2-

3 neighbor tokens

 common strategy

◦ print the offending line

◦ point to the position where the error was

detected

Error Recovery Strategies

 when error detected -> the parser should
recover

 no strategy universally acceptable

 few methods with broad applicability
◦ to quit with an informative error message at first

error
 additional errors are uncovered if the parser restores

itself to a state where processing of the input can
continue with reasonable hopes that further processing
is meaningful

 if error number increases then the compiler
 should stop after a given error number limit

 will avoid issuing an avalanche of “spurious” messages

Panic Mode Recovery

 on discovering an error

 the parser discards input symbols

 one at a time

 until is found one of a designated set of
synchronizing tokens
◦ delimiters ; or }

◦ have a clear and unambiguous role

◦ must be selected by the compiler designer

 skips considerable amount of input

 no checking for additional errors

 simple

 guaranteed not to go on an infinite loop

Phrase-Level Recovery

 on discovering an error

 to perform local correction on the remaining input

 to replace the remaining input by some string that allows the
parser to continue

 examples

◦ to replace a comma by a semicolon

◦ to delete an extraneous semicolon

◦ to insert a missing semicolon

 the choice of local correction is left to the compiler designer

 to choose replacements that do not lead to infinite loops

 difficulty in coping with situations in which the actual error
has occurred before the detection point

Error Productions

 to equip the grammar with productions

which generate erroneous constructs

 such a parser detects the anticipated

errors when an error production is used

during parsing

 the parser can generate appropriate error

diagnostics

Global Correction

 ideally a compiler would make as few changes as possible in
processing an incorrect string

 algorithms for choosing the minimal sequence of changes to
obtain globally a least-cost correction

◦ given an incorrect input x

◦ to find a parse tree for a related string y

◦ such as the number of insertions, deletions and changes of
tokens required to transform x into y is as small as possible

 too costly to implement in time and space

 only of theoretical interest

 a closest correct program may not have the same semantics
as the intended erroneous one

 the least cost correction is used for

◦ evaluating error recovery techniques

◦ finding optimal replacement strings for phrase-level recovery

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

