
Metrics and Problem Detection
(slides courtesy of Tudor Girba - Uni. Bern www.tudorgirba.com

Software is complex.

The Standish Group, 2004

53% Challenged

18% Failed

29% Succeeded

}

{

}

{

}

{
}

{

}

{

A large system contains lots of details.

How to judge its q
uality?

http://moose.unibe.ch

http://loose.upt.ro/incode

1
Metrics

2
Design

Problems

3
Code Duplication 1Metrics

You cannot control
what you cannot measure.

Tom de Marco

Metrics are functions that assign numbers to

products, processes and resources.

Software metrics are measurements which

relate to software systems, processes or related

documents.

Metrics compress system traits into numbers.

Let’s see some examples...

Examples of size metrics

NOM - number of methods

NOA - number of attributes

LOC - number of lines of code

NOS - number of statements

NOC - number of children

Lorenz, Kidd, 1994
Chidamber, Kemerer, 1994

McCabe, 1977

McCabe cyclomatic complexity (CYCLO) counts the
number of independent paths through the code of a
function.

interpretation can’t directly lead to improvement action

!it reveals the minimum number of tests to write

"

Chidamber, Kemerer, 1994

Weighted Method Count (WMC) sums up the
complexity of class’ methods (measured by the metric of
your choice; usually CYCLO).

interpretation can’t directly lead to improvement action

!it is configurable, thus adaptable to our precise needs

"

Chidamber, Kemerer, 1994

Depth of Inheritance Tree (DIT) is the (maximum)
depth level of a class in a class hierarchy.

only the potential and not the real impact is quantified

!inheritance is measured

"

Coupling between objects (CBO) shows the number
of classes from which methods or attributes are used.

Chidamber, Kemerer, 1994

no differentiation of types and/or intensity of coupling

!it takes into account real dependencies not just declared ones

"

Tight Class Cohesion (TCC) counts the relative
number of method-pairs that access attributes of the
class in common.

Bieman, Kang, 1995

TCC = 2 / 10 = 0.2

ratio values allow comparison between systems

!interpretation can lead to improvement action

!

Access To Foreign Data (ATFD) counts how many
attributes from other classes are accessed directly from a
measured class.

Marinescu 2006

... 2Design Problems

McCall, 1977

Metrics Assess and Improve Quality!

Really?

McCall, 1977

?
Problem 2: implicit mapping

we don’t reason in terms of metrics,
but in terms of design principles

Problem 1: metrics granularity

capture symptoms, not causes of problems

in isolation,
they don’t lead to improvement solutions

2 big obstacles in using metrics:

Thresholds make metrics hard to interpret

Granularity make metrics hard to use in isolation How do I improve code?

Breaking design principles, rules and best practices

deteriorates the code;

it leads to design problems.

Quality is more than 0 bugs.

and 33%
of all classes
would require changes

Imagine changing just a small design fragment

Design problems!are
expensive
frequent
unavoidable

How to detect an
d eliminate them?

Metrics should be used in a goal-oriented fashion

! Define a Goal

! Formulate Questions

! Find suitable Metrics

Goal-Question-Metric Approach [Basili&Rombach, 1988]

God Classes tend to centralize the intelligence of the
system, to do everything and to use data from small
data-classes.

Riel, 1996

God Classes tend
to centralize the intelligence of the system,
to do everything and
to use data from small data-classes.

God Classes
centralize the intelligence of the system,
do everything and
use data from small data-classes.

God Classes
are complex,
are not cohesive,
access external data.

God Classes
are complex,! ! WMC is high
are not cohesive,!! TCC is low
access external data.! ATFD more than few

Compose metrics
 into queries using

logical
 operato

rs

Detection Strategies are metric-based queries to
detect design flaws.

METRIC 1 > Threshold 1

Rule 1

METRIC 2 < Threshold 2

Rule 2

AND Quality problem

Lanza, Marinescu 2006

A God Class centralizes too much intelligence in
the system.

