Compiler Design
 Syntax Analysis Introduction to LR Parsing Simple LR

conf. dr. ing. Ciprian-Bogdan Chirila chirila@cs.upt.ro
http://www.cs.upt.ro/~chirila

Outline

- Why LR parsers?
- Items and the LR(0) Automaton
- The LR Parsing Algorithm
- Constructing SLR Parsing Tables
- Viable Prefixes

Introduction

- LR(k) - the most prevalent type of bottomup parser
- L - from left to right
- R - constructing the rightmost derivation in reverse
- k - the number of lookahead input symbols
- $\mathrm{k}=0, \mathrm{k}=\mathrm{l}$ cases are of practical interest
- we consider $\mathrm{k}<=$ I
- when k is omitted then $\mathrm{k}=\mathrm{l}$

Introduction

- basic concepts of LR parsing
- the easiest method to construct shift-reduce parsers - simple LR (SLR)
- usually LR parsers are built by automatic generators
- "items"
- "parser states"
- next section presents
- canonical LR
- LALR
- complex methods used in the majority of LR parsers

Why LR Parsers ?

- table driven
- like non-recursive LL parsers
- LR grammar
- a grammar for which we can use the methods in this section
- is named intuitively
- a left to right shift-reduce parser
- to recognize handles of right sentential forms
- when they appear on the top of the stack

Why LR Parsing ?

- LR parsers can recognize all language constructs written in context free grammars
- the most general non-backtracking shift-reduce parsing method
- can be implemented as efficiently as other more primitive shift-reduce methods
- can detect syntactic error as soon as possible
- the class of LR grammars is a superset of LL or predictive grammars
- too much work to write a LR parser by hand for a typical programming language grammar

Items and LR(0) Automaton

- LR(0) item - production of G with a dot as some point at some position of the body
- production A->XYZ yields four items
- A->•XYZ
- A->X•YZ
- $A->X Y \cdot Z$
- A->XYZ•
- production $A->\varepsilon$
- A->•

Items

- indicates how much of a production we have seen at a given point in the parsing process
- item A->•XYZ
- we hope to see a string derivable from $X Y Z$ next on input
- item A->X•YZ
- we have just seen a string derivable from X
- we hope to see a string derivable from $Y Z$ next on input
- item A->XYZ•
- we have just seen a string derivable from XYZ
- it may be time to reduce XYZ to A

Representing Item Sets

- pair of integers
- the number of the production
- the position of the dot
- sets of items
- lists of such pairs
- closure items
- the dot is at the beginning of the body
- can be reconstructed from other items in the set
- we do not have to include them in the list

Canonical LR(0)

- one collection of sets of $\operatorname{LR}(0)$ items
- provides the basis for constructing a DFA
- DFA is used to make parsing decisions
- LR(0) automaton
- each state of $\operatorname{LR}(0)$ - set of items in the canonical $\operatorname{LR}(0)$ collection
- the dead state is not represented !!!
- to build canonical LR(0) means to define
- an augmented grammar
- G - grammar with starting symbol S
- G' - augmented grammar for G, S'->S
- acceptance when S' -> S
- two functions
- CLOSURE
- GOTO

LR(0) DFA Example

- E->E+T|T
- T->T*F|F
- F->id | (E)

Closure of Item Sets

- I is the set of items for grammar G
- CLOSURE(I) - set of items built from I
\circ (I) initially add every item I to closure(I)
\circ (2) if $A->\alpha \cdot B \beta$ is in CLOSURE(I) and $B->Y$ - then add $B->\cdot \gamma$ to CLOSURE (I) if not already there
- apply this rule until no more new items can be added to CLOSURE(I)

Explanations

- $\mathrm{A}->\alpha \cdot \mathrm{B} \beta$ is in CLOSURE(I)
- we might see a substring derivable from $B \beta$ as input
- the string derivable from $\mathrm{B} \beta$
- will have a prefix derivable from B applying one of the B-productions
- if $B->Y$
- then we include B->• γ in CLOSURE(I)

Augmented Expression Grammar

- E'->E
- E->E+T|T
- T->T*F|F
- F->id | (E)
- if I is the set of one item $\left\{\left[E^{\prime}->\cdot E\right]\right\}$
- then CLOSURE $\{1\}$ contains the set items of I_{0} - E'->•E
- since E->E+T and E->T we also add - E->•E+T and E->•T
- since T->T*F and T->F we also add - T->•T*F and T->•F
- since $\mathrm{F}->(\mathrm{E})$ and F ->id we also add - $\mathrm{F}->$ (E) and $\mathrm{F}->$-id

Computation of CLOSURE

SetOfltems CLOSURE(I)
\{
$\mathrm{J}=\mathrm{I}$;
repeat
for(each item $A->\alpha \cdot B \beta$ in J)
for(each production $B->\gamma$ of G)
if($B->\cdot \gamma$ is not in J)
add B->• γ to J ;
until no more items are added to J on one round; return J;
\}

Kernel and Non-kernel Items

- Kernel Items
- S'->•S
- all items whose dots are not at the left end
- Non-kernel Items
${ }^{\circ}$ all items with their dots at the left end
- Except S'->•S
- each set is formed by
- taking the closure of a set of kernel items
- the items added to the closure can never be kernel items
- they must not be stored since they can be regenerated

Bibliography

- Alfred V.Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman - Compilers, Principles, Techniques and Tools, Second Edition, 2007

