
Compiler Design

Syntax Analysis

Introduction to LR Parsing

Simple LR

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Why LR parsers?

 Items and the LR(0) Automaton

 The LR Parsing Algorithm

 Constructing SLR Parsing Tables

 Viable Prefixes

Introduction

 LR(k) – the most prevalent type of bottom-

up parser

 L – from left to right

 R – constructing the rightmost derivation in

reverse

 k - the number of lookahead input symbols

 k=0, k=1cases are of practical interest

 we consider k<=1

 when k is omitted then k=1

Introduction

 basic concepts of LR parsing

 the easiest method to construct shift-reduce
parsers – simple LR (SLR)

 usually LR parsers are built by automatic
generators

 “items”

 “parser states”

 next section presents

◦ canonical LR

◦ LALR

◦ complex methods used in the majority of LR parsers

Why LR Parsers ?

 table driven

◦ like non-recursive LL parsers

 LR grammar

◦ a grammar for which we can use the methods

in this section

 is named intuitively

◦ a left to right shift-reduce parser

◦ to recognize handles of right sentential forms

◦ when they appear on the top of the stack

Why LR Parsing ?

 LR parsers can recognize all language constructs
written in context free grammars

 the most general non-backtracking shift-reduce
parsing method

 can be implemented as efficiently as other more
primitive shift-reduce methods

 can detect syntactic error as soon as possible

 the class of LR grammars is a superset of LL or
predictive grammars

 too much work to write a LR parser by hand for
a typical programming language grammar

Items and LR(0) Automaton

 LR(0) item – production of G with a dot
as some point at some position of the
body

 production A->XYZ yields four items

◦ A->•XYZ

◦ A->X•YZ

◦ A->XY•Z

◦ A->XYZ•

 production A->ε
◦ A->•

Items

 indicates how much of a production we have
seen at a given point in the parsing process

 item A->•XYZ
◦ we hope to see a string derivable from XYZ next

on input

 item A->X•YZ
◦ we have just seen a string derivable from X

◦ we hope to see a string derivable from YZ next
on input

 item A->XYZ•
◦ we have just seen a string derivable from XYZ

◦ it may be time to reduce XYZ to A

Representing Item Sets

 pair of integers

◦ the number of the production

◦ the position of the dot

 sets of items

◦ lists of such pairs

 closure items

◦ the dot is at the beginning of the body

◦ can be reconstructed from other items in the
set

◦ we do not have to include them in the list

Canonical LR(0)

 one collection of sets of LR(0) items

 provides the basis for constructing a DFA

 DFA is used to make parsing decisions

 LR(0) automaton

◦ each state of LR(0) – set of items in the canonical LR(0)
collection

◦ the dead state is not represented !!!

 to build canonical LR(0) means to define

◦ an augmented grammar
 G - grammar with starting symbol S

 G’ – augmented grammar for G, S’->S

 acceptance when S’ -> S

◦ two functions
 CLOSURE

 GOTO

LR(0) DFA Example

 E->E+T|T

 T->T*F|F

 F->id | (E)

Closure of Item Sets

 I is the set of items for grammar G

 CLOSURE(I) – set of items built from I

◦ (1) initially add every item I to closure(I)

◦ (2) if A->α•Bβ is in CLOSURE(I) and B->γ

 then add B->•γ to CLOSURE(I) if not already

there

◦ apply this rule until no more new items

can be added to CLOSURE(I)

Explanations

 A->α•Bβ is in CLOSURE(I)

 we might see a substring derivable

from Bβ as input

 the string derivable from Bβ

◦ will have a prefix derivable from B

applying one of the B-productions

 if B->γ

◦ then we include B->•γ in CLOSURE(I)

Augmented Expression Grammar

 E’->E

 E->E+T|T

 T->T*F|F

 F->id | (E)

 if I is the set of one item {[E’->•E]}
◦ then CLOSURE{I} contains the set items of I0

 E’->•E

◦ since E->E+T and E->T we also add
 E->•E+T and E->•T

◦ since T->T*F and T->F we also add
 T->•T*F and T->•F

◦ since F->(E) and F->id we also add
 F->•(E) and F->•id

Computation of CLOSURE

SetOfItems CLOSURE(I)

{

J=I;

repeat

for(each item A->α•Bβ in J)

for(each production B->γ of G)

if(B->•γ is not in J)

add B->•γ to J;

until no more items are added to J on one round;

return J;

}

Kernel and Non-kernel Items

 Kernel Items

◦ S’->•S

◦ all items whose dots are not at the left end

 Non-kernel Items

◦ all items with their dots at the left end

◦ Except S’->•S

 each set is formed by

◦ taking the closure of a set of kernel items

◦ the items added to the closure can never be
kernel items

 they must not be stored since they can be regenerated

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

