Compiler Design Syntax Analysis Context Free Grammars conf. dr. ing. Ciprian-Bogdan Chirila chirila@cs.upt.ro http://www.cs.upt.ro/~chirila

0

Outline

- The Formal Definition of a Context Free Grammar
- Notational Conventions
- Derivations
- Parse Trees and Derivations
- Ambiguity
- Verifying the Language Generated by a Grammar
- Context-Free Grammars versus Regular Expressions

Grammars

- to systematically describe syntax of programming language constructs
 - expressions
 - statements
- stmt->if (expr) stmt else stmt
- notions
 - parsing
 - derivations
 - the order in which productions are applied during parsing

The Formal Definition of a Context Free Grammar

- terminals
 - basic symbols from which strings are formed
 - token name = terminal
 - output of the lexical analyzer
 - e.g.: if, else, (and)
- non-terminals
 - syntactic variables that denotes sets of strings
 - e.g.: stmt, expr
 - define the language generated by the grammar
 - impose a hierarchical structure on the language
 - key to syntax analysis and translation

The Formal Definition of a Context Free Grammar

- start symbol
 - the set of its strings denotes the language generated by the grammar
 - conventionally are listed first
- productions of a grammar
 - specify the manner in which terminals and nonterminals are combined to form strings
 - consists in:
 - a non-terminal called head or left side of the production
 - the symbol -> or ::=
 - body or right side
 - contains zero or more terminals or non-terminals
 - describe one way the strings of the non-terminal at the head can be constructed

Grammar for Simple Arithmetic Expressions Example

- terminals
 - id + * / ()
- non-terminals
 - expression -> expression + term
 - expression -> expression term
 - expression -> term
 - term -> term * factor
 - term -> term / factor
 - term -> factor
 - factor -> (expression)
 - factor -> id
- start symbol
 - expression

Notational Conventions

- Terminals
 - Lowercase letters: a, b, c
 - Operator symbols: +, *, ...
 - Punctuation symbols: (),;
 - Digits 0,1,2,3,..9
 - Boldface strings id, if
- Non-terminals
 - Uppercase letters early in the alphabet: A, B, C
 - Letter S is usually the start symbol
 - Lowercase, italic: expr, stmt
 - expressions E, terms T, factors F

Notational Conventions

- Grammar symbols
 - either non-terminals or terminals
 - alphabet late uppercase letters: X,Y,Z
- Strings of terminals
 - alphabet late lowercase letters: u,v,...,z
- Strings of grammar symbols
 - Lowercase Greek letters: α, β, γ
 - **Α->**α
 - A is the head
 - α is the body

Notational Conventions

- Set of productions
 - $A \rightarrow \alpha_1, A \rightarrow \alpha_2 \dots, A \rightarrow \alpha_k$
 - common head A
 - A productions
 - A-> $\alpha_1 | \alpha_2 | \dots | \alpha_k$
 - $\alpha_1 | \alpha_2 | \dots | \alpha_k$ alternatives for A
- The head of the first production is the start symbol

Concise Grammar Example

- E-> E + T | E T | T
- T-> T * F | T / F | F
- F -> (E) | id
- E,T, F are non-terminals
- E is start symbol
- the remaining symbols are terminals

Derivations

- productions rewriting rules
- to begin with the start symbol
- to replace a non-terminal by the body of its productions
- top-down parsing
 - derivational view
- bottom-up parsing
 - rightmost derivations
 - the right most terminal is rewritten at each step

Derivation Example

- E -> E + E | E * E | -E | (E) | id
- E -> -E
 - replacement is noted E =>-E
 - is read as E derives –E
- E -> (E)
 - E * E => (E) * E or
 - E * E => E * (E)
- E => -E => -(E) => -(id)
 - derivation of –(id) from E
 - -(id) is one particular instance of an expression

General Definition of Derivation

- given non-terminal A in the middle of αAβ
- A->γ
- αAβ => αγβ
- => means derives in one step
- $\alpha_1 => \alpha_2 => \dots => \alpha_n$
 - rewrites α_1 to α_n
 - $\circ \alpha_1$ derives α_n

General Definition of Derivation

- *=> means "derives in zero or more steps"
 - α=>α
 - $\alpha \stackrel{*}{=} > \beta$ and $\beta = > \gamma$ then $\alpha \stackrel{*}{=} > \gamma$
- => means "derives in one or more steps"
- if
 - S is the starting symbol of a grammar G
 S^{*}=>α

then

 $\circ \alpha$ is the sentential form of G

Sentential Form

- may contain terminals and non-terminals
- may be empty
- sentence of G is a sentential form with no non-terminals
- the language generated by a grammar is a set of sentences
- L(G) the language generated by G
- a string of terminals w is in L(G) iff w is a sentence of G (S^{*}=>w)

Context Free Language

- a language which can be generated by a grammar
- if two grammars generate the same language then they are equivalent
- -(id+id) is a sentence of the grammar

because of the derivation

E=>-E=>-(E+E)=>-(id+E)=>-(id+id) E^{*}=>-(id+id)

