
Compiler Design

Syntax Analysis

Top-Down Parsing

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Recursive-Descent Parsing

 FIRST and FOLLOW

 LL(1) Grammars

 Non-recursive Predictive Parsing

 Error Recovery in Predicting Parsing

Top Down Parsing

 constructing a parse tree from the input

string

◦ starting from the root

◦ creating the nodes in preorder

 finding the left-most derivation for an

input string

Grammar Example

 E->TE’

 E’->+TE’|ε

 T->FT’

 T’->*FT’|ε

 F->(E) | id

Derivation Example for id+id*id

LL(k) Grammars

 LL(k) – class of grammar for which we

can construct predictive parsers looking k

symbols ahead

 LL(1)

 FIRST and FOLLOW sets

◦ are used to construct predictive parsing tables

◦ make explicit the choice of production

◦ are useful for bottom-up parsing

Recursive Descendant Parsing

Program
 set of procedures

 one procedure for each non-terminal

 the start symbol

◦ launches the execution

◦ announces success if the body scans it’s input

string

Recursive Descendant Parsing

void A()

{

choose an A-production, A->X1X2…Xk;

for(i=1 to k)

{

if (Xi is a non-terminal)

call procedure Xi();

else if (Xi equals the current symbol a)

advance the input to the next symbol;

else /* an error has occurred */

}

}

Recursive Descendent Parsing

Pseudocode
 non-deterministic

◦ the manner in which the A-production is

chosen is not specified

 generally requires backtracking

◦ repeated scans over the input

◦ rarely needed to parse programming language

constructs

◦ not very efficient – tabular methods such as

dynamic programming are preferred

Allowing Backtracking

void A()

{

choose an A-production, A->X1X2…Xk;

for(i=1 to k)

{

if (Xi is a non-terminal)

call procedure Xi();

else if (Xi equals the current symbol a)

advance the input to the next symbol;

else /* an error has occurred */

}

}

try each

production in

some order

try another

A-production

reset the input

pointer

Top-Down Parse Tree

 S -> c A d

 A -> a b | a

 w=cad

Step 1

 S has only one production

 we expand S

 first character of input w=cad matches

the leftmost leaf in the tree c

Step 2

 we expand A->a b

 we have a match for second input character a

 we go to next symbol d

 b does not match d

 we report failure

 we go back to A to try another alternative

 we reset input pointer to position 2

Step 3

 the second alternative for A is A->a

 leaf a matches second symbol

 leaf d matched the third symbol

 we halt with successful parsing message

FIRST and FOLLOW Functions

 two functions useful in creating parsers

for both

◦ top-down

◦ bottom-up

 helps which production to apply based on

next input symbol

 in panic mode error recovery tokens

produced by FOLLOW are used for

synchronization

The FIRST Function

 FIRST(α)

◦ set of terminals that begin strings derived

from α

◦ α is any string of grammar symbols

◦ if α=>ε then ε is in FIRST(α)

 A=>cγ

◦ c is in FIRST(A)

*

*

How FIRST function works ?

 A->α|β

 FIRST(α) and FIRST(β) are disjoint sets

 input symbol a can be in one of the two

sets

 if a is in FIRST(β) we can choose the

production A->β

The FOLLOW Function

 FOLLOW(A)

◦ the set of terminals a that can appear

immediately to the right of A in some

sentential form

◦ the set of terminals a such that

S=>αAaβ for some α and β*

How to compute FIRST ?

 if X is terminal then FIRST(X)={X}

 if X is non-terminal X->Y1Y2…Yk is a
production for some k>=1

◦ place a in FIRST(X) if for some i

 a is in FIRST(Yi) and

 ε is in FIRST(Y1)…FIRST(Yi-1)

◦ if ε is in all FIRST(Yj) j=1,…,k

 then add ε to FIRST(X)

 if X-> ε is a production

◦ then add ε to FIRST(X)

How to compute FIRST ?

 input string X1X2…Xn

 add to FIRST(X1X2…Xn)

◦ all non-ε symbols of FIRST(X1)

◦ all non-ε symbols of FIRST(X2) if ε is in

FIRST(X1)

◦ all non-ε symbols of FIRST(X3) if ε is in

FIRST(X1) and in FIRST(X2)

◦ …

◦ ε, if ε is in all FIRST(Xi) i=1,..,n

How to compute FOLLOW ?

 place $ in FOLLOW(S)

◦ S is the start symbol

◦ $ is the right end-marker

 if there is a production A->αBβ
◦ everything in FIRST(β) except ε is in

FOLLOW(B)

 if there is a production A->αB or

A->αBβ where first(β) contains ε
◦ everything in FOLLOW(A) is in

FOLLOW(B)

