
Compiler Design

Syntax Analysis

Context Free Grammars
conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 The Formal Definition of a Context Free
Grammar

 Notational Conventions

 Derivations

 Parse Trees and Derivations

 Ambiguity

 Verifying the Language Generated by a
Grammar

 Context-Free Grammars versus Regular
Expressions

Grammars

 to systematically describe syntax of
programming language constructs

◦ expressions

◦ statements

 stmt->if (expr) stmt else stmt

 notions

◦ parsing

◦ derivations

 the order in which productions are applied during
parsing

The Formal Definition of a Context

Free Grammar
 terminals
◦ basic symbols from which strings are formed

◦ token name = terminal

◦ output of the lexical analyzer

◦ e.g.: if, else, (and)

 non-terminals
◦ syntactic variables that denotes sets of strings

◦ e.g.: stmt, expr

◦ define the language generated by the grammar

◦ impose a hierarchical structure on the language

◦ key to syntax analysis and translation

The Formal Definition of a Context

Free Grammar
 start symbol
◦ the set of its strings denotes the language generated

by the grammar

◦ conventionally are listed first

 productions of a grammar
◦ specify the manner in which terminals and non-

terminals are combined to form strings

◦ consists in:
 a non-terminal called head or left side of the production

 the symbol -> or ::=

 body or right side
 contains zero or more terminals or non-terminals

 describe one way the strings of the non-terminal at the head can be
constructed

Grammar for Simple Arithmetic

Expressions Example
 terminals
◦ id + - * / ()

 non-terminals
◦ expression -> expression + term

◦ expression -> expression – term

◦ expression -> term

◦ term -> term * factor

◦ term -> term / factor

◦ term -> factor

◦ factor -> (expression)

◦ factor -> id

 start symbol
◦ expression

Notational Conventions

 Terminals
◦ Lowercase letters: a, b, c

◦ Operator symbols: +, *, …

◦ Punctuation symbols: () , ;

◦ Digits 0,1,2,3,..9

◦ Boldface strings id, if

 Non-terminals
◦ Uppercase letters early in the alphabet: A, B, C

◦ Letter S is usually the start symbol

◦ Lowercase, italic: expr, stmt

◦ expressions - E, terms - T, factors - F

Notational Conventions

 Grammar symbols

◦ either non-terminals or terminals

◦ alphabet late uppercase letters: X, Y, Z

 Strings of terminals

◦ alphabet late lowercase letters: u,v,…,z

 Strings of grammar symbols
◦ Lowercase Greek letters: α,β,γ

◦ A->α
 A is the head

 α is the body

Notational Conventions

 Set of productions

◦ A->α1, A->α2 … , A->αk

◦ common head A

◦ A productions

◦ A->α1|α2|… |αk

◦ α1|α2|… |αk - alternatives for A

 The head of the first production is the

start symbol

Concise Grammar Example

 E-> E + T | E – T | T

 T-> T * F | T / F | F

 F -> (E) | id

 E,T, F are non-terminals

 E is start symbol

 the remaining symbols are terminals

Derivations

 productions rewriting rules

 to begin with the start symbol

 to replace a non-terminal by the body of
its productions

 top-down parsing

◦ derivational view

 bottom-up parsing

◦ rightmost derivations

◦ the right most terminal is rewritten at each
step

Derivation Example

 E -> E + E | E * E | -E | (E) | id

 E -> -E

◦ replacement is noted E =>-E

◦ is read as E derives –E

 E -> (E)

◦ E * E => (E) * E or

◦ E * E => E * (E)

 E => -E => -(E) => -(id)

◦ derivation of –(id) from E

◦ -(id) is one particular instance of an expression

General Definition of Derivation

 given non-terminal A in the middle of

αAβ

 A->γ

 αAβ => αγβ

 => means derives in one step

 α1=>α2=>…=>αn

◦ rewrites α1 to αn

◦ α1 derives αn

General Definition of Derivation

 => means “derives in zero or more steps”

◦ α=>α

◦ α=>β and β=>γ then α=>γ

 => means “derives in one or more steps”

 if

◦ S is the starting symbol of a grammar G

◦ S=>α

 then

◦ α is the sentential form of G

*

*

* *

+

*

Sentential Form

 may contain terminals and non-terminals

 may be empty

 sentence of G is a sentential form with no
non-terminals

 the language generated by a grammar is a
set of sentences

 L(G) – the language generated by G

 a string of terminals w is in L(G) iff w is a
sentence of G (S=>w)

*

Context Free Language

 a language which can be generated by a

grammar

 if two grammars generate the same

language then they are equivalent

 -(id+id) is a sentence of the grammar

because of the derivation

E=>-E=>-(E+E)=>-(id+E)=>-(id+id)

E=>-(id+id)
*

Derivation Choices

 E=>-E=>-(E+E)=>-(id+E)=>-(id+id)

 E=>-E=>-(E+E)=>-(E+id)=>-(id+id)

 the order of replacement is different

 leftmost derivations

◦ the leftmost terminal in α is replaced

◦ α=>β

 rightmost derivations

◦ the rightmost terminal in α is replaced

◦ α=>β

lm

rm

Derivation Examples

 E=>-E=>-(E+E)=>-(id+E)=>-(id+id)