Derivation Choices

- E=>-E=>-(E+E)=>-(id+E)=>-(id+id)
- E=>-E=>-(E+E)=>-(E+id)=>-(id+id)
- the order of replacement is different
- leftmost derivations
 - \circ the leftmost terminal in α is replaced
 - $\circ \alpha_{Im} > \beta$
- rightmost derivations
 - \circ the rightmost terminal in α is replaced

° α≣>β

Derivation Examples

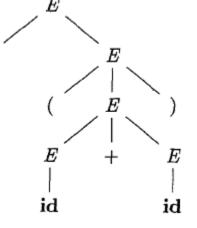
- $E_{Im}^{=>-}E_{Im}^{=>-}(E+E)_{Im}^{=>-}(id+E)_{Im}^{=>-}(id+id)$
- $E_{rm}^{=}-E_{rm}^{=}-(E+E)_{rm}^{=}-(E+id)_{rm}^{=}-(id+id)$
- every leftmost step is denoted by
 - · ω**Α**γ-> ωδγ
 - $\circ \omega$ has terminals only
 - γ string of grammar symbols
- α derives β
 - $\alpha \stackrel{*}{=} \beta$
- S->α
 - $\circ \alpha$ left sentential form of the grammar
- rightmost derivations = canonical derivations

- graphical representation of a derivation
- filters out the order in which productions replace non-terminals
- each interior node of a parse tree represents the application of a production
- the interior node is labeled with the nonterminal A in the head
- the children are labeled from left to right by symbols in the body of the production by which A was replaced during derivation

- leaves of a parse tree are represented by terminals or non-terminals
- from left to right represent
 - a sentential form
 - the frontier of the tree
- $\alpha_1 = > \alpha_2 = > \dots = > \alpha_n$ where $\alpha_1 = A$

 \circ for each sentential form α_i we can construct a parse tree whose frontier is α_i

- parse tree for –(id+id)
- Induction:
- suppose we build parse tree
 with yield

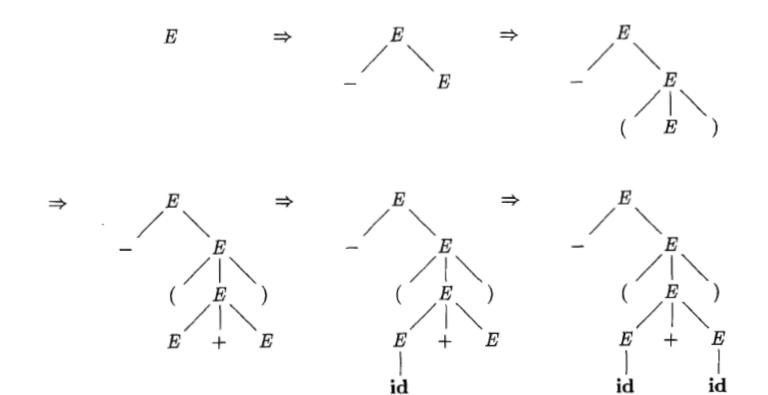


- $\alpha_{i-1} = X_1 X_2 \dots X_k$
- where X_i=non-terminal of terminal
- α_i is derived from α_{i-1} by replacing X_i by
- $\beta = Y_1 Y_2 \dots Y_m$
- X_j -> β
- $\alpha_{i} = X_{1} X_{2} \dots X_{j-1} \beta X_{j+1} \dots X_{k}$

- find the j-th leaf from the left in the current parse tree (X_i)
- give this leaf m children labeled $Y_1 Y_2 \dots Y_m$ from the left to right
- if m=0 then β=ε
 - \circ we give one child labeled ϵ

- many to one relationship between
 - derivations
 - parse trees
- one to one relationship between
 - leftmost or rightmost derivations
 - parse trees
 - filter out the variations in the order

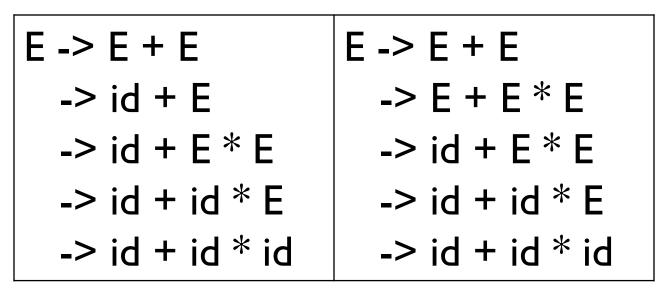
Sequence of parse trees for derivation



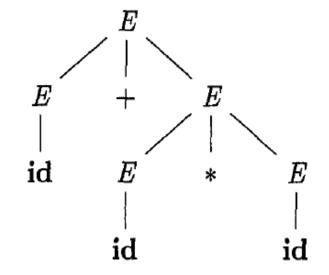


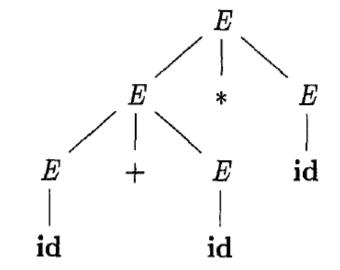
Ambiguity

- ambiguous grammar
 - grammar that produces more than one parse tree for some sentence
- id + id * id



