
Bridging the Gap between Object

Oriented Modeling and Implementation

Languages Using a Meta-Language

Approach

Dan Alexandru Pescaru

PhD Thesis

Faculty of Automation and Computer Science
”POLITEHNICA” UNIVERSITY OF TIMISOARA

Timisoara
November 2003

Advisor:
Prof.Dr.Ing. Ionel Jian



to Alex and Maria

c©’2003 Dan A. Pescaru

1



Motto
All of physics is either impossible or trivial. It is impossible until you
understand it, and then it becomes trivial.
- Ernest Rutherford

2



ACKNOWLEDGMENTS

I am honored to have Prof. Dr. Ionel Jian as advisor of my thesis. I would
like to thank him for his continuous support on both a personal and professional
level over the past years.
I am specially grateful to Dr. Philippe Lahire from Sophia Antipolis Univer-
sity of Nice, France. He has been a constant source of advice, guidance and
support during all this time. Without his full support, I would probably have
never reached the stage where I am today. I could say that most of my work is
due to him.
My special thanks go to Emanuel Tundrea and Constantin Papandonatos
for their invaluable help on prototypes of the OFL-compiler and OFL-ML tool,
which were presented in theirs diploma thesis. The discussions I had from time
to time with Dr. Pierre Crescenzo were also highly stimulating.
I want to give tanks to Diana Andone and Dr. Radu Vasiu for their friend-
ship and all the logistic support, which made possible my research visits at
Sophia Antipolis University of Nice.
Numerous colleagues at Computer Science Department, UPT, have indirectly
contributed to this thesis, among them Ciprian Chirila, Sorin Serau, Doru
Todinca and Dan Cosma, not at least by taking over some of my daily obli-
gations during the time of the writing and help me with correcting, printing etc.
Many thanks to all of them.
I would like to thank to all my family, my wife Maria, my child Alex, my grand-
mother, my parents and my parents-in-law for all their love, all their support,
including financial one, and for believing in me even when I lost my confidence.
(Timisoara, November 2003 )

3



Contents

1 Introduction 7
1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 State of the Art 9
2.1 Design Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Unified Modelling Language - UML . . . . . . . . . . . . 9
2.1.2 UML Profile . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Considerations About UML Semantics Included in Profiles 13
2.1.4 UML Action Semantics Model . . . . . . . . . . . . . . . 14
2.1.5 J-UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Programming Languages Extensions and Meta-languages . . . . 17
2.2.1 Java Extensions . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 C++ Extensions . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The OFL model 20
3.1 Intuitive approach . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Overview of OFL Model . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 OFL Level: OFL-Concepts and OFL-Atoms . . . . . . . . 23
3.2.2 Language level: OFL-Components . . . . . . . . . . . . . 25
3.2.3 Application Level: OFL-Instances and OFL-Data . . . . . 25

3.3 Programmer and Meta-programmer: separation of tasks . . . . . 26
3.4 The Integration in the Existing Meta-Models . . . . . . . . . . . 27

4 Extending the OFL Model Through OFL-Modifiers 29
4.1 The OCL Language . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 The OFL Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Component Modifiers in Commercial Languages . . . . . 32
4.2.2 Definition of an OFL-Modifier . . . . . . . . . . . . . . . 33
4.2.3 Modifiers Classification Regarding OFL Implementation

Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4



4.3 Basic Access Control Modifiers . . . . . . . . . . . . . . . . . . . 37
4.3.1 Examples of Native Basic Access Control Modifiers . . . . 37
4.3.2 Basic Access Control Modifiers for Features . . . . . . . . 38
4.3.3 Basic Access Control Modifiers for Descriptions . . . . . . 40

4.4 Complex Access Control Modifiers . . . . . . . . . . . . . . . . . 42
4.4.1 Examples of Native Complex Access Control Modifiers . . 42
4.4.2 Complex Access Control Modifiers for Methods . . . . . . 43
4.4.3 Complex Access Control Modifiers for Attributes . . . . . 44
4.4.4 Complex Access Control Modifiers for Descriptions . . . . 44

4.5 Optimization Modifiers . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.1 Examples of Native Optimization Modifiers . . . . . . . . 45
4.5.2 Optimization Modifiers for Attributes . . . . . . . . . . . 46
4.5.3 Optimization Modifiers for Methods . . . . . . . . . . . . 47
4.5.4 Optimization Modifiers for Description . . . . . . . . . . . 47

4.6 Service Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6.1 Examples of Native Service Modifiers . . . . . . . . . . . 48
4.6.2 Service Modifiers for Attributes . . . . . . . . . . . . . . . 48
4.6.3 Service Modifiers for Methods . . . . . . . . . . . . . . . . 49
4.6.4 Service Modifiers for Descriptions . . . . . . . . . . . . . . 49

4.7 Additional Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7.1 Examples of Native Additional Modifiers . . . . . . . . . 49

4.8 Conclusion and discussions . . . . . . . . . . . . . . . . . . . . . 50

5 The OFL-ML Meta-Profile 51
5.1 Supported Elements and Definitions . . . . . . . . . . . . . . . . 52

5.1.1 OFL Model . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 OFL-Modifiers . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 UML Profile . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.4 OCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 OFL-ML Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Identified Subset of UML . . . . . . . . . . . . . . . . . . 55
5.2.2 From Core - Backbone . . . . . . . . . . . . . . . . . . . . 55
5.2.3 The Virtual Meta-model . . . . . . . . . . . . . . . . . . . 59
5.2.4 Virtual Metamodel of OFL-ML. . . . . . . . . . . . . . . 60

5.3 The OFL Type Representations . . . . . . . . . . . . . . . . . . . 63
5.3.1 The OFL BasicType Element . . . . . . . . . . . . . . . . 63
5.3.2 The OFL Description Element . . . . . . . . . . . . . . . 65
5.3.3 Additional constraints. . . . . . . . . . . . . . . . . . . . . 68
5.3.4 The External Description Element . . . . . . . . . . . . . 69

5.4 The OFL Feature Representations . . . . . . . . . . . . . . . . . 70
5.4.1 The OFL Attributes . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 The OFL Methods . . . . . . . . . . . . . . . . . . . . . . 74

5.5 The OFL Relationship Representations . . . . . . . . . . . . . . . 80
5.5.1 The OFL Import Relationship . . . . . . . . . . . . . . . 80
5.5.2 Stereotypes and Tagged Values. . . . . . . . . . . . . . . . 80
5.5.3 The OFL Use Relationships . . . . . . . . . . . . . . . . . 92

5



5.5.4 The Basic Type Composition . . . . . . . . . . . . . . . . 95
5.5.5 The External Import Relationship . . . . . . . . . . . . . 97
5.5.6 Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.7 The External Use Relationship . . . . . . . . . . . . . . . 98

5.6 The OFL Model Organization . . . . . . . . . . . . . . . . . . . . 98
5.6.1 The OFL Package . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Modelling Example Using an OFL-Java Profile . . . . . . . . . . 100
5.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 101

5.8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 OFL-ML Tools Support and Validation 104
6.1 The OFL Framework . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.1 The OFL-Meta Tool . . . . . . . . . . . . . . . . . . . . . 106
6.1.2 The OFL-Database . . . . . . . . . . . . . . . . . . . . . . 106
6.1.3 The OFL-ML Modeling Tool . . . . . . . . . . . . . . . . 106
6.1.4 The OFL-ML Profiles Generator . . . . . . . . . . . . . . 108
6.1.5 The OFL Parser . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Conclusions and Perspectives 110
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2 Author Contributions . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6



Chapter 1

Introduction

The starting point of this thesis is the general opinion about the evident gap be-
tween object-oriented modelling languages and programming languages. Many
companies do not use yet UML, which is the standard of object-oriented mod-
eling languages since many years. Indeed, even they use UML in the analyzing
phase they prefer to jump over implementation model for application. Instead
they are using to have only an ad-hoc model that resides directly in implemen-
tation. First explanation consists in contradiction between generality of UML
and specificity of application model after implementation in a programming
language.

1.1 The Problem

UML is used in a wide area of contexts, as explained by OMG, by people coming
from different cultures, many of them considering (more or less justified) their
case special. Therefore they are asking for a particularization of the standard in
the form of a tuned version of UML. However, as they said, a hard-coded UML
precise semantics would preclude the existence of these tunings and thus would
be practically unacceptable.

Developers are in a situation where on one hand need precise semantics to
really make the UML a communication mean, while on the other hand they do
not need too much specificity due the domains on which UML is to be applied
are so different that they can not be unified under a uniform semantics. The
response of OMG is the introduction of profiles as standard means to adapt the
UML to some domain-specific needs.

1.2 The Goal

The goal of this research, as the title say, is to bridge the gap between object-
oriented modeling and programming languages.

7



The problem appear when the UML is used to create an implementation
model. After the implementation of this model, the application will contain
itself an intrinsic model. Because a programming languages has a more precise
semantic than UML, this two models will be different. If the specification change
the problems will appear at reengineering phase.

If we think at UML Profile solution, the problem is how to specify, or to
generate in our case, this profile in order to fill the gap. This problem is harder
if we think in terms of diversity of existing programming languages, each of
them with different versions and flavors.

The approach presented in this thesis try to use meta-information about a
programming language described in a meta-language and to generate automat-
ically a well tailored profile adapted to it.

This solution goes beyond the presented goal. This suggest a wider frame-
work which allow also extensions of the programming languages not only gen-
eration of tailored profile. This way the programming language and the corre-
sponding profile can become closer to real applications and domains.

1.3 Organization

Chapter 2 presents an overview on state of the art in the fields of modeling
languages and meta-programming. It contains discussions and critics about
existing approaches and try to define exactly the problem.

The OFL-Model is presented in Chapter 3. This model represents a para-
metric meta-model that allows description of object oriented programming lan-
guages. This chapter presents main concepts behind this model and represents
an analyze of good and poor aspects of this model.

The model extension proposed in Chapter 4 is the result of conclusions
extracted from previous section. It enable customization of language modifiers
and enrich the adaptable semantics of the OFL-Model.

Chapter 5 represents the main section of this thesis. During this chapter
is developed the approach regarding generation of OFL-ML profiles. It describe
the OFL-Meta-Profile and the Virtual Meta-Model that resides behind it. It
contains also all the rules that are used to generate a specific OFL-ML Profile.

Chapter 6 presents working framework and the tools support necessary to
validate the approaches presented in the previous two chapters.

Chapter 7 summarizes the thesis and point out the research perspectives
of presented approach.

8



Chapter 2

State of the Art

There are several options in the field of object oriented modelling languages and
meta-languages extensions. There are also several approaches to reduce the gap
between models and implementations. This section try to offer an overview of
some of those in a critical manner.

2.1 Design Methods

2.1.1 Unified Modelling Language - UML

The Unified Modelling Language (UML) [OMG03], as defined by OMG, is a
graphical language for visualizing, specifying, constructing, and documenting
the artifacts of a software-intensive system.

The Logical Model in UML can be used to model the static structural ele-
ments of a software system. It captures and defines the building blocks (arte-
facts) as objects and entities of a software system. Classes are the generalized
templates used to create run-time objects. Components are built from classes.
Classes and Interfaces are the design elements that correspond to software arte-
facts created on the implementation step of an application.

