Optimization of DFA-Based Pattern Matchers

Compiler Design Lexical Analysis
asist. dr. ing. Ciprian-Bogdan Chirila
chirila@cs.upt.ro
http://www.cs.upt.ro/~chirila
Outline

- Important States of an NFA
- Functions Computed from the Syntax Tree
- Computing nullable, firstpos and lastpos
- Computing followpos
- Converting a Regular Expression Directly to a DFA
- Minimizing the Number of States of a DFA
- State Minimization of a Lexical Analyzers
- Trading Time for Space in DFA Simulation
Optimization of DFA-Based Pattern Matchers

- **First algorithm**
 - constructs a DFA directly from a regular expression
 - without constructing an intermediate NFA
 - with fewer states
 - used in Lex

- **Second algorithm**
 - minimizes the number of states of any DFA
 - combines states having the same future behavior
 - has $O(n \log(n))$ efficiency

- **Third algorithm**
 - produces more compact representations of transitions tables than the standard two dimensional ones
Important States of an NFA

- it has non-ε out transitions
- used when computing ε-closure($move(T,a)$) – the set of states reachable from T on input a
- the set $moves(s,a)$ is non-empty if state s is important

- NFA states are twofold if
 - have the same important states, and
 - either both have accepting states or neither does
Augmented Regular Expression

- important states
 - initial states in the basis part for a particular symbol position in the RE
 - correspond to particular operands in the RE
- Thompson algorithm constructed NFA
 - has only one accepting state which is non-important (has no out-transitions !!!)
- to concatenate a unique right endmarker # to a regular expression r
 - the accepting state of the NFA r becomes important state in the (r)# NFA
 - any state in the (r)# NFA with a transition to # must be an accepting state
Syntax Tree

- important states correspond to the positions in the RE that hold symbols of the alphabet
- RE representation as syntax tree
 - leaves correspond to operands
 - interior nodes correspond to operators
 - cat-node – concatenation operator (dot)
 - or-node – union operator |
 - star-node – star operator *
Syntax Tree Example \((a|b)^*abb#\)

cat nodes are represented as circles
Representation Rules

- syntax tree leaves are labeled by ε or by an alphabet symbol
- to each leaf which is not ε we attach a unique integer
 - the position of the leaf
 - the position of it's symbol
- a symbol may have several positions
 - symbol a has positions 1 and 3 (on the next slide!!!)
- positions in the syntax tree correspond to NFA important states
Thompson Constructed NFA for \((a|b)^*abb\#\)

- important states are numbered
- other states are represented by letters
- the correspondence between
 - numbered states in the NFA and
 - the positions in the syntax tree
- will be presented next
Functions Computed from the Syntax Tree

- in order to construct a DFA directly from the regular expression we have to:
 - build the syntax tree
 - compute 4 functions referring (r)#
 - nullable
 - firstpos
 - lastpost
 - followpos
Computed Functions

- **nullable(n)**
 - true for syntax tree node n iff the subexpression represented by n
 - has ε in its language
 - can be made null or the empty string even it can represent other strings

- **firstpos(n)**
 - set of positions in the n rooted subtree that correspond to the first symbol of at least one string in the language of the subexpression rooted at n
Computed Functions

- **lastpos(n)**
 - set of positions in the n rooted subtree that correspond to the last symbol of at least one string in the language of the subexpression rooted at n

- **followpos(n)**
 - for a position p
 - is the set of positions q such that
 - x=a_1a_2…a_n in L((r)#) such that
 - for some i there is a way to explain the membership of x in L((r)#) by matching a_i to position p of the syntax tree a_{i+1} to position q
Example

- $\text{nullable}(n) = \text{false}$
- $\text{firstpos}(n) = \{1,2,3\}$
- $\text{lastpos}(n) = \{3\}$
- $\text{followpos}(1) = \{1,2,3\}$
Computing nullable, firstpos and lastpos

