
Compiler Design

Syntax Analysis

Bottom-Up Parsing
conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Reductions

 Handle Pruning

 Shift-Reduce Parsing

 Conflicts During Shift-Reduce Parsing

Introduction

 the construction of a parse tree

◦ beginning at the leaves (bottom)

◦ working up towards the root (top)

 general style of bottom-up parsing

◦ shift-reduce parsing

 large class of grammars for which shift-
reduce parsers can be built are LR grammars

 LR parsers

◦ difficult to be built by hand

◦ generators build efficient LR parsers

Example

 bottom-up parse for id*id

 E->E+T|T

 T->T*F|F

 F->id | (E)

Reductions

 bottom-up parsing = reducing a string w

to the starting symbol of the grammar

 reduction step consists in

◦ specific substring matching the body of a

production is replaced by a non-terminal of

that production

 key decisions

◦ when to reduce

◦ what production to apply

Reductions

 id * id

◦ leftmost id is reduced to F using F->id

 F * id

◦ F is reduced to T

 T * id

◦ T can be reduced to E

◦ or

◦ id can be reduced to F

 T * F

◦ T*F is reduced to T

 T

◦ T is reduced to E

 E

 roots of subtrees in the example

Reductions

 the reverse step of derivation

◦ a non-terminal is replaced by the body of one

of its productions

 bottom-up parsing

◦ to construct derivation in reverse

◦ using the rightmost derivation

 E=>T=>T*F=>T*id=>F*id=>id*id

Handle Pruning

 left to right bottom-up parsing constructs

a rightmost derivation in reverse

 handle = substring that matches the body

of a production

 handle reduction = a step in the reverse

of rightmost derivation

Handles During a Parse id1*id2

 E->T , T is not a handle in T*id2

 if we replace T by E

◦ we get E*id2 which can not be derived from E

 leftmost substring that matches

production body need not to be a handle

Handles

 if S=>αAw=>αβw
◦ then A->β in the position following α is a

handle of αβw

 the handle of right-sentential form γ is
a production A->β and a position of γ
where β may be found
◦ such that replacing β at that position by A

produces the previous right sentential
form in a rightmost derivation of γ

*
rmrm

Handles

 the string w to the right of the handle

must contain only terminal symbols

 the body β is the handle

 if the grammar is ambiguous

◦ “the handle” becomes “a handle”

 else

◦ every right-sentential form has exactly one

handle

Handles

 rightmost derivation = handle pruning

 w is the sentence of the grammar

 w=γn where γn is the n-th right-sentential form
of some unknown rightmost derivation

 S=γ0=>γ1=>γ2=>… =>γn-1=>γn=w

 to rebuild this derivation in reverse order
◦ locate handle βn in γn by production of An-> βn to

get right-sentential form γn-1

◦ handles must be found with specific methods

◦ repeat the process until the start symbol S is
found

◦ reverse of reductions = rightmost derivation

rm rm rm rm rm

Shift-Reduce Parsing

 is a form of bottom-up parsing

 the stack holds grammar symbols

 the input buffer holds the rest of the string
to be parsed

 the handle appears on the top of the stack

 we mark by $
◦ the bottom of the stack

◦ the right end of the input

 initially
◦ stack input

◦ $ w$

Shift-Reduce Parsing

 left-to-right scan of the input string

 shift zero or more input symbols onto the
stack

 reduce a string β of grammar symbols on
the top of the stack to the appropriate
production

 stop when
◦ error is detected

◦ both
 the stack contains the start symbol

 the input is empty

Configurations of a shift-reduce

parser on id1*id2

Possible Actions

 shift
◦ the next symbol onto the top of the stack

 reduce
◦ the right end of the string when it is on the top of the

stack

◦ locate the left end of the string

◦ decide with what non-terminal to replace the string

 accept
◦ announce successful completion of parsing

 error
◦ discover a syntax error

◦ call an error recovery routine

Two Possible Cases

 (1) S=>αAz=>αβByz=>αβγyz

 (2) S=>αBxAz=>αBxyz=>αγxyz
*

*

rm rm rm

rm rm rm

Case 1 in Reverse

STACK INPUT

$αβγ yz$

$αβB yz$

$αβBy z$

$αA z$

$αAz $

$S $

Case 2 in Reverse

STACK INPUT

$αγ xyz$

$αB xyz$

$αBxy z$

$αBxA z$

$αBxAz $

$S $

Conclusion

 in both cases

 after making a reduction

 the parser had to shift zero or more

symbols to get the next handle on the

stack

 the handle will appear always on the top

of the stack !!!

 the handle is never found into the stack

!!!

Conflicts During Shift-Reduce

Parsing
 shift/reduce conflicts

 reduce/reduce conflicts

 not LR(k) grammars

 k number of symbols of lookahead on the

input

 grammars used in compiling LR(1)

Example 1

 stmt-> if expr then stmt

| if expr then stmt else stmt

| other

Stack Input

…if expr then stmt else…$

 shift/reduce conflict

◦ to reduce “if expr then stmt” to stmt

◦ shift else, shift another stmt and reduce “if expr
then stmt else stmt” to stmt

 to favor shifting

Example 2

1. stmt->id (parameter_list)

2. stmt->expr := expr

3. parameter_list->parameter_list , parameter

4. parameter_list->parameter

5. parameter->id

6. expr->id (expr_list)

7. expr->id

8. expr_list->expr_list , expr

9. expr_list->expr

Example 2

 procedure calls = names and parentheses

 arrays have the same syntax

 statement p(i,j) appears as id(id,id)

 STACK INPUT

 …id(id ,id)…

 to reduce with

◦ 5 if p is a procedure

◦ 7 if p is an array

 STACK INPUT

 …procid(id ,id)…

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