The Unified Modelling Language is, as its name says, a modelling language,
and cannot be used as a programming language or a process. It consists in a
specific notation and a related grammatical rules for developing software appli-
cations models. It does not specify the way to use that notation in a software
development process or, as in our case, as part of an object-oriented design
methodology. However, there is a strong link, but also a gap between the UML
model and the intrinsic implementation model. UML contains a complete set
of graphical notation used for describing classes, components, activities, work
flow, objects, and relationships between these elements. Stereotyped elements
can be used for custom extensions. The language provides important benefits
to programers and software companies by helping them to build rigorous, and
maintainable models at all levels of software development process.

9



The interest of this theses concentrates mainly in Class model. As defined by
OMG a Class is a standard UML construct used to detail the pattern from which
objects will be produced at run-time. AS in many object oriented languages
an object is an instance of a class. To extend the expresiveness, classes may
be inherited from other classes. This way they inherit all the properties and
behavior, but also could add new functionality. They could have attributes of
the type of other classes, they can delegate responsibilities to other classes. They
also can implement abstract interfaces. To gain a more precise semantic real
models use a variety of stereotypes and related constraints applied to UML class
element. They are used to model different kinds of classes belonging to object
oriented languages (like Java Abstract Class, Java Interface, C++ abstract class
etc.) .

I focus here on the Class Model because it is the core of object-oriented de-
velopment and design. As mentioned in [Fla99a], it covers the persistent state
of the system, and the behavior of the system. A class encapsulates state (at-
tributes) and offers services to manipulate that state (behavior). Good object-
oriented design limits direct access to class attributes and offers services which
manipulate attributes on behalf of the caller. And very important, this data
hiding and services exposing supports data updates that are done in a single
place and following specific rules. A class model contains in some cases the
implementation encapsulated at the level of method body.

To design a model logical UML elements may be related in a variety of
ways. The following relationships are the most used in practice: association,
aggregation and inheritance relationships.

Association relationships [OMG03] express the static relationships between
entities. These generally relate to one object having an instance of another as
an attribute or being related in the sense of owning (but not being composed
of, as defined by OOP paradigm). Programers will use this element but in
conjunction with stereotypes that define relationship semantics.

Aggregation relationships [OMG03] define a kind of whole/part relation-
ships. A stronger form of aggregation is named composition. It specify that
a class not only collects another class, but also is actually composed of that
collection. There exists also some other flavors for aggregation.

Inheritance [Ewi, Car88, Por92] describes the hierarchical relationship be-
tween classes. It describes a family tree. Classes may inherit attributes and
behavior from a parent class (which may in turn be the child of another class).
This tree of inherited characteristics and behavior allows the designer the abil-
ity to collect common functionality in root classes (ancestors) and refine and
specialize that behavior over one or more generations (children).

In the proposed methodology I pay a special attention to scope modifiers,
as public, protected and private. They determine in a UML Class model which
elements may be inherited and which are not visible. UML use generalization
relationship element to denote inheritance. However, an enhanced model for
Inheritance is obtained through stereotypes and tagged values added to UML
generalization. This way it could make distinction between different types of
import relationships like class inheritance and sub-typing. UML visibility mod-

10



ifiers represents a real problem for programmers [FS01]. They are used to define
scope of inherited elements through relationship but also to define some level of
protection inside the code. Instead of that, I will try to define a adaptive spec-
ification for this modifiers [PL03] that model the existing access control and
protection specifiers from the target language. Moreover, following this way
supportcan be provided for other king of features modifiers that address various
semantic (like optimization or services).

UML Dynamic Relationships [Aal02] represents the messages exchanged be-
tween classes as objects at application running time. A Sequence Diagram is
used to analyze the message passing and the sequence in which it hapapend.
These model elements have an association to each other reflected at run time by
the passing of messages to each other. I do not consider Dynamic Relationships
in this thesis. However, a future research can analyze the opportunity to pro-
vide Instantiation Relationships (that are objects to classes relationships). This
relationships model the link between application run-time instances (objects)
and class meta-instances (meta-objects).

In UML, a logical model element and the attributes, associations and opera-
tions that it has, may all be further specified with constraints. Such constraints
are important to catch a specific semantic in the code.

Consgtraints are expressed by UML contractual rules that apply to an ele-
ment and/or its features. Typically they fall into one of three types:

• Pre-conditions. They must be true prior to the operation execution or
prior to creation/existence of an element;

• Post-conditions. They must be validated after the destruction/deletion of
an element or object;

• Invariants. They must always be true along the entire life spanning of an
entity or object.

Any modeling language need support for these rules. This ussualy imply
support for assertions. In UML they are modelled most of the time using the
Object Constraint Language OCL [R. 02, BH00].

As the class model develops, classes (and interfaces) may be organized into
logical units or packages in UML. These collect related elements (and in some
implementations will govern the visibility of operations and attributes) by ele-
ments outside the package.

In most programming languages packages are used also as structures design
to support a better organization of user application elements. This corresponds
to UML package concept and to class libraries organizational model in object
oriented programming languages. Generally, a package can be ssen as a group-
ing of model elements. It may contain a set of different kinds of model elements.
Each model element can be directly owned by a single package. However, pack-
ages can reference other packages, so the whole usage network can be seen as a
graph structure. As defined by UML the dependencies among the elements be-
longing to different packages create dependency relationships between packages.
This dependencies could be used to write specific constraints.

11



2.1.2 UML Profile

UML is defined by its meta-model [Obj01, Lem98]. In [Des99] it is discussed
how specific domains that require a specialization of the general UML meta-
model can define a UML profile to focus UML to more precisely describe the
domain. Even as concrete UML profiles have started to emerge, use of the
profiling mechanism is still discussed [DSB99, AK00].

An UML Profile is created as a collection of UML extensions. Such exten-
sions can be elements as stereotypes, tagged values or constraints specific for a
domain. A profile is completed with specifications of the mappings of some do-
main concepts to such extensions, and specifies additional well-formedness rules.
These are commonly written in OCL or using a subset of natural language.

Virtual Meta-Model of Stereotypes The UML specification makes the
following comment in its discussion of Stereotypes [OMG03]:

The stereotype concept provides a way of classifying (marking) elements so
that they behave in some respects as if they were instances of new ”virtual”
metamodel constructs.

In the UML meta-model, a Stereotype is a GeneralizableElement [OMG03].
Therefore it is a common practice to define Generalization Relationships among
Stereotypes. Furthermore, a GeneralizableElement is a ModelElement, there-
fore Dependency Relationships can be defined among ModelElements. As con-
sequences, it is accepted for Stereotypes to participate in Dependency Relation-
ships.

In the UML meta-model, a Stereotype can be used to extend elements of
the meta-model.

The notations used in this thesis for Stereotypes folows the notation de-
fined by OMG in UML specification. Some abstract Stereotypes are defined
and, in line with the UML notation, the abstract nature of them is emphases
using italic fonts for the Stereotype name. Also, in line with programming lan-
guages, an abstract GeneralizableElement cannot be instantiated in UML. The
abstract Stereotypes are useful for avoiding repetition in multiple Stereotypes
that logically have common properties.

Using UML Notation for Virtual Meta-modeling. In light of these facts,
the specification takes the following approach to using UML notation to express
the virtual meta-model:

• The model is expressed via class diagrams.

• Each Stereotype plays the client role in a Dependency Relationship with
the UML metaclass that it extends. These Dependencies are stereotyped
�baseElement�. We use this as non-standard notation because relation-
ships afford greater clarity than TaggedValues.

• Each Stereotype is expressed via a Classifier box, even though a Stereo-
type is not a Classifier. The keyword �stereotype� does NOT represent

12



a stereotype itself - it is simply a notational marker for the underlying
Stereotype meta-class.

• Generalization Relationships among Stereotypes are expressed in the stan-
dard UML fashion.

2.1.3 Considerations About UML Semantics Included in
Profiles

Almost everyone admit needing a precise UML semantics [BCR00, Obe00, Hey01].
Next issues reveal the problems that appear when try to achieve this goal. I
try to respond at least partially to this problems when propose OFL-ML meta-
profile.

The granularity problem. Part of the precise UML semantics should be
contained in domain-specific parts, i.e. profiles. The question that naturally
arises from this is what do we put in the basic UML and what do we put in the
domain specific parts?

Semantics defined in profiles. A lighter approach is to leave the UML
definition as it was proposed. Each profile should contain all the semantics that
describes it. The advantage of this lighter approach is that it allows almost any
”UML semantics” to exist. However, this will not determine an increase in the
UML modeling precision. Indeed, it only add some semantics to UML variants.
I am not interested by this approach in my research considering the following
reasons. An important goal of developing a precise UML semantics is to ensure
that UML offers a communication means between modelers. However, it is
compromised as the same UML model may be understood differently by different
peoples. Actually, this approach would lead to the transformation of UML from
a modelling language to a modelling paradigm. If no concept had any semantics,
then UML would only be a vocabulary of terms with different meanings in
different contexts. Concretely this approach would consist of leaving the UML
definition as it is today (possible removing inconsistencies and omissions, if they
are found), and adding precise semantics into UML profiles.

Semantics shared between profile and meta-model. Another approach
propose to add semantics into profiles, and to also add more information into
the UML definition. A possible solution is to define the concepts, relationships
between them, constraints, some more precise semantics of them in the common
UML. Moreover, for each concept it is stated explicitly in the common UML
whether it can or not be refined, or redefined in a profile. The advantage is that
the impact of different variants is reduced and localized and anytime someone
will look at a UML model it will be clear which elements are susceptible of
having a semantics different from the common one. In the same spirit we could
imagine not only having concepts whose semantics can be refined, but also to

13



having without semantics, so that any UML profile should clearly state what is
the meaning of that concept in its context.

Flavors of the flavors Assuming we know how to partition the semantic
between the common UML and the specific profile, the next questions that
comes is how much information the couple common UML plus specific profile
should contain? I can take as a concrete example the under-worked UML profile
for real-time [RFPRT], as it is one of the first profiles approved by the OMG.
The purpose of the real-time profile is to offer specific means appropriate for the
real-time domaina applications. Although it solves many of the UML problems,
it still may need further refinement to be valuable in practice. The real-time
application domain is itself vast, therefore a unique profile could not address
every specific demand. As a result, if one would compare the UML profile for
real-time with a solution dedicated to a specific real-time field, such as the SDL
[SDL] primary designed for telecommunication, the conclusion would be that
the real-time profile offers less than the existing solutions and may still need
further refinements.

Although the problem of not having a precise semantics has been often
signaled, having a precise semantics of UML is still an aspiration.

2.1.4 UML Action Semantics Model

Actions Semantic Model [OMG03, SPH+01] is a promising technology included
in last version of UML specification. It aims to provides both a meta-model
integrated into the UML meta-model, and a model of execution for the state-
ments for both application code or constraints. As a OMG standard, the Action
Semantics provides a simplier way the achieve tools interoperability. Moreover,
it also supports executable modeling and simulation.

The fundamental elements defined by this model are the next:

• Action - fundamental unit of computational behavior

• Action semantics are based on proven concepts from computer science

• Action semantics remove assumptions about specific computing environ-
ments in user models:

– execution engines, PLs, implementation details

– do not require specification of software components, tasking struc-
tures or forms of transfer of control

– yet allows modelers to produce executable specifications

In a general case, an action takes a set of inputs and converts them into a
set of outputs as a imperative programming function does.

