
Dr. Radu Marinescu 21

Reverse Engineering Reverse engineering is analyzing a subject system to:

identify components and their relationships, and

create more abstract representations.

Chikofky & Cross, 90

22

Tudor Gîrba

Why reverse engineer?

23

In 1944, 3 B-29 had to land in Russia

24Tudor Gîrba

Requirement: Copy everything fast!

25Tudor Gîrba

Approach: disassemble, run, test

26Tudor Gîrba

TU-4 Result: 105,000 pieces
reassembled in 2 years

27Tudor Gîrba Tudor Gîrba

Reading code...

100’000 lines of code

* 2 = 200’000 seconds

/ 3600 = 56 hours

/ 8 = 7 days

28

forward engineering

actual development }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

How development happens

29Tudor Gîrba

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

Reengineering life cycle

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

30Tudor Gîrba

re
ve

rs
e

en
gin

ee
rin

g

forward engineering
program transformation

Reengineering life cycle

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

31Tudor Gîrba
Dr. Radu Marinescu 32

Goals of Reverse Engineering

Cope with complexity
 need techniques to understand large, complex systems

Recover lost information
 extract what changes have been made and why

Synthesize higher abstractions
 identify latent abstractions in software

Facilitate reuse
 detect candidate reusable artifacts and components

 Chikofsky and Cross [in Arnold, 1993]

Dr. Radu Marinescu 33

Reverse Engineering Techniques
! Redocumentation

pretty printers
diagram generators

! e.g. Together
cross-reference listing generators

! e.g. IDEA, SNiFF+, Source Navigator

! Design recovery
software metrics
browsers, visualization tools
static analyzers
dynamic (trace) analyzers

Dr. Radu Marinescu 34

Reverse engineering Patterns

Reverse engineering patterns
 encode expertise and trade-offs in

! extracting design from source code,
! running systems and
! people.

" Even if design documents exist, they are typically out of sync
 with reality.

Example: Refactor to Understand

Dr. Radu Marinescu 35

I. First Contact: the Forces

Where Do I Start?

! Legacy systems are large and complex
Split the system into manageable pieces

! Time is scarce
Apply lightweight techniques to assess feasibility and risks

! First impressions are dangerous
Always double-check your sources

Dr. Radu Marinescu 36

First Contact

System experts

Chat with the
Maintainers

Interview
during Demo

Talk with
developers

Talk with
end users

Talk about it

Verify what
you hear

Software System

Read All the Code
in One Hour

Do a Mock
Installation

Read it Compile it

Skim the
Documentation

Read
about it

Dr. Radu Marinescu

Read All Code in 1 Hour

! Entities that seem interesting
! Suspicious Coding Styles
! Abstract Classes and Interfaces
! Singletons
! Large Structures
! Comments

37 Dr. Radu Marinescu 38

II. Initial Understanding: the Forces

! Data is deceptive
Always double-check your sources

! Understanding entails iteration
Plan iteration and feedback loops

! Knowledge must be shared
 “Put the map on the wall”

! Teams need to communicate
 “Use their language”

Dr. Radu Marinescu 39

Initial Understanding

understand ⇒
higher-level model

Top down

Speculate about Design

Recover
design

Analyze the
Persistent Data

Study the
Exceptional Entities

Recover
database

Bottom up

Identify
problems

Dr. Radu Marinescu 40

Analyze the Persistent Data
Problem: Which objects represent valuable data?
Solution: Analyze the database schema

! Prepare Model
 tables ⇒ classes; columns ⇒ attributes
 primary keys

! naming conventions + unique indices
 foreign keys (associations between classes)

! be aware of synonyms and homonyms

! Incorporate Inheritance
 one to one; rolled down; rolled up

! Incorporate Associations
 check for foreign keys
 association classes (e.g. many-to-many associations)

! Verification
 Data samples + SQL statements

Dr. Radu Marinescu 41

Example: One To One

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
address: char(60)

Patient

insuranceID:
char(7)
insurance: char(5)

Salesman

company: char(40)

Person
id: char(5)
name: char(40)
address: char(60)

Dr. Radu Marinescu 42

Example: Rolled Down

Patient
id: char(5)
name: char(40)
address: char(60)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
name: char(40)
address: char(60)

company: char(40)

Patient

insuranceID:
char(7)
insurance: char(5)

Salesman

company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

Dr. Radu Marinescu 43

Example: Rolled Up

Person
id: char(5)
name: char(40)
address: char(60)

kind: integer

insuranceID: char(7) «optional»
insurance: char(5) «optional»
company: char(40) «optional»

Patient

insuranceID:
char(7)
insurance: char(5)

Salesman

company: char(40)

Person
id: char(5)
name: char(40)
address: char(60)

Dr. Radu Marinescu 44

Study the Exceptional Entities

Problem: How can you quickly identify key points in design?
Solution: Measure software entities and study the anomalous ones

! Use simple metrics
! Visualize metrics to get an overview
! Browse the code to get insight into the anomalies

Dr. Radu Marinescu 45

Questions

! Which tools to use?
! Which metrics to collect?
! Which thresholds to apply?
! How to interpret the results?
! How to identify anomalies quickly?
! Should I trust numbers?
! What about normal entities?