Example

 FIRST(F)={(,id}

 FIRST(T)=FIRST(F)={(,id}

 FIRST(E)=FIRST(T)=FIRST(F)={(,id}

 FIRST(E’)={+,ε}

 FIRST(T’)={*,ε}

E->TE’

E’->+TE’|ε
T->FT’

T’->*FT’|ε
F->(E) | id

Example

 FOLLOW(E)={),$}

◦ E is the start symbol so it must

include $

◦ the body (E) tells that the) symbol must be

included

 FOLLOW(E’)={),$}

◦ E->TE’ so what follows after E will follow

after E’

◦ FOLLOW(E’)=FOLLOW(E)

E->TE’

E’->+TE’|ε
T->FT’

T’->*FT’|ε
F->(E) | id

Example

 FOLLOW(T)={+,),$}

◦ E->TE’ so FOLLOW(T) includes

FIRST(E’)={+} (except ε)

◦ E->TE’ and E’ includes ε, so

FOLLOW(E)={),$} is included in FOLLOW(T)

 FOLLOW(T’)={+,),$}

◦ T->FT’ so FOLLOW(T) is included in

FOLLOW(T’)

E->TE’

E’->+TE’|ε
T->FT’

T’->*FT’|ε
F->(E) | id

Example

 FOLLOW(F)={+,*,),$}

◦ T’->*FT’ so FOLLOW(F) includes

FIRST(T’)={*} (except ε)

◦ T->FT’ and T’->ε so FOLLOW(F) includes

FOLLOW(T)={+,),$}

E->TE’

E’->+TE’|ε
T->FT’

T’->*FT’|ε
F->(E) | id

LL(1) Grammars

 predictive parsers

◦ recursive descendant with no backtracking

 can be constructed for LL(1) grammar
class

◦ first L stands for scanning the input from left
to right

◦ second L for producing leftmost derivation

◦ the 1 is for using one input symbol of
lookahead at each step to make parsing
actions decisions

Transition Diagrams for Predictive

Parsers
 useful for visualizing predictive parsers

◦ E->TE’

◦ E’->+TE’|ε

Building a Transition Diagram

 eliminate left recursion

 left factor the grammar

 for each non-terminal

◦ create an initial and a final state

◦ for each production A->X1X2…Xk

 create a path from initial state to final state with edges
labeled X1,X2,…,Xk

 if A->ε the path is an edge labeled ε

 label of edges can be tokens or non-
terminals

 ε-transitions are the default choice

LL(1) Grammar Definition

 rich enough to cover most programming

constructs

 a grammar G is LL(1) iff A->α|β

◦ for no terminal a do both α and β derive

strings beginning with a

◦ at most one of α and β can derive the

empty string

◦ if β=>ε

 α does not derive any string beginning with a

terminal in FOLLOW(A)

*

LL(1) Grammar Definition

 FIRST(α) and FIRST(β) are disjoint sets

 If ε is in FIRST(β) then FIRST(α) and

FOLLOW(A) are disjoint sets

 vice versa if ε is in FIRST(α)

Example

 control flow constructs having

distinguishable keywords generally

satisfies the LL(1) constraints

 stmt-> if (expr) stmt else stmt

| while(expr) stmt

| {stmt_list}

 keywords like: if, while, { tells which

alternative to take in order to succeed in

finding a statement

The Construction of a Predictive

Parsing Table
 to collect information from FIRST and

FOLLOW

 to store them into a predictive parsing table
M[A,a] – two dimensional array
◦ A – non-terminal

◦ a – terminal or the $ end marker

 main idea
◦ A->α is chosen if the next input symbol a is in

FIRST(α)

◦ if α=>ε or α=>ε production A->α is chosen
when the current input symbol or $ is in
FOLLOW(A)

*

The Construction Algorithm

 Input
◦ Grammar G

 Output
◦ Parsing table M

 Method
◦ for each production A->α

 for each terminal a in FIRST(A) add A->α to M[A,a]

 if ε is in FIRST(α) then for each terminal b in FOLLOW(A)
add A->α to M[A,b]

 if ε is in FIRST(α) and $ is in FOLLOW(A) the add A->α to
M[A,$]

◦ after filling the table if there is no production in
M[A,a] then set M[A,a] to error, represented by an
empty entry in the table

Example

 E->TE’

 E’->+TE’|ε

 T->FT’

 T’->*FT’|ε

 F->(E) | id

id + * () $

E E->TE’ E->TE’

E’ E’->+TE’ E’->ε E’->ε

T T->FT’ T->FT’

T’ T’->ε T’->*FT’ T’->ε T’->ε

F F->id F->(E)

Example

 E->TE’

◦ FIRST(TE’)=FIRST(T)={(,id}

◦ added to M[E,(] and M[E,id]

 E’->+TE’