• Input pins - hold values to be consumed by the action

• Output pins - hold values generated by the action

14



• Pins are type conform - The type of the output pin is the same as or is a
descendant of the type of the input pin

• Fan out of output pins is allowed

• No fan in of input pins is possible

A data flow manage execution of two actions by transferring data between
them. It ensures action sequencing. Such data flow connects source and desti-
nation pins. The output data of one action represents the input of the next one.
A control flow defines a sequencing dependency between two or more actions.
It ensure a kind of explicit sequencing of them. The second action of a control
flow may not execute until the first action has completed execution. The speci-
fication tres to maximize the action concurrency. All actions are considered as
executing concurrently unless they are explicitly sequenced by a flow of data or
a flow of control.

Primitive actions do not contain any sub-actions (e.g. some nested actions).
Procedure is defined as an action container. They rerpesents a set of actions
within a model such as a body of a method in a programming language. Pro-
cedure provides a context for action execution. Inside the model, a procedure
takes a single object as input and produces a single object as returning result.
Multiple arguments or results can be implemented if they are represented as
object attributes. A procedure may be attached to a method.

UML: Kinds of actions. New Data Types may be defined using the UML
meta-model. If we consider a UnlimitedInteger type - it can represent a data
type whose range is the nonnegative integers augmented by the special value
unlimited. It can be used to represent the upper bound of multiplicities. It can
support read and write actions applied to variables, attributes, links etc. It can
also support composite actions or group actions, conditional actions and loop
actions. Computation actions can be defined as needed as ApplyFunctionAction,
CodeAction, MarshalAction etc. However, more discussion on UML meta-model
for Data Types is beyond the scope of the this thesis.

A special kind of actions are represented by collection actions. They contain
a subaction, which is an embedded action that is executed once for each element
in the input collection. We can aply iterate procedure that execute a subaction
on each element that belongs to a collection, repeatedly within a loop. It exists
also a special filter procedure that selects a subset of elements in a collection
and creats a new collection, or a map action that applies a subaction to each
of the elements in a collection, in parallel fashion. Actions for synchronous,
asynchronous invocation are denoted as messaging. A special kind of action is
represented by jumps as break, continue, or exceptions. Derived languages may
define their own actions.

15



2.1.5 J-UML

In most parts J-UML [Kai99], as an extension of UML, can be understood as
a subset or customisation of UML. J-UML model is totally Java oriented. It
supports a full graphical OOD/OOA of the actual Java source code intrinsic
model. Howevern, the J-UML is not by any means trying to reduce the gen-
erality of language independent modelling. On the contrary, it tries to build a
bridge between these two distant worlds as a kind of adaptation. It defines how
to map the UML elements into actual Java implementations.

The J-UML motto is:
”You can’t design anything that can’t be straightforwardly transferred to

Java.”
I can say that our goal is quite the same with a small change: Java will

be replaced by ”target programming language (Java, C++,)”. Because of this
change, the manner of UML customization differs hardly from the original rep-
resentation of J-UML.

J-UML try to solve such contradiction specific to any language independent
modeling environment by providing several ways to implement any language
independent model (like UML) in any specific language environment (like Java).

The basic understoonding is that J-UML ensure notation for a Java Class
as an extension of UML Class representation. To achieve that it provides new
compartments to the rectangle representing the class. Such example are the
Events compartment and Exception compartment able to handle specific Java
class syntax.

J-UML use UML visibility specifiers as (+, #, -) to define the visibility
of class for proprieties interchangeable with keywords public, protected and
private. The main difference is on interpreting the absence of specifiers, seen
as default syntax. The UML considers by default the propriety as public but
J-UML considers it to have package visibility to comply with the Java semantic.
In addition of that, all Java modifiers, like static or synchronised, could be used.
Howeve, using of UML specifiers is not a good point.

Moreover, J-UML has a special notation to refer the Java API classes. Using
this notation, classes that do not belong to application model can be referred in
an opaque manner, even if their implementation is not visible from the model.
UML does not provide anything like this but other systems, like Express-G
with ”defined data types”, does. The intent here is to cover two aspects of pro-
gramming. The first one is to allow use of basic types defined by the language
binding. The second is to support code reusing from libraries or other projects.
The main impediment is the ”opacity” related with the second aspect. The in-
ternal structures of basic types are hidden, and therefore it cannot be examined.
The escape from this deadend imply to use a kind of ”no control” policy. The
meaning of such policy is to pass all responsibilities to the language-binding
compiler. Indeed, no verification can be carried by the modeling tool related
with the usage of such descriptions.

16



2.2 Programming Languages Extensions and Meta-
languages

2.2.1 Java Extensions

OpenJava [TCKI00] is an extensible language based on Java. The OpenJava
MOP (Metaobject Protocol) rerpesents the extension interface of the language.
Through the MOP, the programmers can customize the language to implement
a new language mechanism. As stated by its definition the OpenJava helps
programmers who want to develop better Java libraries in the sense of easy-
to-use and efficient ones. It also helps programmers who intend to define their
own extended Java languages. On the other hand OpenJava can be regarded
as a toolkit useful to construct a Java preprocessor. The special feature of the
OpenJava MOP is its class meta-object API. Using this meta level, a program-
mer can manage source code in a object oriented language way by accessing
classes, methods, fields, etc. Having in mind that its translation is performed
at compile-time a parralel can be made with Java Reflection API at runtime.
Therefore it is easy to use for high-level translations [Gui98]. Indeed it is useful
when the programmer needs to extract information about methods, or she/he
needs to add methods, to modify methods and so on in an easier manner.

Other extensions of the Java reflection are Refelxive Java [Wu98], Dalang
[WS98] and metaXa [GK98]. They all share the same orientation to Internet,
and same concerns as transactions, security, concurrency, distribution, mobility
and persistency. All of them make use of separation between meta-code and
the application code. Same time they provide the customization of methods
invocation. For instance metaXa offers ”before” and ”after” routines for method
invocation. This makes possible to customize routine computation on one object
through several meta-objects that are associated with it by links.

All the models briefly described above aim to extend and open Java language
in a kind of structured way. Each of them provides characteristics close to OFL
approach : before and after methods routines, attaching of several meta-objects
to the same base level object of the application etc. The main differences is the
goal of OFL to obtain the language independence.

2.2.2 C++ Extensions

As is mentioned within its name, OpenC++ [Chi99] has been designed in order
to provide new capabilities to C++ language. It main goal is to simplify the
tasks for programmer, such as the modelling of a new type system by using meta
facility constructs. An important target of the OpenC++ is the development
of syntactical/semantical extensions of C++. This approach, as declared in the
documentation, focuses on efficiency and handles meta-information at compile
time. OpenC++ supports facilities as object assignment, handling of differ-
ent kind of expressions, function invocation, creation and deletion of instances,
access and updates of variables. In order to handle its customization, the meta-
programmer has to build a meta-class, which inherits from the meta-class Class.

17



He also has to redefines the routine bodies that are selected according to C++
extension that he intends to implement (each routine corresponds to a customiz-
able concept); the new contents of these routines corresponds to the new piece
of generated code related to the semantical action that is considered.

Another example is Iguana [GC96]. It enable a meta-programmer to select
the concepts that should be reified independently from each other. Iguana
allows the alteration of default semantics of entities by inheriting from the class
that describes the realization and specializes the methods of it. The set of
meta declarations is used in conjunction with the concept of protocol and it
is allowed to build a new protocol. Therefore, such protocol is created staring
from existing one. The protocols used in a class are selected at declaration
time in this case. The main customizable concepts, as defined by Iguana, are
method invocation, creation and deletion of objects. In addition it supports
customization of message passing, feature search, and activation/deactivation
of semantical controls.

Both OpenC++ and Iguana are based upon a same existing language for
which an open programming environment is proposed. OFL approach is some-
how different considering the fact that it propose a model that is not based on
any particular programming language. Another important distinction is marked
by the central position of links in OFL. As explained by its developers, this cor-
responds to a strong determination to isolate the meta-code that handles the
relationships between entities from the meta code that handle the class seman-
tics.

2.3 Design Patterns

Anoter notion reffered in this thesis is represented by the design patterns. A
design pattern [GHJV94] provides a scheme for refining the subsystems or com-
ponents of a software system, or the relationships between them. A design
pattern has capabilities to describes commonly recurring structure of linked
components that solves a general design problem considering a particular con-
text. A design pattern is a template described by means of software design
constructs. Such constructs can be objects, classes, inheritance, aggregation
or use-relationship. A design pattern identifies the involved set of classes and
corresponding objects, their roles and collaboration relationships, and their re-
sponsibilities in the cosidered context. A design pattern express a particular
object-oriented design problem or issue with a recurrent ocurrance in practice.
To be useful it has attaced information regarding where to apply it, whether
or not can be used in presence of other design constraints. In addition it has
to explain the consequences and trade-offs of its use in a particular situation.
Design patterns are focussed as the name said on design problems and not on a
particular programming language. Despite of this, programming languages give
their own flavors to usage of a design pattern as explained in [Coo98].

18



2.4 Discussion

The easiest way to fill the gap between design and implementation model is to
restrict UML to an existing language’s capabilities. In that case we can speak
about Java-UML, C++-UML etc. The main problem resides in loosing the
”universal” characteristic of UML and in problems related in addition of some
”non-standard” elements. A relevant example (J-UML) was analyzed in this
chapter.

Using OFL I try to make a kind of ”open restriction” of UML. It is like
creating an open set of UML restrictions related with languages like Java, C++
etc. or with extension of that of languages. In that case we want to move
the ”universality” at the level of OFL meta- programming instead of level of
modelling. As the result, my approach will represent in a way a collection of
UML restriction. Since the collection is open we can say that OFL and OFL-ML
does not really restrict in fact UML, it just uses it’s model in other way.

The approach presneted here do not change the meaning of UML:

• I proposes the user to define its semantics for a class or a relationship
using the semantics of OFL and to associate to these semantics a set of
tags.

• I want to nudge the way to use the UML elements. On the one hand
is possible to define whatever programming element a programmer needs
at the level of OFL meta-programming and to use it in OFL-ML. On
the other hand is not allow to use a element in OFL-ML, which have no
corespondent at the level of OFL.

The main benefit of the approach presnted in this thesis approach is repre-
sented by the possibility to have a direct and an exactly matching implemen-
tation for the model but not loosing the fact that we are at the design level,
because of the extended number of class and relationship semantics.

19



Chapter 3

The OFL model

3.1 Intuitive approach

OFL is the acronym for Open Flexible Languages [Cre01b, A. 00, P. 02, CCL99]and
the name of a meta-model for object oriented programming languages based on
classes. It was developed in France at University ”Sophia Antipolis” of Nice. It
relies on three essential concepts covering important aspects of object oriented
languages: the descriptions used as a generalization of the notion of class, the re-
lationships concepts like the inheritance or aggregation and finaly the languages
themselves. OFL works based on customization aplied on these three concepts.
The main goal is to adjust their operational semantics to the programmer’s
needs. This allows to specify new types of relationships and classes that can
be then adapted to an existing programming language in order to improve its
expressiveness. This way the described mechanism can also increase the code
readability and the language capability to evolve.

The OFL-ML (OFL Modelling Language) is designed as an meta-profile
that allows automatic generation of UML profiles tailored for OFL-languages.
It is based on OFL and on UML profiles. OFL-ML will be design as a key
feature in implementation of the OFL Framework [Pes01, PL00]. It is intended
to allows using of OFL extension for existing object programming languages
close to application models. The meaning of extension is that: is not possible
to remove any kinds of classes and relationships that already exist within the
language but only to add new kind of classes and relationships [CL02b]. For
example it is not possible to remove the kind of class called ”interface” in Java
but it is allowed to add another kind of classes if needed.