 E=>-E=>-(E+E)=>-(E+id)=>-(id+id)

 every leftmost step is denoted by

◦ ωAγ-> ωδγ

◦ ω – has terminals only

◦ γ - string of grammar symbols

 α derives β

◦ α=>β

 S->α

◦ α – left sentential form of the grammar

 rightmost derivations = canonical derivations

lm lm lm lm

rm rm rm rm

*

lm

Parse Trees and Derivations

 graphical representation of a derivation

 filters out the order in which productions
replace non-terminals

 each interior node of a parse tree
represents the application of a production

 the interior node is labeled with the non-
terminal A in the head

 the children are labeled from left to right by
symbols in the body of the production by
which A was replaced during derivation

Parse Trees and Derivations

 leaves of a parse tree are represented by

terminals or non-terminals

 from left to right represent

◦ a sentential form

◦ the frontier of the tree

 α1=>α2=>…=>αn where α1=A

◦ for each sentential form αi we can construct a

parse tree whose frontier is αi

Parse Trees and Derivations

 parse tree for –(id+id)

 Induction:

 suppose we build parse tree

with yield

 αi-1= X1 X2…Xk

 where Xi=non-terminal of terminal

 αi is derived from αi-1 by replacing Xj by
 β= Y1 Y2… Ym

 Xj -> β
 αi= X1 X2…Xj-1βXj+1…Xk

Parse Trees and Derivations

 find the j-th leaf from the left in the

current parse tree (Xj)

 give this leaf m children labeled

Y1 Y2…Ym from the left to right

 if m=0 then β=ε

◦ we give one child labeled ε

Parse Trees and Derivations

 many to one relationship between

◦ derivations

◦ parse trees

 one to one relationship between

◦ leftmost or rightmost derivations

◦ parse trees

 filter out the variations in the order

Sequence of parse trees for

derivation

Ambiguity

 ambiguous grammar

◦ grammar that produces more than one parse

tree for some sentence

 id + id * id

E -> E + E

-> id + E

-> id + E * E

-> id + id * E

-> id + id * id

E -> E + E

-> E + E * E

-> id + E * E

-> id + id * E

-> id + id * id

Ambiguity

Verifying the Language Generated

by a Grammar
 compiler designers rarely do so for a

complete programming language grammar

 to reason whether a given set of
productions generates a particular language

 troublesome constructs can be studied
◦ constructing a concise abstract grammar

◦ analyzing the language that it generates

 a proof for a grammar G generates a
language L
◦ every string generated by G is in L

◦ every string in L can be generated by G

Example

 S->(S) S | ε

◦ generates all strings of balanced

parentheses

 to show that

◦ any string derivable from S is balanced

◦ every balanced string is derivable from S

 using an inductive proof on a number

of steps n in a derivation

Any String Derivable from S is

Balanced
 Basis

◦ n=1

◦ the only string of terminals derivable from S

in one step is the empty string

◦ the empty string is balanced

Any String Derivable from S is

Balanced
 Induction
◦ we assume that all derivations of fewer than n

steps produce balanced sentences

◦ let us consider a leftmost derivation of exactly n
steps

◦ S=>(S)S=>(x)S=>(x)y

◦ x, y
 take fewer than n steps

 are balanced – by hypothesis

◦ so (x)y is balanced
 the number of left and right parentheses are equal

 every prefix has a no of left parentheses >= no of right
parentheses

lm lm lm
* *

Every Balanced is String Derivable

from S
 Basis

◦ if the length is 0 then it must be the empty
string

◦ the empty string is balanced

 Induction

◦ every balanced string has a length

◦ we assume that any string of length less than
2n is derivable from S

◦ let us consider a balanced string w of length
2n, n>=1

Every Balanced is String Derivable

from S
 Induction
◦ w begins with left parenthesis

◦ let (x)
 be the shortest non-empty prefix of w

 having equal number of left and right parentheses

◦ w=(x)y, where both x and y
 are balanced

 are of length less than 2n

 are derivable from S

◦ we can find a derivation
 S=>(S)S=>(x)S=>(x)y

◦ proving that w=(x)y is also derivable from S

* *

Context Free Grammars Versus

Regular Expressions
 grammars are more powerful notations

than regular expressions

 any construct that can be described by a

RE can be described by a grammar

 not vice-versa

NFA to Grammar

 for each state i we create a non-terminal

Ai

 a transition from i to j on input a is

translated as Ai->aAj

 a transition from i to j on input ε is

translated as Ai->Aj

 if i is an accepting state Ai-> ε

 if i is the start state make Ai the start

symbol of the grammar

Example

 (a|b)*abb

 A0 -> aA0 | bA0 | aA8

 A8 -> bA9

 A9 -> bA10

 A10 -> ε

Example

 L={anbn|n>=1}

 typical language example that

◦ has an equal number of a and b’s

◦ can be described by a grammar

◦ can not be described by a regular expression

Example

 let us suppose that L is defined by a

regular expression

 we construct a DFA D with a finite

number of states k to accept L

 D has only k states

Example

 for an input with more than k a’s

 D must enter some state twice, say si

 the path from si to itself is labeled with aj-i

 aibi is in the language so there must be a path labeled bi

from si to an accepting state f

 there is also a path from s0 through si to f labeled ajbi

 so D accepts ajbi also which is not in the language

Conclusion

 finite automata cannot count !!!

 the automata can not keep the count of

a’s before it sees the b’s

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

