
Compiler Design

Syntax Analysis

Context Free Grammars
conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 The Formal Definition of a Context Free
Grammar

 Notational Conventions

 Derivations

 Parse Trees and Derivations

 Ambiguity

 Verifying the Language Generated by a
Grammar

 Context-Free Grammars versus Regular
Expressions

Grammars

 to systematically describe syntax of
programming language constructs

◦ expressions

◦ statements

 stmt->if (expr) stmt else stmt

 notions

◦ parsing

◦ derivations

 the order in which productions are applied during
parsing

The Formal Definition of a Context

Free Grammar
 terminals
◦ basic symbols from which strings are formed

◦ token name = terminal

◦ output of the lexical analyzer

◦ e.g.: if, else, (and)

 non-terminals
◦ syntactic variables that denotes sets of strings

◦ e.g.: stmt, expr

◦ define the language generated by the grammar

◦ impose a hierarchical structure on the language

◦ key to syntax analysis and translation

The Formal Definition of a Context

Free Grammar
 start symbol
◦ the set of its strings denotes the language generated

by the grammar

◦ conventionally are listed first

 productions of a grammar
◦ specify the manner in which terminals and non-

terminals are combined to form strings

◦ consists in:
 a non-terminal called head or left side of the production

 the symbol -> or ::=

 body or right side
 contains zero or more terminals or non-terminals

 describe one way the strings of the non-terminal at the head can be
constructed

Grammar for Simple Arithmetic

Expressions Example
 terminals
◦ id + - * / ()

 non-terminals
◦ expression -> expression + term

◦ expression -> expression – term

◦ expression -> term

◦ term -> term * factor

◦ term -> term / factor

◦ term -> factor

◦ factor -> (expression)

◦ factor -> id

 start symbol
◦ expression

Notational Conventions

 Terminals
◦ Lowercase letters: a, b, c

◦ Operator symbols: +, *, …

◦ Punctuation symbols: () , ;

◦ Digits 0,1,2,3,..9

◦ Boldface strings id, if

 Non-terminals
◦ Uppercase letters early in the alphabet: A, B, C

◦ Letter S is usually the start symbol

◦ Lowercase, italic: expr, stmt

◦ expressions - E, terms - T, factors - F

Notational Conventions

 Grammar symbols

◦ either non-terminals or terminals

◦ alphabet late uppercase letters: X, Y, Z

 Strings of terminals

◦ alphabet late lowercase letters: u,v,…,z

 Strings of grammar symbols
◦ Lowercase Greek letters: α,β,γ

◦ A->α
 A is the head

 α is the body

Notational Conventions

 Set of productions

◦ A->α1, A->α2 … , A->αk

◦ common head A

◦ A productions

◦ A->α1|α2|… |αk

◦ α1|α2|… |αk - alternatives for A

 The head of the first production is the

start symbol

Concise Grammar Example

 E-> E + T | E – T | T

 T-> T * F | T / F | F

 F -> (E) | id

 E,T, F are non-terminals

 E is start symbol

 the remaining symbols are terminals

Derivations

 productions rewriting rules

 to begin with the start symbol

 to replace a non-terminal by the body of
its productions

 top-down parsing

◦ derivational view

 bottom-up parsing

◦ rightmost derivations

◦ the right most terminal is rewritten at each
step

Derivation Example

 E -> E + E | E * E | -E | (E) | id

 E -> -E

◦ replacement is noted E =>-E

◦ is read as E derives –E

 E -> (E)

◦ E * E => (E) * E or

◦ E * E => E * (E)

 E => -E => -(E) => -(id)

◦ derivation of –(id) from E

◦ -(id) is one particular instance of an expression

General Definition of Derivation

 given non-terminal A in the middle of

αAβ

 A->γ

 αAβ => αγβ

 => means derives in one step

 α1=>α2=>…=>αn

◦ rewrites α1 to αn

◦ α1 derives αn

General Definition of Derivation

 => means “derives in zero or more steps”

◦ α=>α

◦ α=>β and β=>γ then α=>γ

 => means “derives in one or more steps”

 if

◦ S is the starting symbol of a grammar G

◦ S=>α

 then

◦ α is the sentential form of G

*

*

* *

+

*

Sentential Form

 may contain terminals and non-terminals

 may be empty

 sentence of G is a sentential form with no
non-terminals

 the language generated by a grammar is a
set of sentences

 L(G) – the language generated by G

 a string of terminals w is in L(G) iff w is a
sentence of G (S=>w)

*

Context Free Language

 a language which can be generated by a

grammar

 if two grammars generate the same

language then they are equivalent

 -(id+id) is a sentence of the grammar

because of the derivation

E=>-E=>-(E+E)=>-(id+E)=>-(id+id)

E=>-(id+id)
*

Derivation Choices

 E=>-E=>-(E+E)=>-(id+E)=>-(id+id)

 E=>-E=>-(E+E)=>-(E+id)=>-(id+id)

 the order of replacement is different

 leftmost derivations

◦ the leftmost terminal in α is replaced

◦ α=>β

 rightmost derivations

◦ the rightmost terminal in α is replaced

◦ α=>β

lm

rm

Derivation Examples

 E=>-E=>-(E+E)=>-(id+E)=>-(id+id)