The existing programming language is selected by defining a binding be-
tween an UML Profile and this language. All method bodies will be imple-
mented according to the syntax of this language. Indeed, OFL does not provide
customization at the code level of methods body.

One of the main goal of this approach is to allow programmer to reduce
the gap between UML modelling structures and the target language used for

20



implementation. By target language we mean the object oriented programming
language reified or extended using OFL.

The intent is to avoid the necessity to develop separate UML extension for
every target object oriented language. As intended, this modelling language
will be closer with implementation language than UML is. This goal could
be achieved based on OFL feature to extend modelling capabilities of target
language. This way our approach will avoid usage of general modeling features.
Instead, the OFL specific features will be used.

The advantage of this solution comparing with custom UML languages like
J-UML [Kai99] resides in its independence to the implementation language.
The advantage related with reflective languages, like Iguana [GC96], Open
C++ [Chi99] or Open Java [TCKI00], consists in a considerably less meta-
programming work, tanks to the OFL. Also, unlike OFL Framework, the reflec-
tive language does not provide support to graphical modeling. The modeling
tools in this framework will be a combination between an existing modelling
tool, like Rational Rose, and an IDE (Integrated Development Environment),
like IBM Visual Age. Although, commercial modeling tools can be adapted to
use an OFL-ML Profile, using standard UML Profile mechanisms [Des99].

3.2 Overview of OFL Model

OFL was first designed as a meta-object protocol such as that of CLOS (Com-
mon Lisp Object System) [KDRB91], but it is more open and complete that
CLOS. The concept evolves then to a hyper-generic approach to solve the prob-
lem of distance between modeling and coding. The central approach here is
based on generecity. Genericity can be seen as the ability to customize the be-
havior of a class in an object oriented language just as for Eiffel [Mey02, Mey97]
or C++ (template) [Str97] generic classes. Going further, hyper-genericity
rerpesents the ability to customize the behavior of the language itself. The
main mechanism is based on using a set of OFL parameters. The language
adaptetion is based on selecting appropriate values for such parameters used by
a set of algorithms instead of redefining language behaviors. Indeed, these pre-
defined algorithms, already implemented in OFL framework, take into account
the values of these parameters to achieve the desired behavior. The algorithms
are called ”OFL actions” and they define in fact the operational semantics of
the language.

On a basic undertanding, the OFL approach can be reduced to the search
for a set of parameters whose value determines the operational semantics of an
object oriented language based on classes. Indeed, it defines a set of param-
eter [CCCL01], which represents the main features of the behaviors of these
three central notions known as concept-relationship, concept-description, and
concept-language. For instance, concerning the concept-relationship, the value
of the Cardinality parameter will allow meta-programer to decide betwen simple
or multiple cardinality. Another example is the Generator parameter associated
with concept-description. Its value determines whether the concept-description

21



Figure 3.1: The OFL Architecture

can or cannot create own instances.
The operational semantics of each concept must adapt to the value of its

parameters. This is achieved thanks to a set of action’s algorithms whose ex-
ecution depends on the parameters values. E.g., the assignment of an object
to an attribute can be expressed using parameters of the concept-description;
the dynamic binding of the features can be also enabled using parameters of
concept-description; the sending of messages behavior is decided according to
parameters of concept-relationship etc.

OFL links two facets to each action. The first aspect express the static
part inside an interpreter or a compiler. The second facet covers the dynamic
aspect generated as specific code executed at runtime by the compiler. The
distribution of the code between these two facets depends on implementation
choices of the OFL model. Figure 3.1 illustrates how to use the OFL Model
to describe an application. The notation follows the UML convention. Three
levels of modelling are shown:

1. the application level includes the program’s descriptions and objects (OFL-
instances and OFL-data),

2. the language level describes the components of the programming language
(OFL-components like ComponentJavaClass or ComponentJavaExtends),
and

22



3. the OFL level represents the reification of those components (OFL-concepts
and OFL-atoms).

The OFL atoms represent the reification of the non-customized entities of the
model. The relationships, descriptions and languages have their own OFL atoms
to describe the part of their structure and their behavior, which are not cus-
tomized.

The OFL components inherit from atoms and represents reification of lan-
guage entities (relationships and descriptions). All components have a set
of characteristics keeping meta-information for programming language entities
(OFL instances) such as lists of attributes and methods for a description com-
ponent. Another example is a lists of features for a relationship component.
Ultimatelly, the language itself is a component that ensemble together the rela-
tionships and descriptions which are part of the application code.

In order to model an application, the programmer uses the services supplied
by the language level. For that he masters OFL-instances in form of descriptions
and the relationships as part of the model. This can be done by instantiation
of various OFL-components. On the runtime level there will be some OFL-data
corresponding to the application objects. Indeed, their denotes OFL-instances
representing the descriptions.

3.2.1 OFL Level: OFL-Concepts and OFL-Atoms

The OFL model is a meta-model for object oriented programming languages,
considering the language level. At the same time it represents a meta-meta-
model for the programs (applications) itself at an application level. To acieve
that the OFL customize three important notions as the relationships, the de-
scriptions and the languages itself. Moreover, some others components need to
be described such as the objects, the methods, the assertions, etc. These ex-
tra modeling is necessary in order to describe a language in a more completely
manner. Indeed, the OFL level includes two types of entities:

• the OFL-Concepts. They reifies the adaptable aspects of components such
as relationships, descriptions and languages, and

• the OFL-Atoms. They describes the fixed part of these three concepts as
well as all the other components included by OFL.

Moreover, supplimentary assertions are necessary to be included in each OFL-
concept and OFL-atom to keep the model consistent.

OFL-Concepts Figure 3.2 shows a complete set of the classification of the
OFL-concepts. As previously described, only the OFL-Concepts are customiz-
able in the OFL model. Therefore, the meta-programmer work consists in cre-
ating a OFL-Components as instances of OFL-Concepts. This can be achieved
by setting values to each of components’ parameters. This represents a way to
describe the behavior of each instance of designed OFL-Component. However,

23



Figure 3.2: The OFL Concepts

if the operational semantics intended for an OFL-Component does not match
the intended action, the code of these actions can be modified accordingly.

However, this is not a very common practice. The OFL model is kept open,
but this feature should be used only in very specific context. In this case, the
complexity of the meta-programmer job will increase a lot as it implies a lot
more than just giving appropriate values to OFL componets’ parameters.

The Concepts-Relationships. OFL Concept-relationships repesents entities
modeling various kind of languge relationships. Therefore, a concept-relationship
represents in fact a meta-relationship. Among other relationships, that may ap-
pear in object-oriented languages based on classes and objects, common exam-
ples are inheritance, aggregation, composition, generalization, etc. Moreover,
a designer can use some of them in order to simulate some others. For exam-
ple the UML Generalization relationship describes both a generalisation and an
inheritance, a strict sub-typing. Some other example can be also easily found.

In order to describe the concepts at a very fine grade, a complete set of pa-
rameters are defined in OFL. For example more than thirty parameters are used
to describe the semantics of all concept-relationships in the OFL model. Figure
1 depicts a expressive classification of the concepts-relationships. Concerning
the inter-description relationships, a distinction should be made between the
import relationships, which represents generalisation of the inheritance mech-
anism, and the use relationships, which corresponds to a generalisation of the
aggregation mechanism.

The modeling power of OFL span also over the relationship between ob-
jects and classes. Among other possibilities, they can be used to model the
instantiation relationship that links an object and its class in an object ori-

24



ented progamming language. Moreover, it is possible to model the relationship
between objects itself, at the runtime level. However, the OFL model mainly
concerns inter-description relationships, as they represnets main concept in mod-
eling an application.

The OFL Concept-Description is used to describe the notion of a class and
others class like entities such as the interfaces in Java. Therefore a concept-
description is a kind of meta-class for describing a class like entity.

A skilled programer knows that even if class entities look the same in Eiffel,
C++ or Java, they demonstrate important differences. Teherfore around twenty
parameters are necessary to implement the behavior of a description (rerpesent-
ing a class) in the OFL model. As for programming language classes each such
OFL concept-description is compatible with a set of OFL concepts-relationships.
Taking Java as an example, the OFL concept-description for a Java interface is
compatible with the OFL concept-relationship for Java implementation, but it
is not compatible with the inheritance between Java classes.

On the top level, the Concept-Language represents an important but simple
notion used to models a language. Indeed, an object oriented programming lan-
guage includes a set of concepts-descriptions and a set of concepts-relationships
linked with at least one concepts-description. The concept-languages are hardly
customized, and their main goal is to ensemble together concepts-relationships
and concepts-descriptions described in context of corresponding language.

OFL-Atoms OFL Athoms represent the realization of the fixed entities of the
model. Indeed, OFL Athoms represents non-customizable entities. Figure 3.3
illustrates a part OFL-Atoms hierarchy. The OFL relationships, OFL descrip-
tions, and OFL languages have their own OFL-Atoms to describe the part of
their structure and their behavior. But all thses are not customizable entities.
Considering an object oriented application, all the features of a description are
instances of an heir of feature. Same way expressions are instances of expression
or of one of its heirs. Therefore the OFL Model gives a full reification of the
entities found at the application runtime.

3.2.2 Language level: OFL-Components

The language level describes different types of relationships and descriptions,
which can be used in the targeted language. As mentioned, relationships are
instances of concept-relationship when descriptions are instances of concept-
description. The language itself is an instance of OFL concept-language. Its
main function is to group relationships and descriptions which are supplied to
the programmer.

3.2.3 Application Level: OFL-Instances and OFL-Data

To describe an application, the programmer uses the services supplied by the
language level. He creates OFL-Instances, which are the descriptions and the
relationships of his application by instantiation of the OFL-Components. At

25



Figure 3.3: The OFL Atoms

runtime, the application objects modeled by OFL-Data are instances of the
OFL-Instances. Indeed they represents descriptions.

OFL-Instances Each description or relationship described by the program-
mer is modelled by an OFL-Instance. The OFL Instances are analogues to
a class written by a programmer in an object-oriented language. The OFL
Instances representing relationships describe information necessary for relation-
ship customization.

OFL-Data In the application, each description instance is modelled at run-
time by an OFL-Data entity. However, OFL-Data entities are not customizable.
Indeed, they are not instances of OFL-Components because the behaviors of
such objects are not customizable according to the OFL.

3.3 Programmer and Meta-programmer: sepa-
ration of tasks

In order to avoid confusions the OFL make a clear distiction between the pro-
grammer and the meta-programmer tasks, which terefore are clear separated.
The programmer has to describe the application model and she/he has to write
the implementation code. Indeed, hers/his work will be on the application
level. For model specification she/he has to use a modelling language designed

26



to provide OFL features. For code implementation she/he can use different
object oriented languages supported by the OFL implementation. To avoid
confusion, the syntax is keept as in the original language. However, the se-
mantics of model reified in application types will follow the meta-programmer
OFL definitions. Usually this means much more constrains in accessing classes
features. Teherfore, the meta-programming task is localized at the OFL Com-
ponents level. Her/his work consists in three different tasks. The first task
consists in creating components that wrap over the language entities. These are
descriptions and relationships. The second task consists in implementing new
components by changing parameters values. The last one implies much more
work in both defining parameters and changing the action code for new com-
ponents. The programmer will use those components to create the application
model.