<table>
<thead>
<tr>
<th>node n</th>
<th>nullable(n)</th>
<th>firstpos(n)</th>
<th>lastpos(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A leaf labeled ε</td>
<td>true</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>A leaf with position i</td>
<td>false</td>
<td>{i}</td>
<td>{i}</td>
</tr>
<tr>
<td>An or-node n=c₁</td>
<td>c₂</td>
<td>nullable(c₁) or nullable(c₂)</td>
<td>firstpos(c₁) U firstpos(c₂)</td>
</tr>
<tr>
<td>A cat-node n=c₁c₂</td>
<td>nullable(c₁) and nullable(c₂)</td>
<td>if (nullable(c₁)) firstpos(c₁) U firstpos(c₂) else firstpos(c₁)</td>
<td>if (nullable(c₂)) lastpos(c₂) U lastpos(c₁) else lastpos(c₂)</td>
</tr>
<tr>
<td>A star-node n=c₁*</td>
<td>true</td>
<td>firstpos(c₁)</td>
<td>lastpos(c₁)</td>
</tr>
</tbody>
</table>
Firstpos and Lastpos Example
Computing Followpos

A position of a regular expression can follow another position in two ways:

- if n is a **cat-node** c_1c_2 **(rule 1)**
 - for every position i in $\text{lastpos}(c_1)$ all positions in $\text{firstpos}(c_2)$ are in $\text{followpos}(i)$

- if n is a **star-node** **(rule 2)**
 - if i is a position in $\text{lastpos}(n)$ then all positions in $\text{firstpos}(n)$ are in $\text{followpos}(i)$
Followpos Example

- **Applying rule 1**
 - followpos(1) incl. {3}
 - followpos(2) incl. {3}
 - followpos(3) incl. {4}
 - followpos(4) incl. {5}
 - followpos(5) incl. {6}

- **Applying rule 2**
 - followpos(1) incl. {1,2}
 - followpos(2) incl. {1,2}
Followpos Example Continued

<table>
<thead>
<tr>
<th>Node n</th>
<th>followpos(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1,2,3}</td>
</tr>
<tr>
<td>2</td>
<td>{1,2,3}</td>
</tr>
<tr>
<td>3</td>
<td>{4}</td>
</tr>
<tr>
<td>4</td>
<td>{5}</td>
</tr>
<tr>
<td>5</td>
<td>{6}</td>
</tr>
<tr>
<td>6</td>
<td>∅</td>
</tr>
</tbody>
</table>
Converting a Regular Expression Directly to a DFA

- **Input**
 - a regular expression \(r \)

- **Output**
 - A DFA \(D \) that recognizes \(L(r) \)

- **Method**
 - to build the syntax tree \(T \) from \((r)# \)
 - to compute \texttt{nullable, firstpos, lastpos, followpos}
 - to build
 - \(\text{Dstates} \) the set of DFA states
 - start state of \(D \) is \(\text{firstpos}(n_0) \), where \(n_0 \) is the root of \(T \)
 - accepting states = those containing the \# endmarker symbol
 - \(\text{Dtran} \) the transition function for \(D \)
Construction of a DFA directly from a Regular Expression

initialize Dstates to contain only the unmarked state firstpos(n₀), where n₀ is the root of syntax tree T for (r)\#;

while (there is an unmarked state S in Dstates)
{
 mark S;
 for (each input symbol a)
 {
 let U be the union of followpos(p) for all p in S that correspond to a;
 if (U is not in Dstates)
 add U as unmarked state to Dstates;
 Dtran[S,a] = U;
 }
}
Example for $r=(a|b)^*abb$

- $A=\text{firstpos}(n_0) = \{1,2,3\}$
- $D\text{tran}[A,a] = \text{followpos}(1) \cup \text{followpos}(3) = \{1,2,3,4\} = B$
- $D\text{tran}[A,b] = \text{followpos}(2) = \{1,2,3\} = A$
- $D\text{tran}[B,a] = \text{followpos}(1) \cup \text{followpos}(3) = B$
- $D\text{tran}[B,b] = \text{followpos}(2) \cup \text{followpos}(4) = \{1,2,3,5\} = C$
- ...
Example for \(r=(a|b)^*abb \)
Minimizing the Number of States of a DFA