◦ FIRST(+TE’)={+}

◦ added to M[E’,+]

 E’->ε

◦ FOLLOW(E’)={),$}

◦ added to M[E’,)] and M[E’,$]

Example 2

 S->iEtSS’ | a

 S’->eS | ε

 E->b

a b e i t $

S S->a S->iEtSS’

S’ S’->ε
S’->eS

S’->ε

E E->b

Non-recursive Predictive Parsing

 to maintain a stack explicitly

 rather than implicitly by recursive calls

 the parser simulates the leftmost

derivation

 if w is the input matched so far

◦ then the stack holds a sequence of grammar

symbols α such that S=>wα
*

lm

Model of a Table Driven Predictive

Parser

Model of a Table Driven Predictive

Parser
 input buffer

◦ string to be parsed

◦ end marker $

 stack containing grammar symbols

◦ it’s bottom is marked by $

 parsing table

 output stream

Model of a Table Driven Predictive

Parser
 X is the symbol on top of the stack

 a is the current input symbol

 if X is non-terminal

◦ the parser chooses a production by consulting
the entry M[X,a]

◦ semantic actions can be added to build a node
in the parse tree

 if X is a terminal

◦ a match is checked between X and input
symbol a

Model of a Table Driven Predictive

Parser
 parser configurations

◦ stack content

◦ remaining input

Table Driven Predictive Parsing

 Input

◦ a string w

◦ parsing table M for a grammar G

 Output

◦ if w is in L(G) then

 a leftmost derivation of w

 otherwise error indication

 Method

◦ initially the parser has

 w$ in the input buffer

 start symbol S of G on the stack top, above $

Predictive Parsing Algorithm

set ip to point the first symbol a of w

set X to the top stack symbol

while(X!=$)

{

if (X is a) then pop the stack and advance ip

elseif (X is a terminal) error();

elseif (M[X,a] is an error entry) error();

elseif (M[X,a]=X->Y1,Y2,…,Yk)

{

output the production X->Y1,Y2,…,Yk

pop the stack

push Yk,Yk-1,…,Y1 onto the stack with Y1 on top

}

set X to the top stack symbol

}

Example

 E->TE’

 E’->+TE’|ε

 T->FT’

 T’->*FT’|ε

 F->(E) | id

id + * () $

E E->TE’ E->TE’

E’ E’->+TE’ E’->ε E’->ε

T T->FT’ T->FT’

T’ T’->ε T’->*FT’ T’->ε T’->ε

F F->id F->(E)

Moves Made by a Predictive Parser

on id+id*id

Error Recovery in Predictive Parsing

 error recovery refers to the stack of the
table driven predictive parser

 is makes explicit the terminals and non-
terminals the parser hopes to match

 the techniques can be used with recursive-
descendant parsing

 an error is detected when:
◦ stack top terminal does not match the next input

symbol

◦ M[A,a] is error (empty)
 A is the non-terminal on the top of the stack

 a is the next input symbol

Panic Mode

 skipping input symbols until a set of

synchronizing symbols appear

 effectiveness depend on the chosen set

 the sets should be chosen so the parser

recovers quickly from errors that are

likely to occur in practice

Some Heuristics

 all symbols in FOLLOW(A) will be added to

the synchronizing set for A non-terminal

 skip tokens until an element of FOLLOW(A)

is seen

 pop A from the stack

 the parsing is likely to continue

Some Heuristics

 only FOLLOW(A) set is not enough

 because semicolons terminate statements in C

 keywords that begin statements may not appear in
the FOLLOW set for expression non-terminal

 a missing semicolon after an assignment may result in
the keyword beginning next statement to be skipped

 expressions appear within statements

 we need to add
◦ to the synchronizing symbols of lower level constructs

◦ the synchronizing symbols of higher level constructs

 we can add symbols that begin statements to the
synchronizing sets for the non-terminals generating
expressions

Some Heuristics

 all symbols from FIRST(A) will be added to
the synchronizing set for A non-terminal
◦ it is possible to resume parsing according to A

◦ if a symbol from FIRST(A) appears

 if a non-terminal can generate the empty
string
◦ then the production deriving in ε can be used by

default

◦ we may postpone some error detection

◦ cannot cause an error to be missed

◦ reduces the number of non-terminals to be
considered during error recovery

Some Heuristics

 if a terminal on the top can not be

matched

◦ pop the terminal

◦ issue a message

◦ continue parsing

◦ the synchronization set of a token consists in

all other tokens

Phrase Level Recovery

 filling in the blank cells pointers to error
routines

◦ change, insert, delete symbols

◦ pop from the stack

 stack alteration is questionable

◦ modifying the stack might not enable
derivation at all

◦ risk of infinite loop

◦ to check the stack size after modifying it

 it should decrease

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