3.4 The Integration in the Existing Meta-Models

As presented before, the OFL is a meta-model that describes object-oriented
languages based on classes. Its main goal is to customize the operational se-
mantics targeted language descriptions and relationships. As mentioned in the
second section of the thesis, the state of the art in the field of meta-model
reveals diversity. Examples are Reflective Java, Dalang, metaXa, OpenC++,
Iguana etc. These meta-models are usually able to describe one another. From
a general point of view, OFL is close to OpenC++ by its customization model
expressiveness. It is also comparable with Iguana by several details as the cus-
tomization at the meta level and the encapsulation of semantics. Here we can
compare the OFL concept of language with the concept of protocol in Iguana.
Generally, OFL is original since its main strength is the language independence.

For OFL, the most significant player is represented by the MOF (Meta Ob-
ject Facility) [Obj01]. However, the OFL do not has the first aim to compete
against MOF because the lower abstractization. It target in fact less general
model closer to the programmer. Indeed, MOF is based on a class concept, an
association concept and a package concept. A MOF class allows to define at-
tributes, the type of which can be simple or described by a class, and to specify
operations. An iportant aspect that has to be well undertud is that OFL and
MOF have both the same approach concerning the method bodies. Indeed, in
both cases the body has to be written using the targeted language. Moreover,
both OFL and MOF starts their artefacts from the OMG UML and IDL no-
tation and syntax. A MOF association allows to define any relationship that
occurs between a number of MOF source classes and a number of MOF target
classes. The semantics of the relationship described by such an association is
implemented using attributes and operations of the MOF classes. The MOF
packages is porposed to group MOF classes and MOF associations. On the
other hand, OFL may be described according to MOF and supply the latter
with an additional layer on top of it. This can be done in order to customize
the operational semantics of the MOF classes and associations. The OFL can

27



also be described thanks to XML [W3C00] and XML-Schemas.
Finally, we can consider relationships between OFL and Design Patterns.

Design Patterns technology takes in account a lot of aspects controlled by OFL
model. Using OFL parameters, meta-programmer could control the granularity
of classes, could make distinction between different relationships like inheritance
and sub-typing and could implement several types of use relationships like del-
egation or aggregation. Inportant here is the expresiveness reveald be thw fact
that OFL make a clear distinction between association and aggregation. Be-
cause OFL model has OFL-Data wntities involved in run-time relationships, it
can manage compile-time and run-time structures in an explicit manner. The
OFL model can be used to simplify usage of design patterns or even to apply
some of patterns automatically. Other way is to integrate directly some patterns
into the OFL application model in order to support programmer to choose the
best model for its application or to do automatic transformations to application
model.

28



Chapter 4

Extending the OFL Model
Through OFL-Modifiers

OFL model provides a customization of main aspects of the semantics of a
language through actions and parameters, but the customization provided can
deal only with features than are enough general for being applicable to most
existing object oriented programming languages. Practical experience points
out the necessity to capture more of the semantics of these languages. To
achieve that it is necessary to add new elements to the original OFL Model
[Cre01b, CL02a].

In order to preserve simplicity, a large part of the language reification is
not customizable in the OFL Model philosophy. However, in order to achieve
acceptance in programmers’ community, some other customizations are needed.
Generally, this additional semantics is handled by keywords (modifiers) in ex-
isting languages.

One main goal of introducing modifiers is to limit the number of components
within an OFL-language. Using modifiers we avoid necessity to define one dif-
ferent component for any different combination of parameters. For instance, is
better not to have both public java-class and package java-class components dif-
ferentiated by a parameter visibility. Instead, we can imagine just one java-class
component and something else (like modifiers) allowing ensuring that access is
public.

Another goal of modifiers is to improve the flexibility at the level of meta-
programming by providing a clean way to extend a language with new capabil-
ities.

According to that we propose a generic approach which allows to define rules
for implementing access controls or additional semantics for language compo-
nents. The general idea is to apply these rules to an application in order to
provide for example metrics, error reporting, and design or debugging facilities.
Thanks to these rules we can had constraints to language entities in order to
enrich, when it is necessary, the expressiveness of a language construction.

29



Comparing with other approaches found in [ACL03, Sch02, BR01], we focus
on a generic technique independent from languages. Also, instead to define a
formalism which depicts access control mechanisms, we propose an approach
that describes how to implement these mechanisms at a meta-programming
level.

Following those goals we pay a special attention to not change the general
aspect of the OFL model.

Considering these issues we propose to add at the level of language com-
ponents the ability to define different kinds of modifiers and to add reification
elements according to that.

OFL modifiers are used together with other language entities in order to
change protection or other semantic aspects of them. Some of them have an
equivalent in keywords that may be found in some programming languages,
others could be added in order to simplify programming task.

4.1 The OCL Language

Starting from the point that most of the OFL modifiers relay on constraints
[Pes03] to be applied to the program entities, we choose OCL as the language
for specifying these constraints. OCL [CW02, WK98] is a formal language
which allows to express side effect-free constraints. The Object Management
Group (OMG) defines OCL (Object Constraint Language) [OMG00] as a part
of UML 1.3 standard specification. Main motivation regarding that choice is
programming language independence of OCL and general acceptance of this
language.

OCL is designed to express side effect-free constraints. It was used by OMG
in the UML Semantics document [Sof97] to specify the rules of the UML meta-
model. Each rule in the static semantics sections in the UML Semantics docu-
ment contains an OCL expression, which is an invariant for the involved class.

The usage of OCL is important because in object-oriented modelling a graph-
ical model, like a class model, is not enough for a precise and unambiguous
specification. There is a need to describe additional constraints about the ob-
jects in the model. Such constraints are often described in natural language.
Practice has shown that this will always result in ambiguities. In order to write
unambiguous constraints, so-called formal languages have been developed. The
disadvantage of traditional formal languages is that they are useable to persons
with a strong mathematical background, but difficult for the average business
or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains
easy to read and write. It has been developed as a business modelling language
within the IBM Insurance division, and has its roots in the Syntropy method
[CD94].

OCL is a pure expression language [Gri99]. Therefore, an OCL expression
is guaranteed to be without side effect; it cannot change anything in the model.
This means that the state of the system will never change because of an OCL ex-

30



pression, even though an OCL expression can be used to specify a state change,
e.g. in a post-condition. All values for all objects, including all links, will not
change. Whenever an OCL expression is evaluated, it simply delivers a value.

OCL is not a programming language, so it is not possible to write program
logic or flow control in OCL.

OCL is a typed language, so each OCL expression has a type. In a correct
OCL expression all types used must be type conformant.

OCL can be used for a number of different purposes:

• to specify invariant on classes and types in a class model

• to specify type invariant for UML Stereotypes

• to describe pre- and post conditions on Operations and Methods

• to describe Guards

• as a navigation language

• to specify constraints on operations

We use OCL to describe constraints introduced by modifiers. It can be also
used to specify pre and post conditions for OFL-entities at the level of OFL-ML
implementation.

As a notation convention for this document, the underlined word before
an OCL expression determines the context for the expression. Also, the OCL
expression itself will be on italic.

In OCL, a number of basic types are predefined and available to the modeler
at all time: Boolean, Integer, Real, String and Enumeration. It is also defined
a number of operations on these predefined types.

In addition, all descriptions coming from the OFL Model are types in OCL
that is attached to the model.

The type Collection, which is predefined in OCL, plays an important role in
writing constraints. It includes a large number of predefined operations to enable
the OCL expression author (the modeler) to manipulate collections. Consistent
with the definition of OCL as an expression language, collection operations never
change collections. They may result in a collection, but rather than changing
the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its sub-
types. OCL distinguishes three different collection types: Set, Sequence, and
Bag. A Set is the mathematical set. It does not contain duplicate elements.
A Bag is like a set, which may contain duplicates, i.e. the same element may
be in a bag twice or more. A Sequence is like a Bag in which the elements are
ordered. Both Bags and Sets have no order defined on them. Sets, Sequences
and Bags can be specified by a literal in OCL.

OCL defines a number of operators for collection manipulation:

• SELECT and REJECT - allows to specify a selection from a specific col-
lection

31



• COLLECT - allows to specify a collection which is derived from some other
collection, but which contains different objects from the original collection
(i.e. it is not a sub-collection)

• FORALL - allows to specify a Boolean expression, which must hold for all
objects in a collection

• EXISTS - allows to specify a Boolean expression which must hold for at
least one object in a collection

• ITERATE - allows building one accumulation value by iterating over a
collection. It is a very generic. The operations Reject, Select, forAll,
Exists and Collect can all be described in terms of Iterate

4.2 The OFL Modifiers

An intuitive definition of a modifier entity is the following: a modifier is a
language keyword that is used in composition with other keywords to change
their semantics. An important issue is that a modifier keyword have no stand-
alone meaning.

OFL-modifiers are designed to reify those entities in order to ensure better
OFL customization for programming languages. Generally, modifiers imply
constraints added to the application model in order to achieve a fine control.

Not all language modifiers are intended to be reified by OFL modifiers.
Semantics changes induced by some of them are very deep and relay in different
OFL components. We name them component modifiers. Following list presents
situation for three well known object-oriented languages: Java [GJSB00, Fla99b,
LYJW96], C++ [Str97, Lip99, Str94] and Eiffel [Mey02, Mey91].

4.2.1 Component Modifiers in Commercial Languages

Java language.

abstract {class declaration} An abstract class is a class that is incomplete,
or to be considered incomplete. The reification for a class declared abstract
in Java results in several OFL description components for abstract class,
static abstract nested class, abstract inner class and abstract local class.
All these components has parameters generator and destructor set to value
false.

final {attribute declaration} A final attribute may only be assigned to once.
Once a final attribute has been assigned, it always contains the same value.
To model this kind of attribute in OFL we use an OFL-AtomAttribute that
has property isConstant set to true.

static {feature declaration} If a feature (attribute or method) is declared
static, there exists exactly one incarnation of the feature, no matter how

32



many instances (possibly zero) of the class may eventually be created. A
static attribute, sometimes called a class variable, is incarnated when the
class is initialized. A static method, called as class method, is always in-
voked without reference to a particular object. The OFL-AtomAttribute
and OFL-AtomMethod that reifies these entities has the isDescriptionFea-
ture property set to false.

C++ language.

static {member declaration} In C++ a variable that is part of a class, yet
is not part of an object of that class, is declared as static member. There is
exactly one copy of a static member instead of one copy per object. Simi-
larly, a function that needs access to members of a class, yet doesn’t need
to be invoked for a particular object, is called a static member function.
The OFL reification resides in OFL-AtomAttribute and OFL-AtomMethod
entities, which have the isDescriptionFeature property set to false.

Eiffel language.

expanded {class declaration} Declaring a class as expanded indicates that
entities declared of the corresponding type will have objects as their run-
time values. (By default, values are references to objects.). These classes
will be reified by description components corresponding to expanding class
and generic expanding class. Those components could not be target for
client aggregation relationship or generically derivation. Instead, they
could be target only for inheritance, expanded client relationship and ex-
panded generically derivation.

Figure 4.1 illustrates the OFL model extended with OFL-Modifiers. We define
three kind of modifiers for entities which support their semantics. These types
are: description-modifier, method-modifier and attribute-modifier. The OFL
modifiers components inherit from OFL-modifiers and represent reification of
language modifiers.

