
Compiler Design

Syntax Analysis

Introduction to LR Parsing

Simple LR

conf. dr. ing. Ciprian-Bogdan Chirila

chirila@cs.upt.ro

http://www.cs.upt.ro/~chirila

Outline

 Why LR parsers?

 Items and the LR(0) Automaton

 The LR Parsing Algorithm

 Constructing SLR Parsing Tables

 Viable Prefixes

Introduction

 LR(k) – the most prevalent type of bottom-

up parser

 L – from left to right

 R – constructing the rightmost derivation in

reverse

 k - the number of lookahead input symbols

 k=0, k=1cases are of practical interest

 we consider k<=1

 when k is omitted then k=1

Introduction

 basic concepts of LR parsing

 the easiest method to construct shift-reduce
parsers – simple LR (SLR)

 usually LR parsers are built by automatic
generators

 “items”

 “parser states”

 next section presents

◦ canonical LR

◦ LALR

◦ complex methods used in the majority of LR parsers

Why LR Parsers ?

 table driven

◦ like non-recursive LL parsers

 LR grammar

◦ a grammar for which we can use the methods

in this section

 is named intuitively

◦ a left to right shift-reduce parser

◦ to recognize handles of right sentential forms

◦ when they appear on the top of the stack

Why LR Parsing ?

 LR parsers can recognize all language constructs
written in context free grammars

 the most general non-backtracking shift-reduce
parsing method

 can be implemented as efficiently as other more
primitive shift-reduce methods

 can detect syntactic error as soon as possible

 the class of LR grammars is a superset of LL or
predictive grammars

 too much work to write a LR parser by hand for
a typical programming language grammar

Items and LR(0) Automaton

 LR(0) item – production of G with a dot
as some point at some position of the
body

 production A->XYZ yields four items

◦ A->•XYZ

◦ A->X•YZ

◦ A->XY•Z

◦ A->XYZ•

 production A->ε
◦ A->•

Items

 indicates how much of a production we have
seen at a given point in the parsing process

 item A->•XYZ
◦ we hope to see a string derivable from XYZ next

on input

 item A->X•YZ
◦ we have just seen a string derivable from X

◦ we hope to see a string derivable from YZ next
on input

 item A->XYZ•
◦ we have just seen a string derivable from XYZ

◦ it may be time to reduce XYZ to A

Representing Item Sets

 pair of integers

◦ the number of the production

◦ the position of the dot

 sets of items

◦ lists of such pairs

 closure items

◦ the dot is at the beginning of the body

◦ can be reconstructed from other items in the
set

◦ we do not have to include them in the list

Canonical LR(0)

 one collection of sets of LR(0) items

 provides the basis for constructing a DFA

 DFA is used to make parsing decisions

 LR(0) automaton

◦ each state of LR(0) – set of items in the canonical LR(0)
collection

◦ the dead state is not represented !!!

 to build canonical LR(0) means to define

◦ an augmented grammar
 G - grammar with starting symbol S

 G’ – augmented grammar for G, S’->S

 acceptance when S’ -> S

◦ two functions
 CLOSURE

 GOTO

LR(0) DFA Example

 E->E+T|T

 T->T*F|F

 F->id | (E)

Closure of Item Sets

 I is the set of items for grammar G

 CLOSURE(I) – set of items built from I

◦ (1) initially add every item I to closure(I)

◦ (2) if A->α•Bβ is in CLOSURE(I) and B->γ

 then add B->•γ to CLOSURE(I) if not already

there

◦ apply this rule until no more new items

can be added to CLOSURE(I)

Explanations

 A->α•Bβ is in CLOSURE(I)

 we might see a substring derivable

from Bβ as input

 the string derivable from Bβ

◦ will have a prefix derivable from B

applying one of the B-productions

 if B->γ

◦ then we include B->•γ in CLOSURE(I)

Augmented Expression Grammar

 E’->E

 E->E+T|T

 T->T*F|F

 F->id | (E)

 if I is the set of one item {[E’->•E]}
◦ then CLOSURE{I} contains the set items of I0

 E’->•E

◦ since E->E+T and E->T we also add
 E->•E+T and E->•T

◦ since T->T*F and T->F we also add
 T->•T*F and T->•F

◦ since F->(E) and F->id we also add
 F->•(E) and F->•id

Computation of CLOSURE

SetOfItems CLOSURE(I)

{

J=I;

repeat

for(each item A->α•Bβ in J)

for(each production B->γ of G)

if(B->•γ is not in J)

add B->•γ to J;

until no more items are added to J on one round;

return J;

}

Kernel and Non-kernel Items

 Kernel Items

◦ S’->•S

◦ all items whose dots are not at the left end

 Non-kernel Items

◦ all items with their dots at the left end

◦ Except S’->•S

 each set is formed by

◦ taking the closure of a set of kernel items

◦ the items added to the closure can never be
kernel items

 they must not be stored since they can be regenerated

Bibliography

 Alfred V. Aho, Monica S. Lam, Ravi Sethi,

Jeffrey D. Ullman – Compilers, Principles,

Techniques and Tools, Second Edition,

2007

