Compiler Design Syntax Analysis Introduction to LR Parsing Simple LR

0

conf. dr. ing. Ciprian-Bogdan Chirila chirila@cs.upt.ro http://www.cs.upt.ro/~chirila

Outline

- Why LR parsers?
- Items and the LR(0) Automaton
- The LR Parsing Algorithm
- Constructing SLR Parsing Tables
- Viable Prefixes

Introduction

- LR(k) the most prevalent type of bottomup parser
- L from left to right
- R constructing the rightmost derivation in reverse
- k the number of lookahead input symbols
- k=0, k=1 cases are of practical interest
- we consider k<=I
- when k is omitted then k=I

Introduction

- basic concepts of LR parsing
- the easiest method to construct shift-reduce parsers – simple LR (SLR)
- usually LR parsers are built by automatic generators
- "items"
- "parser states"
- next section presents
 - canonical LR
 - LALR
 - complex methods used in the majority of LR parsers

Why LR Parsers ?

- table driven
 - like non-recursive LL parsers
- LR grammar
 - a grammar for which we can use the methods in this section
- is named intuitively
 - a left to right shift-reduce parser
 - to recognize handles of right sentential forms
 - when they appear on the top of the stack

Why LR Parsing ?

- LR parsers can recognize all language constructs written in context free grammars
- the most general non-backtracking shift-reduce parsing method
- can be implemented as efficiently as other more primitive shift-reduce methods
- can detect syntactic error as soon as possible
- the class of LR grammars is a superset of LL or predictive grammars
- too much work to write a LR parser by hand for a typical programming language grammar

Items and LR(0) Automaton

- LR(0) item production of G with a dot as some point at some position of the body
- production A->XYZ yields four items
 - A->•XYZ
 - A->X•YZ
 - A->XY•Z
 - A->XYZ•
- production A->ε
 A->•

ltems

- indicates how much of a production we have seen at a given point in the parsing process
- item A->•XYZ
 - we hope to see a string derivable from XYZ next on input
- item A->X•YZ
 - we have just seen a string derivable from X
 - we hope to see a string derivable from YZ next on input
- item A->XYZ•
 - we have just seen a string derivable from XYZ
 - it may be time to reduce XYZ to A

Representing Item Sets

- pair of integers
 - the number of the production
 - the position of the dot
- sets of items
 - lists of such pairs
- closure items
 - the dot is at the beginning of the body
 - can be reconstructed from other items in the set
 - we do not have to include them in the list

Canonical LR(0)

- one collection of sets of LR(0) items
- provides the basis for constructing a DFA
- DFA is used to make parsing decisions
- LR(0) automaton
 - each state of LR(0) set of items in the canonical LR(0) collection
 - the dead state is not represented !!!
- to build canonical LR(0) means to define
 - an augmented grammar
 - G grammar with starting symbol S
 - G' augmented grammar for G, S'->S
 - acceptance when S' -> S
 - two functions
 - CLOSURE
 - GOTO

LR(0) DFA Example

Closure of Item Sets

- I is the set of items for grammar G
- CLOSURE(I) set of items built from I
 - (I) initially add every item I to closure(I)
 - (2) if A-> α •B β is in CLOSURE(I) and B-> γ
 - then add B->•γ to CLOSURE(I) if not already there
 - apply this rule until no more new items can be added to CLOSURE(I)

Explanations

- A-> α •B β is in CLOSURE(I)
- we might see a substring derivable from Bβ as input
- the string derivable from Bβ
 - will have a prefix derivable from B applying one of the B-productions
- if B->γ
 - then we include $B \rightarrow \gamma$ in CLOSURE(I)

Augmented Expression Grammar

- E'->E
- E->E+T|T
- T->T*F|F
- F->id | (E)
- if I is the set of one item {[E'->•E]}
 - then CLOSURE{I} contains the set items of I₀
 E'->•E
 - since E->E+T and E->T we also add
 - E->•E+T and E->•T
 - since T->T*F and T->F we also add
 - T->•T*F and T->•F
 - since F->(E) and F->id we also add
 - F->•(E) and F->•id

Computation of CLOSURE

SetOfItems CLOSURE(I)

J=l; repeat for(each item A->α•Bβ in J) for(each production B->γ of G) if(B->•γ is not in J) add B->•γ to J; until no more items are added to J on one round; return J;

Kernel and Non-kernel Items

- Kernel Items
 - S'->•S
 - all items whose dots are not at the left end
- Non-kernel Items
 - all items with their dots at the left end
 - Except S'->•S
- each set is formed by
 - taking the closure of a set of kernel items
 - the items added to the closure can never be kernel items
 - they must not be stored since they can be regenerated

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman – Compilers, Principles, Techniques and Tools, Second Edition, 2007