4.2.2 Definition of an OFL-Modifier

An OFL-modifier is defined by a modifier name, a context (an entity against
it is defined), a keyword, modifier assertions (OCL constraints) and a set of
associated actions (modified OFL-actions).

Modifier Name. The name is used to identify the modifier. It should be a
legal identifier related with OFL and the language binding.

Modifier Context. Type of entity that accepts the modifier is denoted by
its context. Context could be description, relationship, attribute or method.

33



Figure 4.1: The extension of the OFL model through OFL-Modifiers

Modifier Keyword. The modifier keyword represents the string representa-
tion of the modifier in the language syntax.

Modifier Assertions. We use OCL to specify the modifier constraints through
assertions.

These constraints reside in invariant for OFL components or in pre and post
conditions for OFL actions. Implementation of control implies assertions at the
level of OFL entities reifying the corresponding mechanisms. Indeed, they will
be attached to corresponding OFL-Components and OFL-Actions.

Another solution could be to define the assertion within the OFL-Modifier
itself but the drawback is that one modifier has to know about other modifiers
and this decrease its reuse capabilities.

Considering that, the role of an OFL-Modifier is to help meta-programmer
to manage and organize assertions.

For assertions we use notation that have the same meaning as in OCL defi-
nition [OMG00]. The self keyword refers the current instance of the associated
component.

The OCL modifier assertions are written in context of the OFL model defi-
nition; as a result of that, all types defined by the OFL model could be used in
assertions.

Some component features correspond to OCL collection type and support
OCL collection operators. For instance,

component.modifiers → includes(’modifier name’)
that tests if the component has modifier ’modifier name’ attached to it or not.

34



Modifier’s Actions. Modifier’s actions are OFL-Actions rewritten to con-
sider new semantics. The modifier keeps references to all rewritten action, help-
ing meta-programmer to manage them. Actions play different roles depending
of the complexity of the considered modifier. Most modifiers do not need action
rewriting. They have just a set of assertions attached to them.

In order to build a complex semantics from simpler ones and to extend mod-
ifiers, we define a modifier composition operator. This operator specifies how to
combine assertions and actions that belongs to composed modifiers. In the con-
text of composition operation we state the definition of ”compatible modifiers”
and ”incompatible modifiers”. Two modifiers defined in the same context are
compatible if they can be the parts of a composition. They are incompatible
if their actions and assertions are not disjunctive. Actions and assertions are
not disjunctive if their semantics interfere. According to that we extent the
definition of OFL-Modifier by adding a characteristic named incompatible mod-
ifier set. One modifier keeps in this set information about all modifiers that are
incompatible with it.

In the composition process, two aspects of modifiers are addressed: the
assertions and the actions associated with it. For compatible modifiers all inter-
actions will be just cumulative. For the assertions, which are OCL expressions,
other constraints can be composed using the AND logical operator. Because
OCL avoids side effects, composition of assertions is commutative. Actions may
be called in a random order. Indeed, if there are some interactions at the level of
action semantics, the modifiers are incompatible and the composition operator
cannot be applied.

To deal with incompatible modifiers we define an invariant at the level of
OFL entity representing the modifier context.

Following example consider the Java public modifier for attributes. For bet-
ter understanding we consider a ’package’ modifier replacing all default visibility
for attributes. The OFL reification for an attribute is the OFL-AtomAttribute.
When define access control modifiers for Java attributes, we attach an invariant
to this entity.
incompatible modifiers set for public is {protected, private, package}

context AtomAttribute
inv: self.modifiers->includes(’public’)

implies
NOT (
self.modifiers->includes(’private’)

OR
self.modifiers->includes(’package’)

OR
self.modifiers->includes(’protected’)
)

In order to cover all situations an invariant should be added for each modifier
considered.

35



In the context of a language extension made by a meta-programmer we
can distinguish two kind of modifiers. An OFL-modifier could represent the
reification of a modifier that belongs to the language binding - we name it
native modifier - or could be a custom modifier added by the meta-programmer
in order to enrich language semantic.

The native modifiers will have the same meaning, related with the language
binding components, like in the original language. The meta-programming task
will consist in describing the meaning and the behavior of modifiers according
with their definition. When a meta-programmer adds new extension for the
language (new components) he has the responsibility to extend the definition of
the modifiers according to the new entities.

In the following sections we try to provide an orthogonal approach in order
to define both native and custom modifiers.

Next we present a classification based on the semantics behind modifiers.
The meaning of semantics in this context is related with the aspect of entity
semantics that is changed by the modifier. To evaluate semantic changes, we
consider all the OFL-Actions that are involved.

4.2.3 Modifiers Classification Regarding OFL Implemen-
tation Issues

Access Control Modifiers The importance of a systematic approach on
access control mechanism represents an actual topic of research in the field
of object oriented technology [Aba98, Ard02, CNP89, Sny86]. Even the UML
standard [OMG03], which was planned to be language independent, lacks in
defining protection mechanisms. Flower and Scott emphasize this aspect [FS01]:

”When you are using visibility, use the rules of the language in which you
are working. When you are looking at UML model from elsewhere, be wary of
the meaning of visibility markers, and be aware how those meanings can change
from language to language.”

OFL Model also lacks in customization of access control mechanisms [PL03].
Modifiers represent a way to add this customization. Considering the OFL-
Actions involved by the semantics we can split these modifiers into two subcat-
egories: basic modifiers and complex modifiers.

Basic Access Control Modifiers. Some modifiers add constraints to some
facets of the language which are customizable in OFL by setting values to
some of the parameters and characteristics built in the OFL Model. To
implement these modifiers, meta-programmer has to write only assertions
at the level of one or several OFL-Components. They do not imply any
action rewriting. We call them basic modifiers.

Complex Access Control Modifiers. Some other modifiers address mech-
anisms that are implemented in OFL through pieces of code wrote by
meta-programmer. To implement these modifiers, he has to rewrite some
of the OFL-Actions and/or to extend their assertions. Because writing
actions is a more complicated job, we call them complex modifiers.

36



All the time complex modifiers implies protection and some time they
implies also visibility (ex. protected-write [CKMR99]).

Optimization Modifiers These modifiers have no impact at the level of ap-
plication model semantics. They are used only to establish optimization strate-
gies for compilers or, more generally, translators (ex. inline, volatile, register
etc.)

Service Modifiers Service modifiers are used to introduce new kind of ser-
vices like custom look-up, persistency or concurrency; They could have impact
at the level of model semantic or only at the level of code generation. (ex.
persistent, synchronised etc.)

Additional Modifiers In addition to previous considered modifiers languages
has also other keywords used to change semantics in a not customizable manner
in OFL. The meaning of these additional modifier is to force compiler to treat
in a special way the entity that declare the modifier. This category does not
include modifiers that change the reification component for considered entity
(this subject was discussed in sec. 4.2). The modified semantics is handled by
the native compiler (ex. explicit, agent etc.).

4.3 Basic Access Control Modifiers

Most of access-control modifiers add constraints regarding the way features
could be reached by other entities that are connected through different kinds of
relationships. They imply only constraints related with mechanisms reified by
OFL relationships (dynamic relationships like the one that links an instance to
its class could also be considered). According to that they could be considered
as basic modifiers. Their implementation relies only on assertions at the level of
OFL-components dealing with the description that involve those relationships.

4.3.1 Examples of Native Basic Access Control Modifiers

Java Language. Java [GJSB00] has several modifiers used for basic access
control: public, protected, private, and default (to be more expressive we named
it package).

Java class members (attributes and methods) that are declared public can
be accessed anywhere that the class in which they are declared can be accessed.

Members that are declared as protected can be accessed within the package
in which they are declared and in subclasses of the class in which they are
declared.

Members that are declared as private are only accessible in the class in which
they are defined and not in any of its subclasses.

37



Class members that have no access control modifier associated is considered
to have default visibility. These members can be accessed only from within the
package in which they are declared.

A Java class, abstract class or interface that is declared as public can be
referenced outside its package. If a class is not declared as public, it can be
referenced only within its package.

To achieve symmetry on defining modifiers we augmented the default Java
visibility for both class and members with an implicit package modifier.

C++ Language. For C++ language [Str97] the public, protected and private
modifiers has slightly different meaning as in Java [Ard02]. It has no ”package”
resolution but has instead a special class of visibility denoted by friend.

Using the friend keyword, a class can grant access to non-member functions
or to another class. These friend functions and friend classes are permitted to
access private and protected class members. The public and protected keywords
do not apply to friend functions, as the class has no control over the scope of
friends.

If a member of a C++ class is private, its name can be used only by member
functions and friends of the class in which it is declared.

A protected member can be used only by member functions and friends of
the class in which it is declared and by member functions and friends of classes
derived from this class.

A public member can be used by any function.
The default access for C++ class members is private.
These modifiers could be used to change access control through inheritance

between classes.
When preceding the name of a base class, the public keyword specifies that

the public and protected members of the base class are public and protected
members, respectively, of the derived class.

The protected keyword use for inheritance specifies that the public and pro-
tected members of the base class are protected members of its derived classes.

Finally, when preceding the name of a base class, the private keyword speci-
fies that the public and protected members of the base class are private members
of the derived class.

Eiffel Language. In Eiffel [Mey02] there are two constructions that can deal
with access modifiers; these are feature and export. In this language some of the
protection semantics are hidden in the language philosophy. For instance, the
writing protection has no direct meaning for an attribute because access to an
attribute from outside class is considered as a query (and it is not possible to
write into a result of a query).

4.3.2 Basic Access Control Modifiers for Features

Modifier Assertions. The assertions of basic access control modifiers for
features (attributes and methods) are defined at the level of OFL-Relationship

38



components that manage export of those features. They should be tested each
time a relationship involving that feature is created. An invariant at the level
of description that own the feature is not necessary. Basic modifiers do not
protect features against the description itself. Independently of the language
syntax we can consider three possibilities: the feature belongs to current class
or it is inherited through an inheritance relationship from a direct or indirect
ancestor or it is accessed through an use relationship (current class is a client
of description that owns the feature). In the last situation we consider that the
current description could access supplier description. Indeed, this problem is
covered by description’s access control. By current class we mean the class that
accesses the feature.

If we consider the Java syntax, features belonging to a class or inherited
by the class, are accessed using this keyword as qualifier. This keyword could
be explicit or implicit (non-qualified features). Features accessed through an
use relationship are explicit qualified with the supplier name. To consider all
situations, an invariant is needed for every component of import relationship
type and use relationship type defined for that language.

The following example presents invariants for extends Java inter-class rela-
tionship and Java aggregation relationship.
Java features basic modifiers: {public, protected, private, package}

context ComponentJavaClassExtends
inv: self.showedFeatures->forall(f:Feature |

f.modifiers->includes(’public’)
OR

f.modifiers->include(’protected’))
inv: self.redefinedFeatures->forall(f:Feature |

f.modifiers->includes(’public’)
OR

f.modifiers->include(’protected’))
inv: self.hiddenFeatures->forall(f:Feature |

f.modifiers->includes(’private’))

The invariant says that all showed and redefined features through an ex-
tend relationship should have modifiers public or protected attached. All hidden
features have private modifier.

context ComponentJavaAggregation
inv: self.showedFeatures->forall(f:Feature |

f.modifiers->includes(’public’)
OR
(( f.modifiers->include(’package’) OR

f.modifiers->include(’protected’))
AND
self.source.package = self.target.package)))

inv: self.hiddenFeatures->forall(f:Feature |
f.modifiers->includes(’private’)

39



OR
(( f.modifiers->include(’package’) OR

f.modifiers->include(’protected’))
AND
self.source.package <> self.target.package)))

In addition to previous assertion, this one tests also information about de-
scription’s packages. In this assertion the descriptions are accessed through
source1 and target2 members of the relationship component instance (self ).

