Compiler Design

Syntax Analysis
Introduction to LR Parsing
Simple LR

conf. dr. ing. Ciprian-Bogdan Chirila
chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Qutline

* Why LR parsers?

¢ [tems and the LR(0) Automaton
e The LR Parsing Algorithm

» Constructing SLR Parsing Tables
* Viable Prefixes

Introduction

e LR(k) — the most prevalent type of bottom-
up parser

e L —from left to right

* R — constructing the rightmost derivation in
reverse

 k - the number of lookahead input symbols
* k=0, k=1cases are of practical interest
e we consider k<=|

e when k is omitted then k=1

Introduction

e basic concepts of LR parsing

e the easiest method to construct shift-reduce
parsers — simple LR (SLR)

e usually LR parsers are built by automatic
generators

e “items”
e “parser states”

* next section presents

> canonical LR
> LALR
o complex methods used in the majority of LR parsers

Why LR Parsers ?

e table driven

> like non-recursive LL parsers

° LR grammar

> a grammar for which we can use the methods
in this section

* is named intuitively
> a left to right shift-reduce parser
° to recognize handles of right sentential forms

> when they appear on the top of the stack

Why LR Parsing !

* LR parsers can recognize all language constructs
written in context free grammars

» the most general non-backtracking shift-reduce
parsing method

e can be implemented as efficiently as other more
primitive shift-reduce methods

* can detect syntactic error as soon as possible

e the class of LR grammars is a superset of LL or
predictive grammars

e too much work to write a LR parser by hand for
a typical programming language grammar

Items and LR(0) Automaton

e LR(0) item — production of G with a dot
as some point at some position of the

body
e production A->XYZ yields four items
o A->eXYZ
° A->XeYZ
o A->XYZ
° A->XYZe
 production A->¢
o A->e

ltems

e indicates how much of a production we have
seen at a given point in the parsing process

e item A-> XY/~

> we hope to see a string derivable from XYZ next
on input

o item A->XYZ
> we have just seen a string derivable from X

> we hope to see a string derivable from YZ next
on input

o item A->XY e

> we have just seen a string derivable from XYZ
° it may be time to reduce XYZ to A

Representing Item Sets

e pair of integers
° the number of the production
> the position of the dot

* sets of items
o lists of such pairs

e closure items
° the dot is at the beginning of the body

o can be reconstructed from other items in the
set

> we do not have to include them in the list

Canonical LR(0)

* one collection of sets of LR(0) items

o provides the basis for constructing a DFA
* DFA is used to make parsing decisions
LR(0) automaton

o each state of LR(0) — set of items in the canonical LR(0)
collection

> the dead state is not represented !!!
 to build canonical LR(0) means to define

° an augmented grammar
G - grammar with starting symbol S
G’ — augmented grammar for G, $’->S
acceptance when §’ -> S

o two functions
CLOSURE
GOTO

4

LR(0) DFA Example

o E->E+T|T
» T->T*F|F
« F->id | (E)

E

Iy

E-E+T.
T—T-xF
*
I7 d
T—-Tx-F |F ”L
I
T—TxF.
id
id)

Is I
E—E -+T > F—(E)-
F—(E-)

()
(]
F

Closure of Item Sets

* | is the set of items for grammar G
o CLOSURE(]) — set of items built from |

° (1) initially add every item | to closure(l)
> (2) if A->a<Bf Isin CLOSURE(l) and B->y

then add B-><y to CLOSURE(]) if not already
there

> apply this rule until no more new items
can be added to CLOSURE(])

Explanations

o A->a°Bf3 Is In CLOSURE(])
» We might see a substring derivable
from B3 as input

e the string derivable from Bf3

> will have a prefix derivable from B
applying one of the B-productions

o If B->y
> then we include B->¢y In CLOSURE(I)

Augmented Expression Grammar

 E'->E
o E->E+T|T
o T->T*F|F
* F->id | (E)
o if | is the set of one item {[E’->°E]}
o then CLOSURE({l} contains the set items of |,
E’-><E
> since E->E+T and E->T we also add
E-><E+T and E->-T
o since T->T*F and T->F we also add
T->eT*F and T->+F
o since F->(E) and F->id we also add
F->¢(E) and F->-id

Computation of CLOSURE

SetOfltems CLOSURE(])

{
=
repeat
for(each item A->a*Bf3 in J)
for(each production B->y of G)
if(B->+y is not in J)
add B-><y to J;
until no more items are added to | on one round;
return J;

}

Kernel and Non-kernel ltems

o Kernel ltems

o §’->e§

o all items whose dots are not at the left end
* Non-kernel Items

o all items with their dots at the left end

o Except §’->¢S
* each set is formed by

o taking the closure of a set of kernel items

o the items added to the closure can never be
kernel items

they must not be stored since they can be regenerated

Bibliography

 Alfred V.Aho, Monica S. Lam, Ravi Sethi,
Jeffrey D. Ullman — Compilers, Principles,

Techniques and Tools, Second Edition,
2007