Dr. Radu Marinescu

What is a Metric?

! A precise numerical value assigned to an entity.

Entity = product, resource, process

46

Dr. Radu Marinescu

Object-Oriented Product Metrics

! Size
! Structural Complexity
! Coupling
! Cohesion
! Inheritance

47 Dr. Radu Marinescu

Weighted Method Count

• Definition
WMC = SUM(ci), ci= complexity of each method mi

• Interpretation
• Time and effort for maintenance
• The higher the WMC for a class, the higher the influence on the

subclasses
• A high WMC reduces the reuse probability for the class

48

Dr. Radu Marinescu

Number of Children

• Definition
NOC = number of direct subclasses

• Interpretation
• higher NOC, higher reuse potential
• higher NOC, a higher probability of an improper use of inheritance
• higher NOC, a higher impact/influence on the overall design, including

testing effort

49 Dr. Radu Marinescu

Depth of Inheritance Tree

• Definition
DIT = depth of a class in the inheritance graph

• Interpretation
• the higher DIT, the lower the understandability of the class
• the higher DIT, the more complex the class
• the higher DIT, the higher the potential reuse from the superclasses

50

Dr. Radu Marinescu

Response For a Class

• Definition
Ri = set of methods called by M

RS = {M} ∪ {Ri}; RFC = | RS |

• Interpretation
• higher RFC, tests are more difficult to perform
• measure of complexity
• at the same time a measure of coupling with other classes

51 Dr. Radu Marinescu

Coupling Between Objects

• Definition
• the number of other classes to which the measured class is coupled

• Interpretation
• high CBO hampers reuse in another application
• high CBO, a higher sensitivity to changes
• high CBO, a rigorous testing

52

Dr. Radu Marinescu

Number of Called Classes

• Definition
• FANOUT = SUM(FANOUTi), FANOUTi= classes from which each user

defined method mi calls methods

• Interpretation
• high FANOUT hampers reuse in another application
• high FANOUT, a higher sensitivity to changes
• high FANOUT, a rigorous testing

53 Dr. Radu Marinescu

Tight Class Cohesion

• Definition
TCC = the relative number of method-pairs that access an attribute of the
class

• Interpretation
• the higher TCC, the tighter the semantic relation between the methods
• the lower TCC, the higher the probability that a a class implements more

than one functionality

54

Dr. Radu Marinescu 55

Understand Code

Overview of an OO System: Easier Said Than Done :-)

Let’s play a game...

Want brief overview of the
code of an OO system never
seen before

Want to find out how hard it
will be to understand the
code

Metric Value

LOC 35.000

NOM 3.600

NOC 380

Dr. Radu Marinescu 56

Now, Do We REALLY Know Something? :-)

" Is it “normal” to have...
 ...380 classes in a system with 3.600 methods?
 ...3.600 methods in a system with 35.000 lines of code?

#What means NORMAL?
i.e. how do we compare with other projects?

" What about the hierarchies ? What about coupling?

1. We need means of comparison. Thus, proportions are important!

2. Collect further relevant numbers; especially coupling and use of
inheritance

Several questions remain unanswered...

Dr. Radu Marinescu 57

" A metrics-based means to both describe and characterize the
structure of an object-oriented system by quantifying its:
 complexity,
 coupling and
 usage of inheritance

" Measuring these 3 aspects at system level provides a comprehensive
characterization of an entire system

Understand

The Overview Pyramid [Lanza,Marinescu 2006]

Dr. Radu Marinescu 58

Understand

Overview Pyramid: Size and Complexity

NOP = No. Of Packages
NOC = No. Of Classes
NOM = No. Of Methods
LOC = Lines Of Code
CYCLO = Cyclomatic Number (summed up over all methods)

Dr. Radu Marinescu 59

NOM = No. Of Methods
CALLS = No. Of Calls
FANOUT = No. Of Called Classes

Understand

Overview Pyramid: Coupling

Dr. Radu Marinescu 60

ANDC = Average Number of Derived Classes
AHH = Average Hierarchy Height

Understand

Overview Pyramid: Inheritance

Dr. Radu Marinescu 61 Dr. Radu Marinescu 62

Dr. Radu Marinescu 63

close to AVERAGE

close to HIGH

close to LOW

" Interpretation based on a statistically
relevant collection of data
 collected for Java and C++
 over 80 systems

Understand

Overview Pyramid: Interpretation
We are

visual
beings.