All these modifiers are incompatible. For methods, the incompatible modi-
fiers set contains also the abstract modifier.

Modifier Actions Interference with model actions is minimal. Assertions are
added to control features access through relationships and no action rewriting
is necessary. Indeed, modifiers for basic access control generally do not redefine
any actions.

As an exception we can consider protected modifier for Java features. Action
is needed in this case to express a particular semantic presented in Figure 4.2.
Method m of class C have access to protected member f of B. This happens
because class A, which declare the member f, and class C belongs to the same
package. To express this semantics we need to rewrite the lookup action for
features. This action has to ensure access to protected members for any feature
that is declared by an ancestor belonging to same package with the class that
access the feature.

4.3.3 Basic Access Control Modifiers for Descriptions

Modifier Assertions. The assertions of basic access control modifiers for
descriptions are defined at the level of relationship components and at the level
of description component itself. They should be tested each time a relationship
involving that description is created and each time an instance of description is
created. The last situation deals with relationships that enable polymorphism.
According to these assumptions, the assertion associated to such modifier should
become a post-condition for the look-up OFL action.

The following example refers the Java language semantics for class access
control. Please note that this example does not consider interfaces, abstract
classes and inner classes.
Java class modifiers: { public, package}

context ComponentJavaClassExtends
inv: self.source.package = self.target.package

OR
( self.source.package <> self.target.package

1The source is the class which declares the relationship. In Java, for an extends relationship
this is the class which declare the keyword extends.

2the target is the class which is addressed by the relationship. In Java, for an extends
relationship this is the class whose name is mentioned after the keyword extends.

40



Figure 4.2: Java protected modifier semantics

implies
self.source.modifiers->includes(’public’))

A class can extend another class from the same package and a class can extend
a public class from other package.

context ComponentJavaAggregation
inv: self.source.package = self.target.package

OR
( self.source.package <> self.target.package
implies
self.source.modifiers->includes(’public’))

The following assertion address dependencies between classes, which are not
covered by OFL customization.

context Description::
lookup(accessed: Description):Description

post: self.package = result.package
OR
self.package <> result.package

implies
result.modifiers->includes(’public’)

Next we consider the Java language semantics for interfaces access control.
The example does not consider inner interfaces.
Java interface modifiers: { public, package}

context ComponentJavaInterfaceExtends

41



inv: self.source.package = self.target.package
OR
( self.source.package <> self.target.package
implies

self.source.modifiers->includes(’public’))

An interface can extend another interface from the same package and an inter-
face can extend a public interface from other package.

context ComponentJavaImplements
inv: self.source.package = self.target.package

OR
( self.source.package <> self.target.package
implies

self.source.modifiers->includes(’public’))

A class can implements an interface from the same package and a class can
implements a public interface from other package.

context ComponentJavaAggregation
inv: self.source.package = self.target.package

OR
( self.source.package <> self.target.package
implies
self.source.modifiers->includes(’public’))

A class can declare an attribute of a type of an interface from the same package
and of a type of a public interface from other package.

To handle dependencies between classes and interfaces we use the same post-
condition for lookup action previous defined for class modifiers.

Modifier Actions For those modifiers, assertions are also added to control
features access through relationships. Post-conditions are used to filter the look-
up action result. Modifiers do not redefine any actions.

4.4 Complex Access Control Modifiers

Complex access control modifiers define protection at the level of special rights
like writing / reading an attribute, calling / redefining a method or extending
/ instantiating a description.

4.4.1 Examples of Native Complex Access Control Modi-
fiers

Java Language. Java language does not include complex access control mod-
ifiers for attributes. It includes final modifier for methods and classes and in-
terfaces.

42



Modifier final associated to a method disallow redefinition.
A modifier with same name in context of classes and interfaces is used to

avoid extension.
Other language mechanisms (like making all constructors private) could be

used to control instantiation of classes.

C++ Language. C++ does not provide any specific modifiers to control
rights for using an entity.

Changing access rights to constructor does also control at the level of class
instantiation like in Java.

Eiffel Language. Frozen and deferred modifiers from Eiffel could be consid-
ered in this category.

Frozen, appearing before a feature name express that the declaration is not
subject to redefinition in descendants.

Deferred modifier permits declaration of a feature without an implementa-
tion. This transfers to proper descendants the responsibility for providing an
implementation through a new declaration, called an ”effecting” of the feature.

4.4.2 Complex Access Control Modifiers for Methods

Rights concerning method usage address mechanisms like calling or redefining.
Modifiers presented in the previous section do not make distinction between
these mechanisms.

Modifier Assertions. Implementation of control implies assertions at the
level of OFL entities reifying corresponding mechanisms. Redefinition mecha-
nism is reified in OFL by redefinedFeatures characteristic of relationship com-
ponents. Access control is done by invariant for these components. Calling
mechanism is reified in execute action. Assertion concerning calling rights is
implemented in a post-condition for this action.

The following example is an implementation of final modifier for Java meth-
ods.

context ComponentJavaClassExtends
inv: self.redefinedFeatures->forall(f:Feature |

f.typeOfFeature = method
implies

NOT f.modifiers->includes(’final’))

Final modifier is compatible with public, protected, package and private modi-
fiers and can be present in a composition to them. Its invariant will be added
to the component invariant.

Modifier Actions. Complex access control modifiers for methods require
some times rewriting of the execute OFL action.

43



4.4.3 Complex Access Control Modifiers for Attributes

Rights concerning attribute usage address control against reading or writing.
Protection on writing is achieved by a pre-condition at the level of assign action.
We can consider here a proposal of Cook and Rumpe [CKMR99] for defining
a read-only modifier for attributes. They conclude that is useful to constraint
the visibility of an attribute to be readable, but not changeable. The concept
of a read-only-modifier is introduced in combination with private and protected
modifiers.

Modifier Assertions Assertions for attribute complex modifiers resides in
pre and post conditions at the level of assign OFL action.

Modifier Actions Necessity for action writing resides in complexity of con-
sidered semantic.

As an example we consider a modifier that implements a heavy writing pro-
tection for an attribute. By heavy protection we mean to protect not only the
reference of the object against writing but also the internal state of the referred
object.

A solution that lacks in efficiency is to give access to a clone of the object
that contains attribute and to look after that if any changes appear. To ensure
this control, attribute access action should be embedded in the following code:

// cloning the original object
aux = deep_clone(f)

// original action
// ( any kind of action that may imply changing
// of attribute’s internal state )

*action(aux)
// test if the object preserve same state

if (not deep_compare(f, aux) )
generate_error("Could not write attribute")

end_if
destroy_object(aux)

Actions that permit changing of attribute’s internal state are considered the
following OFL-actions: evaluate-parameters, attach-parameters, detach- param-
eters, assign, execute etc.

4.4.4 Complex Access Control Modifiers for Descriptions

Description may be extended, used or instantiated.

Modifier Assertions Extension is controlled through invariant on inheri-
tance relationship components. To control client-supplier relationship, invariant
is attached to use relationship components.

44



As am example we consider the Java final modifier in context of a descrip-
tion. The invariant for Java extends relationship will check absence of this
modifier at the level of target description of relationship.

context ComponentJavaClassExtends
inv: NOT self.target.modifiers->includes(’final’)

Modifier Actions For description modifiers, actions are necessary to control
instantiation. Instead, most of the times a precondition at the level of create-
instance action is enough to ensure all semantics.

4.5 Optimization Modifiers

Optimization modifiers are used to transmit hints to the compiler in order to
generate a smaller or faster code. Because these modifiers have no impact on
application model semantics they have only to be passed to final compiler.

4.5.1 Examples of Native Optimization Modifiers

Java Language. Java has one optimization modifier for attributes - volatile
- two optimization modifiers for methods - native and strictfp - and one opti-
mization modifier for descriptions - strictfp.

An attribute that is declared as volatile refers to objects and primitive values
that can be modified asynchronously by separate threads of execution. They
are treated in a special way by the compiler to control the manner in which they
can be updated.

A native method is a method written in a language other than Java. In a
way it is declared like an abstract method.

The effect of the strictfp modifier is to make all float or double expressions
within the method body be explicitly FP-strict. Within a FP-strict expression,
all intermediate values must be elements of the float value set or the double
value set, implying that the results of all FP-strict expressions must be those
predicted by IEEE 754 arithmetic on operands represented using single and
double formats.

The effect of the strictfp modifier in context of a class or an interface is to
make all float or double expressions within the class or interface declaration be
explicitly FP-strict. This implies that all methods declared in the class, and all
nested types declared in the class, are implicitly strictfp. Also all float or double
expressions within all variable initializers, instance initializers, static initializers
and constructors of the class will also be FP-strict.

C++ Language. C++ language contains also optimization modifiers. The
C++ specification defined inline for functions and mutable and volatile for mem-
ber attributes.

45



The inline modifier for a member function is a hint for the compiler that is
should attempt to generate code far a call od function inline rather through the
usual function call mechanisms.

The mutable modifier specifies that a member attribute should be stored in a
way that allows updating - even when it is a member of a const object. In other
words mutable means ”can never be const”. Declaration of mutable member is
appropriate when only part of the object is allowed to change.

A volatile specifier is a hint to a compiler that an attribute may change its
value in way not specified by the language, so that aggressive compiler opti-
mization must be avoided.

Eiffel Language. Analyzing Eiffel we find also optimization modifiers. In-
dexing and obsolete modifiers for a class could be considered in this category
.

The optional Indexing parts have no direct effect on the semantics of the
class. They serve to associate information with the class, for use by tools for
archiving and retrieving classes based on their properties. This is particularly
important in the approach to software construction promoted by Eiffel, based
on libraries of reusable classes: the designer of a class should help future users
find out about the availability of classes fulfilling particular needs. We choose
to implement that part like a modifier because OFL does not contain any cus-
tomization according to that. Because indexing part could appear in two dif-
ferent places - one at the beginning and one at the end - we define two different
modifiers StartIndexing and EndIndexing.

The obsolete clause in a class indicates that the class does not meet current
standards. The advice for developers is against continuing to use it as supplier
or parent but without to harm existing systems which rely on this class. Declar-
ing a class as Obsolete does not affect its semantics. Instead, some language
processing tools may produce a warning when they process a class that relies,
as client or descendant, on an obsolete class.

4.5.2 Optimization Modifiers for Attributes

Optimization modifiers for attributes deal mainly with memory allocation and
persistency.

Modifier Assertions Assertions for optimization modifiers have to be writ-
ten just to avoid usage of incompatible modifiers. No other constraints are
necessary.

If we consider Java modifiers, volatile is incompatible with final. Because
final keyword has no reification in OFL (4.2) the assertion have to ensure that
the propriety isConstant is set to false.

context AtomAttribute
inv: self.modifiers->includes(’volatile’)

implies

46



self.isConstant = false

Modifier Actions In case of using an OFL translator to native code, actions
for these modifiers have just to copy them to the final translated code.