Ambiguity





Verifying the Language Generated by a Grammar

- compiler designers rarely do so for a complete programming language grammar
- to reason whether a given set of productions generates a particular language
- troublesome constructs can be studied
 - constructing a concise abstract grammar
 - analyzing the language that it generates
- a proof for a grammar G generates a language L
 - every string generated by G is in L
 - every string in L can be generated by G

• S->(S) S | ɛ

- generates all strings of balanced parentheses
- to show that
 - any string derivable from S is balanced
 - every balanced string is derivable from S
- using an inductive proof on a number of steps n in a derivation

Any String Derivable from S is Balanced

- Basis
 - ∘ n=l
 - the only string of terminals derivable from S in one step is the empty string
 - the empty string is balanced

Any String Derivable from S is Balanced

- Induction
 - we assume that all derivations of fewer than n steps produce balanced sentences
 - let us consider a leftmost derivation of exactly n steps
 - $S \equiv (S) S \stackrel{*}{=} (x) S \stackrel{*}{=} (x) S \stackrel{*}{=} (x) y$
 - ° x, y
 - take fewer than n steps
 - are balanced by hypothesis
 - so (x)y is balanced
 - the number of left and right parentheses are equal
 - every prefix has a no of left parentheses >= no of right parentheses

Every Balanced is String Derivable from S

- Basis
 - if the length is 0 then it must be the empty string
 - the empty string is balanced
- Induction
 - every balanced string has a length
 - we assume that any string of length less than 2n is derivable from S
 - let us consider a balanced string w of length 2n, n>=l

Every Balanced is String Derivable from S

- Induction
 - w begins with left parenthesis
 - let (x)
 - be the shortest non-empty prefix of w
 - having equal number of left and right parentheses
 - w=(x)y, where both x and y
 - are balanced
 - are of length less than 2n
 - are derivable from S
 - we can find a derivation
 - S=>(S)S[±]≥(x)S[±]≥(x)y
 - o proving that w=(x)y is also derivable from S

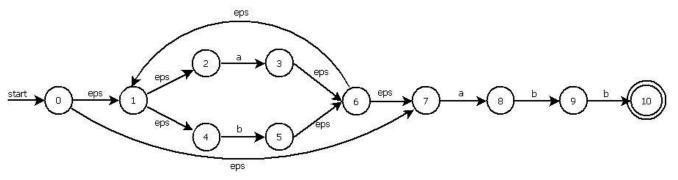
Context Free Grammars Versus Regular Expressions

- grammars are more powerful notations than regular expressions
- any construct that can be described by a RE can be described by a grammar
- not vice-versa

NFA to Grammar

- for each state i we create a non-terminal
 A_i
- a transition from i to j on input a is translated as A_i->aA_i
- a transition from i to j on input ε is translated as A_i->A_i
- if i is an accepting state A_i-> ε
- if i is the start state make A_i the start symbol of the grammar

• (a|b)*abb



- $A_0 \rightarrow aA_0 \mid bA_0 \mid aA_8$
- A₈ -> bA₉
- A₉ -> bA₁₀
- Α₁₀ -> ε

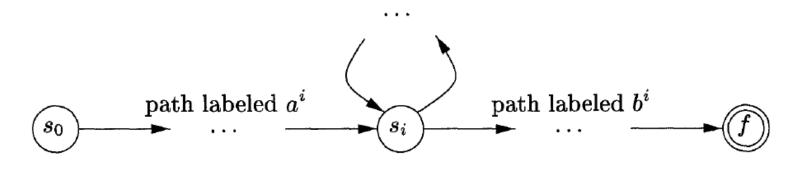
- L= $\{a^nb^n|n \ge I\}$
- typical language example that
 - has an equal number of a and b's
 - can be described by a grammar
 - can not be described by a regular expression

- let us suppose that L is defined by a regular expression
- we construct a DFA D with a finite number of states k to accept L
- D has only k states

- for an input with more than k a's
- D must enter some state twice, say s_i
- the path from s_i to itself is labeled with a^{j-i}
- aⁱbⁱ is in the language so there must be a path labeled bⁱ from s_i to an accepting state f
- there is also a path from s₀ through s_i to f labeled a^jbⁱ

path labeled a^{j-i}

so D accepts a^jbⁱ also which is not in the language



Conclusion

- finite automata cannot count !!!
- the automata can not keep the count of a's before it sees the b's

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman – Compilers, Principles, Techniques and Tools, Second Edition, 2007