70% of all external
inputs come
through the eyes

Preattentive Processing

Iconic

Short-term

Long-term

Which numbers are larger than 0.85?

0.103 0.176 0.387 0.300 0.829 0.276 0.179 0.321 0.192 0.250

0.333 0.384 0.864 0.587 0.857 0.698 0.640 0.621 0.984 0.316

0.421 0.309 0.654 0.729 0.228 0.529 0.832 0.435 0.699 0.426

1.266 0.750 0.056 0.936 0.711 0.749 0.723 0.201 0.542 0.819

0.225 0.926 0.643 0.337 0.721 0.337 0.682 0.987 0.232 0.449

0.187 0.586 0.529 0.340 0.276 0.835 0.473 0.445 1.103 0.720

1.153 0.485 0.560 0.428 0.628 0.335 0.456 0.879 0.699 0.424

(1I) Pre-attentive features

0.103 0.176 0.387 0.300 0.829 0.276 0.179 0.321 0.192 0.250

0.333 0.384 0.86 0.587 0.86 0.698 0.640 0.621 0.98 0.316

0.421 0.309 0.654 0.729 0.228 0.529 0.832 0.435 0.699 0.426

1.27 0.750 0.056 0.94 0.711 0.749 0.723 0.201 0.542 0.819

0.225 0.93 0.643 0.337 0.721 0.337 0.682 0.99 0.232 0.449

0.187 0.586 0.529 0.340 0.276 0.835 0.473 0.445 1.1 0.720

1.15 0.485 0.560 0.428 0.628 0.335 0.456 0.88 0.699 0.424

How many groups do you see?

How many groups do you see? How many groups do you see?

How many groups do you see? (III) Gestalt principles

(III) Gestalt principles

proximity

enclosure connectivity

similarity Graph Design IQ Test

http://www.perceptualedge.com/
files/GraphDesignIQ.html

Dr. Radu Marinescu 75

Visualizing the Whole System

Polymetric Views
[Lanza,Ducasse 2003]

Use simple
metrics and
layout
algorithms.

(x,y) width

height colour

Visualize up
to 5 metrics
per node

Dr. Radu Marinescu 76

A Picture is Worth a Thousand Words...

System Complexity View of ArgoUML

No silve
r bullet!

Dr. Radu Marinescu 78

Understand

Quickly “Reading” Classes [Lanza,Ducasse 2001]

! Visualization Technique
serves as code inspection technique
 reduces the amount of code that must be read

Dr. Radu Marinescu 79

Understand

Class Blueprint

Dr. Radu Marinescu 80

Understand

Class Blueprint Example

Dr. Radu Marinescu 81

Initial Understanding (revisited)

Top down

Speculate about Design

Analyze the
Persistent Data

Study the
Exceptional Entities

understand ⇒
higher-level model

Bottom up

ITERATION

Recover
design

Recover
database

Identify
problems

Dr. Radu Marinescu 82

Detailed Model Capture

Dr. Radu Marinescu 83

Detailed Model Capture

! Details matter
Pay attention to the details!

! Design remains implicit
Record design rationale when you discover it!

! Design evolves
 Important issues are reflected in changes to the code!

! Code only exposes static structure
Study dynamic behavior to extract detailed design

Dr. Radu Marinescu 84

Detailed Model Capture

Expose the design
& make sure it stays exposed

Tie Code and Questions

Refactor to Understand
Keep track of

your understanding

Expose design

Step through the Execution

Expose collaborations

Use Your Tools
Look for Key Methods
Look for Constructor Calls
Look for Template/Hook Methods
Look for Super Calls

Look for the Contracts

Expose contracts

Learn from the Past

Expose evolution

Write Tests
to Understand

Dr. Radu Marinescu 85

Learn from the Past

Problem: How did the system get the way it is?
Solution: Compare versions to discover where code was removed

! Removed functionality is a sign of design evolution
! Use or develop appropriate tools
! Look for signs of:

Unstable design — repeated growth and refactoring
Mature design — growth, refactoring and stability

Dr. Radu Marinescu 86

CodEVolver: The Evolution Matrix [Lanza]

Last Version

First Version

Major Leap

Removed Classes

TIME (Versions)
Growth Stagnation

Added
Classes

Dr. Radu Marinescu 87

Visualizing Classes in Evolution Using Metrics
" Object-Oriented Programming is about “state”

and “behavior”:
 State is encoded using attributes
 Behavior is encoded with methods

" We visualize classes as rectangles using for width and
height the following metrics:
 NOM (number of methods)
 NOA (number of attributes)

Foo

BigFoo(t)

Bar

Dr. Radu Marinescu 88

Pulsar & Supernova

Pulsar: Repeated Modifications make it grow and shrink.
System Hotspot: Every System Version requires changes.