ATFD > FEW

Class uses directly more than a

few attributes of other classes

WMC ! VERY HIGH

Functional complexity of the

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

Lanza, Marinescu 2006

An Envious Method is more interested in data
from a handful of classes.

ATFD > FEW

Method uses directly more than

a few attributes of other classes

LAA < ONE THIRD

Method uses far more attributes

of other classes than its own

FDP ! FEW

The used "foreign" attributes

belong to very few other classes

AND Feature Envy

Lanza, Marinescu 2006

Data Classes are dumb data holders.

WOC < ONE THIRD

Interface of class reveals data

rather than offering services

AND Data Class

Class reveals many attributes and is

not complex

Lanza, Marinescu 2006

Data Classes are dumb data holders.

AND

OR

Class reveals many

attributes and is not

complex

NOAP + NOAM > FEW

More than a few public

data

WMC < HIGH

Complexity of class is not

high

NOAP + NOAM > MANY

Class has many public

data

WMC < VERY HIGH

Complexity of class is not

very high

AND

Lanza, Marinescu 2006

Shotgun Surgery depicts that a change in an
operation triggers many (small) in a lot of different
operation and classes.

Lanza, Marinescu 2006

Dr. Radu Marinescu 128

Quality Models Can Help! [Marinescu,2004]

Lack of
Bridge

Data Classes

God Classes

Interface
Segregat. Pr.

WMC

TCC

CIW

NOAM

AUF

NOPA

COC

ATFD

NOD

LR

Principles, rules, heuristics
quantified in Detection Strategies

Quality
decomposed in Factors

communicates with

3Code Duplication

What is Code Duplication?

What ar
e the problems of it?

Code Duplication Detection

Lexical Equivalence

Semantic Equivalence

Syntactical Equivalence

Visualization of Copied Code Sequences

File A

File A

File B

File B

Author Level Transformed Code Comparison Technique

Ducasse 99 Lexical Normalized Strings String-Matching

Mayrand 96 Syntactical Metrics Tuples Discrete comparison

Kontogiannis 97 Syntactical Metrics Tuples Euclidean distance

Baxter 98 Syntactical AST Tree-Matching

Source Code Transformed Code Duplication Data

Transformation Comparison
Noise Elimination

…
//assign same fastid as container
fastid = NULL;
const char* fidptr = get_fastid();
if(fidptr != NULL) {
 int l = strlen(fidptr);
 fastid = newchar[l + 1];

fastid=NULL;
constchar*fidptr=get_fastid();
if(fidptr!=NULL)
intl=strlen(fidptr)
fastid = newchar[l+]

a b c d a b c d

lines from source

lines

from

source

a b c d a x y d

lines from source

lines

from

source

a b c a b x y c

lines from source

lines

from

source

lines from source 2

lines

from

source 1

lines from source 2

lines

from

source 1

lines from source 2

lines

from

source 1

exact

chunk

lines from source 2

lines

from

source 1

exact

chunk

line

bias

lines from source 2

lines

from

source 1

exact

chunk

exact

chunk

line

bias

Significant Duplication:
- It is the largest possible duplication chain uniting
all exact clones that are close enough to each
other.
- The duplication is large enough.

Lanza, Marinescu 2006

1
Metrics

2
Design

Problems

3
Code Duplication

God

Class

Brain

Class

Feature

Envy

Data

Class

Brain

Method

Significant

Duplication

Intensive

Coupling

Extensive

Coupling

Shotgun

Surgery

Tradition

Breaker

Refused

Parent

Bequest

uses

has

is

has

has

has (partial)

is partially

has

is

is

has

Futile

Hierarchy

uses

has

has

is

has (subclass)

Classification

Disharmonies

Identity

Disharmonies

Collaboration

Disharmonies

Lanza, Marinescu 2006

Don’t reason about quality
in terms of numbers!

Follow a clear and repeatable process

QA is part of the the Development Process

http://loose.upt.ro/incode

Dr. Radu Marinescu 148

Instead of Conclusions...

DISCLAIMER:
Metrics are not enough to understand and evaluate design!

Can we understand the beauty of a painting by…
… measuring its frame or counting the colors ?