- equivalent automata
 - \(\{A, C\} = 123\)
 - \(\{B\} = 1234\)
 - \(\{D\} = 1235\)
 - \(\{E\} = 1236\)

- exists a minimum state DFA
string x distinguishes state s from state t if exactly one of the states reached from s and t by following the path x is an accepting state

state s is distinguishable from state t if exists some string that distinguish them

the empty string distinguishes any accepting state from any non-accepting state
Minimizing the Number of States of a DFA

- **Input**
 - DFA D with set of states S, input alphabet Σ, start state s_0, accepting states F

- **Output**
 - DFA D' accepting the same language as D and having as few states as possible
Minimizing the Number of States of a DFA

1. Start with an initial partition \(\Pi \) with two groups \(F \) and \(S-F \).

2. Apply the procedure

 \[
 \text{for(each group } G \text{ of } \Pi) \\
 \{ \\
 \text{partition } G \text{ into subgroups such that states } s \text{ and } t \text{ are in the same subgroup iff for all input symbol } a \text{ states } s \text{ and } t \text{ have transitions on } a \text{ to states in the same group of } \Pi \\
 \}
 \]

3. If \(\Pi_{\text{new}} = \Pi \) let \(\Pi_{\text{final}} = \Pi \) and continue with step 4, otherwise repeat step 2 with \(\Pi_{\text{new}} \) instead of \(\Pi \).

4. Choose one state in each group of \(\Pi_{\text{final}} \) as the representative for that group.
Minimum State DFA Construction

- the start state of D' is the representative of the group containing the start state of D
- the accepting states of D' are the representatives of those groups that contain an accepting state of D
- if
 - s is the representative of G from Π_{final}
 - exists a transition from s on input a is t from group H
 - r is the representative of H
- then
 - in D' there is a transition from s to r on input a
Example

- \{A,B,C,D\}\{E\}
 - on input a:
 - A,B,C,D->\{A,B,C,D\}
 - E->\{A,B,C,D\}
 - on input b:
 - A,B,C->\{A,B,C,D\}
 - D->\{E\}
 - E->\{A,B,C,D\}
Example

- \{A,B,C\}\{D\}\{E\}
 - on input a:
 - A,B,C->\{A,B,C\}
 - D->\{A,B,C\}
 - E->\{A,BC\}
 - on input b:
 - A,C,-->\{A,B,C\}
 - B->\{D\}
 - D->\{E\}
 - E->\{A,B,C\}
Example

- \{AC\}{B}\{D\}{E}\n - on input a:
 - A,C->\{B\}
 - B->\{B\}
 - D->\{B\}
 - E->\{B\}
 - on input b:
 - A,C,-->\{A,C\}
 - B->\{D\}
 - D->\{E\}
 - E->\{A,C\}
Example

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
State Minimization in Lexical Analyzers

- to group together
 - all states that recognize a particular token
 - all states that do not indicate any token

- e.g. \{0137,7\} \{247\} \{8,58\} \{7\} \{68\} \{\emptyset\}
 - \{0137,7\} – do not indicate any token
 - \{8,58\} – announce a*b+
 - \{\emptyset\} - dead state
 - has transitions to itself on input a and b
 - is target state for states 8, 58, 68 on input a
State Minimization in Lexical Analyzers

- next, we **split**
 - 0137 from 7
 - they go to different groups on input `a`
 - 8 from 58
 - they go to different groups on input `b`

- **dead states can be dropped**
 - if we treat missing transitions as signal to end token recognition
Trading Time for Space in DFA Simulation

- transition function of a DFA
 - two dimensional table indexed by states and characters

- typical lexical analyzer has
 - hundreds of states
 - ASCII alphabet of 128 input characters
 - < 1 MB

- compilers “live” in small devices too
- 1 MB could be too much
Alternate Representations

- list of character-state pairs
- ending by a default state
 - chosen for any input character not on the list
 - the most frequently occurring next state
- thus, the table is reduced by a large factor
Bibliography