Supernova: Sudden increase in size. Possible Reasons:
• Massive shift of functionality towards a class.
• Data holder class for which it is easy to grow.
• Sleeper: Developers knew exactly what to fill in.

Dr. Radu Marinescu 89

White Dwarf, Red Giant, Idle

White Dwarf: Lost the functionality it had and now trundles along
without real meaning. Possibly dead code.

Red Giant: A permanent god class which is always very large.

Idle: Keeps size over several versions. Possibly dead code,
possibly good code.

Dr. Radu Marinescu 90

Dayfly & Persistent

Dayflies: Exists
during only one or
two versions.
Perhaps an idea
which was tried out
and then dropped.

Persistent: Has the
same lifespan as the
whole system. Part of
the original design.
Perhaps holy dead
code which no one
dares to remove.

Dr. Radu Marinescu 91

Tie Code and Questions

Problem: How do you keep track of your understanding?
Solution: Annotate the code

! List questions, hypotheses, tasks and observations.
! Identify yourself!
! Annotate as comments, or as methods

Dr. Radu Marinescu 92

Refactor to Understand
Problem: How do you decipher cryptic code?
Solution: Refactor it till it makes sense

" Goal (for now) is to understand, not to reengineer
" Work with a copy of the code
" Refactoring requires an adequate test base

 If this is missing, Write Tests to Understand

" ...and tool support
 automatic refactorings

" Hints:
 Rename attributes to convey roles
 Rename methods and classes to reveal intent
 Remove duplicated code
 Replace condition branches by methods
 Define method bodies with same level of abstraction

" Needs tool support!

Dr. Radu Marinescu 93

Look for the Contracts

Problem: Which contracts does a class support?
Solution: Look for common programming idioms, i.e. look for

"customs" of using the interface of that class

! Look for “key methods”
 Intention-revealing names
Key parameter types
Recurring parameter types represent temporary associations

! Look for constructor calls
! Look for Template/Hook methods
! Look for super calls
! Use your tools!

Dr. Radu Marinescu 94

Constructor Calls: Stored Result

! Identify part-whole relationships (refining associations)
storing result of constructor in attribute ⇒ part-whole relation

public class Employee {
 private String _name = "";
 private String _address = "";
 public File[] files = { };
…
public class File {
 private String _description = "";
 private String _fileID = "";

…public void createFile (int position, String description, String identification)
{
 files [position] = new File (description, identification);
}

Employee
_name
_address

File
_description
_fileID

1

*

Dr. Radu Marinescu 95

Constructor Calls: "self" Argument
public class Person {
 private String _name = "";
…
public class Marriage {
 private Person _husband, _wife;
 public Marriage (Person husband,
 Person wife) {
 _husband = husband;
 _wife = wife;}
…

in class Person:
 Marriage marryWife (Person wife) {
 return new Marriage (this, wife);
}

... acts as PART

Person
_name
…

Marriage
_husband
_wife

1

1

1

1

Person
_name
…

Marriage
_husband
_wife

1 1

Dr. Radu Marinescu 96

Hook Methods
public class SimpleDatabase {
 ...
 protected Table fetchTable (String tableSpec) {
 //tableSpec is a filename; parse it as
 //a tab-separated table representation
 ...};

public class ProjectDatabase
 extends SimpleDataBase {
 ...
 protected Table fetchTable (String tableSpec) {
 //tableSpec is a name of an SQLTable;
 //return the result of SELECT * as a table
 ...};

SimpleDatabase
fetchTable(tableSpec):
 Table

ProjectDatabase

Hook Method

Dr. Radu Marinescu 97

Template / Hook Methods
public class SimpleDatabase {
 ...
 public void generateHTML
 (String tableSpec,
 HTMLRenderer aRenderer,
 Stream outStream) {
 Table table = this.fetchTable (tableSpec);
 aRenderer.render (table, outStream);}
…};

public class HTMLRenderer {
 ...
 public void render (Table table, Stream outStream) {
 //write the contents of table on the given outStream
 //using appropriate HTML tags
…}

SimpleDatabase
generateHTML(String,
 HTMLRenderer,
 Stream)

Template Method

Dr. Radu Marinescu 98

Conclusion

! Setting Direction + First Contact
⇒ First Project Plan

! Initial Understanding + Detailed Model Capture
Plan the work … and Work the plan
Frequent and Short Iterations

! Issues
scale
speed vs. accuracy
politics

