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Qutline

* Why LR parsers?

¢ [tems and the LR(0) Automaton
e The LR Parsing Algorithm

» Constructing SLR Parsing Tables
* Viable Prefixes



Introduction

e LR(k) — the most prevalent type of bottom-
up parser

e L —from left to right

* R — constructing the rightmost derivation in
reverse

 k - the number of lookahead input symbols
* k=0, k=1cases are of practical interest
e we consider k<=|

e when k is omitted then k=1



Introduction

e basic concepts of LR parsing

e the easiest method to construct shift-reduce
parsers — simple LR (SLR)

e usually LR parsers are built by automatic
generators

e “items”
e “parser states”

* next section presents

> canonical LR
> LALR
o complex methods used in the majority of LR parsers



Why LR Parsers ?

e table driven

> like non-recursive LL parsers

° LR grammar

> a grammar for which we can use the methods
in this section

* is named intuitively
> a left to right shift-reduce parser
° to recognize handles of right sentential forms

> when they appear on the top of the stack



Why LR Parsing !

* LR parsers can recognize all language constructs
written in context free grammars

» the most general non-backtracking shift-reduce
parsing method

e can be implemented as efficiently as other more
primitive shift-reduce methods

* can detect syntactic error as soon as possible

e the class of LR grammars is a superset of LL or
predictive grammars

e too much work to write a LR parser by hand for
a typical programming language grammar



Items and LR(0) Automaton

e LR(0) item — production of G with a dot
as some point at some position of the

body
e production A->XYZ yields four items
o A->eXYZ
° A->XeYZ
o A->XYZ
° A->XYZe
 production A->¢
o A->e



ltems

e indicates how much of a production we have
seen at a given point in the parsing process

e item A-> XY/~

> we hope to see a string derivable from XYZ next
on input

o item A->XYZ
> we have just seen a string derivable from X

> we hope to see a string derivable from YZ next
on input

o item A->XY e

> we have just seen a string derivable from XYZ
° it may be time to reduce XYZ to A



Representing Item Sets

e pair of integers
° the number of the production
> the position of the dot

* sets of items
o lists of such pairs

e closure items
° the dot is at the beginning of the body

o can be reconstructed from other items in the
set

> we do not have to include them in the list



Canonical LR(0)

* one collection of sets of LR(0) items

o provides the basis for constructing a DFA
* DFA is used to make parsing decisions
LR(0) automaton

o each state of LR(0) — set of items in the canonical LR(0)
collection

> the dead state is not represented !!!
 to build canonical LR(0) means to define

° an augmented grammar
G - grammar with starting symbol S
G’ — augmented grammar for G, $’->S
acceptance when §’ -> S

o two functions
CLOSURE
GOTO
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LR(0) DFA Example

o E->E+T|T
» T->T*F|F
« F->id | (E)
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Closure of Item Sets

* | is the set of items for grammar G
o CLOSURE(]) — set of items built from |

° (1) initially add every item | to closure(l)
> (2) if A->a<Bf Isin CLOSURE(l) and B->y

then add B-><y to CLOSURE(]) if not already
there

> apply this rule until no more new items
can be added to CLOSURE(])



Explanations

o A->a°Bf3 Is In CLOSURE(])
» We might see a substring derivable
from B3 as input

e the string derivable from Bf3

> will have a prefix derivable from B
applying one of the B-productions

o If B->y
> then we include B->¢y In CLOSURE(I)



Augmented Expression Grammar

 E'->E
o E->E+T|T
o T->T*F|F
* F->id | (E)
o if | is the set of one item {[E’->°E]}
o then CLOSURE({l} contains the set items of |,
E’-><E
> since E->E+T and E->T we also add
E-><E+T and E->-T
o since T->T*F and T->F we also add
T->eT*F and T->+F
o since F->(E) and F->id we also add
F->¢(E) and F->-id



Computation of CLOSURE

SetOfltems CLOSURE(])

{
=
repeat
for(each item A->a*Bf3 in J)
for(each production B->y of G)
if(B->+y is not in J)
add B-><y to J;
until no more items are added to | on one round;
return J;

}



Kernel and Non-kernel ltems

o Kernel ltems

o §’->e§

o all items whose dots are not at the left end
* Non-kernel Items

o all items with their dots at the left end

o Except §’->¢S
* each set is formed by

o taking the closure of a set of kernel items

o the items added to the closure can never be
kernel items

they must not be stored since they can be regenerated
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