 E=>-E=>-(E+E)=>-(E+id)=>-(id+id)

 every leftmost step is denoted by

◦ ωAγ-> ωδγ

◦ ω – has terminals only

◦ γ - string of grammar symbols

 α derives β

◦ α=>β

 S->α

◦ α – left sentential form of the grammar

 rightmost derivations = canonical derivations

lm lm lm lm

rm rm rm rm

*

lm

Parse Trees and Derivations

 graphical representation of a derivation

 filters out the order in which productions
replace non-terminals

 each interior node of a parse tree
represents the application of a production

 the interior node is labeled with the non-
terminal A in the head

 the children are labeled from left to right by
symbols in the body of the production by
which A was replaced during derivation

Parse Trees and Derivations

 leaves of a parse tree are represented by

terminals or non-terminals

 from left to right represent

◦ a sentential form

◦ the frontier of the tree

 α1=>α2=>…=>αn where α1=A

◦ for each sentential form αi we can construct a

parse tree whose frontier is αi

Parse Trees and Derivations

 parse tree for –(id+id)

 Induction:

 suppose we build parse tree

with yield

 αi-1= X1 X2…Xk

 where Xi=non-terminal of terminal

 αi is derived from αi-1 by replacing Xj by
 β= Y1 Y2… Ym

 Xj -> β
 αi= X1 X2…Xj-1βXj+1…Xk

Parse Trees and Derivations

 find the j-th leaf from the left in the

current parse tree (Xj)

 give this leaf m children labeled

Y1 Y2…Ym from the left to right

 if m=0 then β=ε

◦ we give one child labeled ε

Parse Trees and Derivations

 many to one relationship between

◦ derivations

◦ parse trees

 one to one relationship between

◦ leftmost or rightmost derivations

◦ parse trees

 filter out the variations in the order

Sequence of parse trees for

derivation

Ambiguity

 ambiguous grammar

◦ grammar that produces more than one parse

tree for some sentence

 id + id * id

E -> E + E

-> id + E

-> id + E * E

-> id + id * E

-> id + id * id

E -> E + E

-> E + E * E

-> id + E * E

-> id + id * E

-> id + id * id

Ambiguity

Verifying the Language Generated

by a Grammar
 compiler designers rarely do so for a

complete programming language grammar

 to reason whether a given set of
productions generates a particular language

 troublesome constructs can be studied
◦ constructing a concise abstract grammar

◦ analyzing the language that it generates

 a proof for a grammar G generates a
language L
◦ every string generated by G is in L

◦ every string in L can be generated by G

Example

 S->(S) S | ε

◦ generates all strings of balanced

parentheses

 to show that

◦ any string derivable from S is balanced

◦ every balanced string is derivable from S

 using an inductive proof on a number

of steps n in a derivation

Any String Derivable from S is

Balanced
 Basis

◦ n=1

◦ the only string of terminals derivable from S

in one step is the empty string

◦ the empty string is balanced

Any String Derivable from S is

Balanced
 Induction
◦ we assume that all derivations of fewer than n

steps produce balanced sentences

◦ let us consider a leftmost derivation of exactly n
steps

◦ S=>(S)S=>(x)S=>(x)y

◦ x, y
 take fewer than n steps

 are balanced – by hypothesis

◦ so (x)y is balanced
 the number of left and right parentheses are equal

 every prefix has a no of left parentheses >= no of right
parentheses

lm lm lm
* *

Every Balanced is String Derivable

from S
 Basis

◦ if the length is 0 then it must be the empty
string

◦ the empty string is balanced

 Induction

◦ every balanced string has a length

◦ we assume that any string of length less than
2n is derivable from S

◦ let us consider a balanced string w of length
2n, n>=1

Every Balanced is String Derivable

from S
 Induction
◦ w begins with left parenthesis

◦ let (x)
 be the shortest non-empty prefix of w

 having equal number of left and right parentheses

◦ w=(x)y, where both x and y
 are balanced

 are of length less than 2n

 are derivable from S

◦ we can find a derivation
 S=>(S)S=>(x)S=>(x)y

◦ proving that w=(x)y is also derivable from S

* *

Context Free Grammars Versus

Regular Expressions
 grammars are more powerful notations

than regular expressions

 any construct that can be described by a

RE can be described by a grammar

 not vice-versa

NFA to Grammar

 for each state i we create a non-terminal

Ai

 a transition from i to j on input a is

translated as Ai->aAj

 a transition from i to j on input ε is

translated as Ai->Aj

 if i is an accepting state Ai-> ε

 if i is the start state make Ai the start

symbol of the grammar

Example

 (a|b)*abb

 A0 -> aA0 | bA0 | aA8

 A8 -> bA9

 A9 -> bA10

 A10 -> ε

Example

 L={anbn|n>=1}

 typical language example that

◦ has an equal number of a and b’s

◦ can be described by a grammar

◦ can not be described by a regular expression

Example

 let us suppose that L is defined by a

regular expression

 we construct a DFA D with a finite

number of states k to accept L

 D has only k states

Example

 for an input with more than k a’s

 D must enter some state twice, say si

 the path from si to itself is labeled with aj-i

 aibi is in the language so there must be a path labeled bi

from si to an accepting state f

 there is also a path from s0 through si to f labeled ajbi

 so D accepts ajbi also which is not in the language

Conclusion

 finite automata cannot count !!!

 the automata can not keep the count of

a’s before it sees the b’s

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

