
Compiler Design

Syntax Analysis

Writing a Grammar

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Lexical Versus Syntactic Analysis

 Eliminating Ambiguity

 Elimination of Left Recursion

 Left Factoring

 Non-Context-Free Language Constructs

Grammars

 describe most of the programming language
syntax

 some aspects can not be described by a
context-free grammar
◦ identifiers must be declared before they are used

 sequence of tokens accepted by the parser
forms a superset of the programming
language

 Subsequent phases of the compiler will
analyze the parser output to ensure
compliance with supplementary rules

Next…

 How to divide the work between lexical

analyzer and parser

 Transformations to make a grammar

suitable for top-down parsing

◦ Left recursion elimination

◦ Left factoring

 Programming language constructs which

cannot be described by any grammar

Lexical vs. Syntactic Analysis

 Everything that can be described by a

regular expression can be described by a

grammar

Why to use regular expressions to

define lexical syntax of a language ?
 Separating the syntactic structure into lexical and

non-lexical is a convenient way of modularizing
the front end of a compiler into two components

 Lexical rules

◦ are quite simple

◦ do not need a powerful notation such as grammars

 Regular expressions provide a concise and easier
to understand notation for tokens than grammars

 Efficient lexical analyzers can be constructed
automatically from regular expressions than from
grammars

Eliminating Ambiguity

 sometimes ambiguous grammar can be

rewritten to eliminate ambiguity

 stmt-> if expr then stmt

| if expr then stmt else stmt

| other

 if E1then S1 else if E2 then S2 else S3

Parse Tree for a Conditional

Statement

Ambiguous Grammar Example

 if E1then if E2 then S1 else S2

Ambiguous Grammar Example

 General rule

◦ match “else” with closest unmatched “then”

◦ it is the case also for C language which misses

the “then” keyword but it is implied by “{“, “}”

 disambiguation should be present in the

grammar

 in practice it is rarely present in the

production rules

Disambiguation Solution for the

Dangling Else Example
stmt ->

matched_stmt | open_stmt

matched_stmt ->

if expr then matched_stmt else matched_stmt

| other

open_stmt ->

if expr then stmt

| if expr then matched_stmt else open_stmt

Elimination of Left Recursion

 general case

◦ a grammar is recursive if there is a derivation

A=>Aα for some string α

 particular case

◦ immediate left recursion A->Aα

◦ solution

 A->Aα|β

 A-> βA’

 A’-> αA’|ε

+

Example

 E->E+T | T

 T->T*F | F

 F->(E) | id

 E->TE’

 E’->+TE’|ε

 T->FT’

 T’->*FT’|ε

 F->(E) | id

Direct Left Recursion

 A->Aα1|Aα2|…|Aαm| β1| β 2|…|βn

 no βi begins with A

 A->β1A’| β 2A’|…|βnA’

 A’-> α1A’|α2A’|…|αmA’|ε

Indirect Left Recursion Example

 S-> A a | b

 A-> A c | S d | ε

 S=>Aa=>Sda

◦ not immediate left recursive

Eliminating Left Recursion

 Input

◦ grammar G with no cycles or ε-productions

 Output

◦ an equivalent grammar with no left recursion

 Method

◦ …

Method

1. arrange the non-terminals in some order
A1,A2,…,An

2. for (each i from 1 to n){

3. for(each j from 1 to i-1){

4. replace each production of the form Ai->Ajγ
by the productions Ai->δ1γ| δ2γ|…| δkγ,
where Aj-> δ1| δ2|…| δk are all Aj-
productions

5. }

6. eliminate the immediate left recursion among
Ai-productions

7. }

Method

 iteration i=1

◦ eliminates any immediate left recursion

among A1-productions

◦ any remaining A1 productions of the form

A1->Atα must have t>1

 iteration i-1

◦ all Ak where k<i are “cleaned”

◦ any production Ak->Atα must have t>k

Example - revisited

 S-> A a | b

 A-> A c | S d | ε

 we order S, A

 i=1

◦ no left recursion is in S

 i=2

◦ we replace in A the S by the rule S->A a | b

◦ A->A c | A a d | b d | ε

Example - revisited

 S->A a | b

 A-> b d A’ | A’

 A’ -> c A’ | a d A’ | ε

Left Factoring

 grammar transformation useful for
producing a grammar suitable for
predictive, top-down parsing

 e.g.

◦ stmt -> if expr then stmt else stmt

| if expr then stmt

 A->αβ1 | αβ2

 A->αA’

 A’->β1 | β2

Left Factoring a Grammar

 Input

◦ grammar G

 Output

◦ equivalent left-factored grammar

 Method

◦ for each non-terminal A find the longest

prefix α to two or more alternatives

◦ replace A-productions A-> αβ1 | αβ2 |…|

αβn | γ

Left Factoring a Grammar

 A->αA’ | γ

 A’-> β1 | β2 |…| βn

Dangling-else Problem

 S -> i E t S | i E t S e S | a

 E -> b

 S -> i E t S S’ | a

 S’ -> e S | ε

 E -> b

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