In case of an OFL compiler, it could consider directly those modifiers to
make optimizations. Another possibility is to ignore these modifiers if that
optimizations are not compulsory.

4.5.3 Optimization Modifiers for Methods

Optimization modifiers for methods concerns in accelerating calling mechanism
and in dealing with methods written and compiled in other languages.

Modifier Assertions Assertions for optimization modifiers concerns usage of
incompatible modifiers. No other constraints are necessary.

In the case of native modifier in Java, it is incompatible with synchronized
modifier. Also, a constructor method could not be declared as native. The
lack of a possible native constructors is an arbitrary language design choice that
makes it difficult for an implementation of the virtual machine to verify that
superclass constructors are always properly invoked during object creation.

context AtomMethod
inv: self.modifiers->includes(’native’)

implies
self.isConstructor = false
and
self.body->isEmpty()
and
NOT self.modifiers->includes(’synchronized’)

Modifier Actions These modifiers needs same kind of actions as optimization
modifiers for attributes. In case of designing of an OFL compiler for the OFL
language reification, attention must be payed to make a correct linking with
outside code.

4.5.4 Optimization Modifiers for Description

Optimization modifiers for descriptions are used for version and documentation
management. They could be used also to organize library of classes.

Modifier Assertions No assertion are needed.

47



Modifier Actions Actions could be designed to generate errors or warnings
in case of version conflicts or to generate class documentation. These actions
could be executed by modelling tools or by translators or compilers. Special
tools could also run them in order to find desired classes in libraries or to check
compatibilities.

4.6 Service Modifiers

4.6.1 Examples of Native Service Modifiers

Java Language. Java has three modifiers that could be part of this classifi-
cation. These are synchronized for methods and transient for attributes.

Java virtual machine can support many threads of execution at once. Threads
may be supported by having many hardware processors, by time-slicing a sin-
gle hardware processor, or by time-slicing many hardware processors. To help
programmer to use threads, Java provide mechanisms for synchronizing the con-
current activity of threads through synchronized keyword. A Java synchronized
method is a method that must acquire a lock on an object or on a class before
it can be executed. For a class (static) method, the lock associated with the
Class object for the methods class is used. For an instance method, the lock
associated with this (the object for which the method was invoked) is used.

An attribute that is declared as transient is not saved as part of an object
when the object is serialized. The transient keyword identifies an attribute that
does not maintain a persistent state.

C++ Language. We do not identify any native service modifier in C++
language.

Eiffel Language. Eiffel also does not include any service modifier.

4.6.2 Service Modifiers for Attributes

Service modifiers for attributes address services that deal with objects state (like
persistency).

Modifier Assertions Most of the assertions for these modifiers deal just
with incompatible modifiers. A particular situation result because OFL does
not provide customization at the level of attributes. To cover this situation,
modifier assertion has to test if usage of the considered service is permitted or
not in context of description that declare the attribute.

Modifier Actions Service modifier actions will implement the service or will
make link with components that provide considered service.

48



4.6.3 Service Modifiers for Methods

Service modifiers for methods address services that deal with execution (ex.
concurrency).

Modifier Assertions Service modifier assertions has to ensure that a partic-
ular kind of method (ex: a constructor or a destructor) support or not targeted
service. Similarly to attributes, OFL does not provide customization at the
level of methods. Because all methods have same kind of reification, as OFL-
AtomAttribute instance, information regarding them are characteristics at the
level of those instances.

Additionally, incompatible modifiers have to be considered.

Modifier Actions Service modifier actions will implement the considered
service. Most of those actions will be dynamic actions injected at compiling
time.

4.6.4 Service Modifiers for Descriptions

Service modifiers for descriptions have to deal with all kind of services.

Modifier Assertions Assertion will have to ensure that all relationships that
involve the current description are compatible with the service provided. If
we consider persistency, a composition relationship could imply that target of
relationship should be also persistent if the source is persistent. In other words,
assertions have to verify that all composition parts could be made persistent.

Modifier Actions Service modifier actions will implement the service. Most
of these actions will specialize actions of modifiers for attributes and methods.

4.7 Additional Modifiers

We consider here all modifiers that could not be included in previous categories.
These modifiers are used to change the semantics of accompanied entity in a
manner non-customizable in OFL. Semantics changing implied by native mod-
ifiers is handled by a native compiler of the corresponding language. When an
OFL application model is translated in native language code these modifiers are
just written into the generated source code. A custom OFL compiler for the
considered language binding must take care to generate the correct semantic for
native modifiers.

4.7.1 Examples of Native Additional Modifiers

Java Language. For Java language we do not identify any modifiers that
could be considered in this category.

49



C++ Language. In this category, C++ has modifiers like const for methods
and explicit for constructors (that are also a kind of method).

The const modifier used for a method indicated that the method do not
modify the state of an object.

In C++, explicit constructors will be invoked only explicitly. That disallows
implicit conversions.

Eiffel Language. Eiffel contains agent keyword that modify the semantics of
a method parameter.

The keyword agent is used to transmit a routine as a parameter for other
routine. It avoids confusion with an actual routine call when transmit parame-
ter. Indeed, when transmit the parameter, the routine is not called yet. Instead,
the routine is pass to calling routine as an agent.

Modifier Assertions Assertions have to deal with incompatible modifiers for
all additional modifiers. Because this category is a very general one, no other
assumptions could be made regarding other necessary assertions.

Modifier Actions We can assume that all modifiers from this category in-
volve hard action writing. Each of them address a very specific sematic. Meta-
programmer has to identify first what OFL actions are involved in expressing
considered semantics.

As example, if we consider the explicit native C++ modifier, semantics are
expressed at the level of before-create-instance and create-instance OFL actions.

4.8 Conclusion and discussions

In this paper we proposed to extend the OFL Model. The main goal of this
extension was to add customization of the access control mechanism and of
additional non-covered semantics. We introduced the notion of OFL modifier
to provide a clean way for control implementation. For better understanding of
the concept we present in sections 4 and 5 examples of several native modifiers
reification.

As future work we proposed to add support for OFL modifiers and to inte-
grate them in all OFL tools. We also plan to extend the modifiers with high level
actions. The OFL modeling tool will execute these actions to ensure automatic
model correction.

50



Chapter 5

The OFL-ML Meta-Profile

The specification for an OFL modeling language (OFL-ML) [PCL03b] set out
the necessity to provide a standard way to express the semantics of an OFL-
language application using UML-like notation and thus to support OFL applica-
tions modelling with standard UML tools. The term OFL-language means a lan-
guage reified or expressed in OFL (ex: OFL-Java, OFL-C++, OFL-myJavaExtension
etc.).

We define an OFL-ML Profile as an UML Profile that is generated auto-
matically and customized for every language expressed in OFL. Indeed, each
existing language reified in OFL or a possible extended language expressed in
OFL need their own associated OFL-ML Profile.

Our goal is to design a meta-model which allow us to generate OFL-ML
Profiles. We name this meta-model as OFL-ML meta-profile.

Considering that, the OFL-ML will be a meta-profile for each possible UML
Profile designed for a programming language. Indeed, each instance of OFL-
ML in context of a particular OFL-language is an UML Profile for that language.
We name this profile ”OFL-ML-Profile for OFL-language”. This way will exists
”OFL-ML Profile for OFL-Java”, ”OFL-ML Profile for OFL-myExtendedJava”
or ”OFL-ML Profile for OFL-C++” and so on.

In a simplified way, OFL-ML could be considered as a kind of Profile-
Template. To obtain a specific UML Profile for an OFL-language, OFL-ML
has to be instantiated using OFL meta-information as components, parameters,
characteristics and modifiers.

All properties of UML meta-model elements contained in the OFL-ML may
be used to express an object model that conforms to the resulted profile. Based
on that, modelling tools that handle UML Profiles could generate a XML rep-
resentation of an OFL-language application.

The main purpose of OFL-ML meta-profile is to provide to programmer an
UML Profile designed to support development for OFL applications. Using this
profile with a modeling tool, the programmer could generate a representation
for the application that could be processed later by an OFL-translator, OFL-
compiler or other tools.

51



UML Profiles provide a generic extension mechanism for building UML mod-
els in particular domains. They are based on additional Stereotypes and Tagged
values that are applied to Elements, Attributes, Methods, Links, Link Ends and
more. A profile is a collection of such extensions that together describe some
particular modelling problem and facilitate modelling constructs in that domain.
In [Des99] it is discussed how specific domains that require a specialization of
the general UML meta-model can define an UML profile to focus UML to more
precisely describe the domain. Even as concrete UML profiles have started to
emerge, use of the profiling mechanism is still discussed [DSB99, AK00]. On
OFL-ML profile generation we consider recommendation found in ”UML Profile
White Paper” [Des99]. Because it is not a final accepted opinion about Profiles,
this paper is not yet an official OMG white paper.

An OFL-ML profile are planed to be used with standard UML modeling
tools or with new modeling tools special designed for it. It could be used to
test and validate the model, to apply design patterns in automatic way, to
collect metrics or to generate XML representation of OFL-code. The OFL
information contained by OFL-ML entities represent a real help to achieve all
these goals. It is obvious that in the last case, all this information will fill the
XML representation of application elements.

5.1 Supported Elements and Definitions

5.1.1 OFL Model

Specification of OFL-ML meta-profile is based on OFL model definition found
in [Cre01b] extended with OFL Modifiers [PL03, PCL03a]. The OFL elements
modelled by OFL-ML meta-profile are:

OFL-atoms OFL-atoms represent the reification of the non-customized enti-
ties of the model. Example of atoms are AtomAttribute, AtomMethod,
AtomParameter etc.

OFL-components OFL-components inherit from OFL-atoms and represent
reification of language entities (relationships and descriptions).

OFL-parameters OFL-parameters contains values that determine the oper-
ational semantics of an object oriented language. OFL-ML use only pa-
rameters that have impact on the level of application model.

OFL-components characteristics Each OFL-component keeps a set of char-
acteristics that represents meta-information for program entities such as
lists of attributes and methods for a description component or lists of rede-
fined features for relationship components. As specified, OFL-ML use only
those characteristics that have impact on the level of application model.

52



5.1.2 OFL-Modifiers

OFL-Modifiers [PL03] represent an extension of the OFL Model as presented in
[Cre01b]. They are used to express additional semantics that is not customizable
by OFL. OFL-ML meta-profile will express this semantics using mainly tagged
values. These tagged values will be added to the generated UML-Profile. Also,
modifiers assertions, which contain in fact considered semantics, have to be
translated into Profile constraints. In this paper we try to identify assertion
transformation rules that are necessary if we consider an automatic generation
of profile.

5.1.3 UML Profile

The notion of the UML profile appeared in the UML 1.3 standard as a means of
structuring UML extensions (tagged values, stereotypes and constraints). UML
is a modelling language used in a large number of application domains and
all types of software applications. However, each domain has specific notions
and particular needs, which are handled by UML through extensions which are
grouped into UML Profiles.

OFL-ML is based on UML Profile specification found in [Des99, OMG02,
Sof99]. An UML Profile:

• Identifies a subset of the UML meta-model (which may be the entire UML
meta-model).

• Specifies well-formedness rules beyond those specified by the identified
subset of the UML meta-model. Well-formedness rule is a term used in
the normative UML meta-model specification [OMG03] to describe a set
of constraints written in natural language and UMLs Object Constraint
Language (OCL) that contributes to the definition of a meta-model ele-
ment.

• Specifies standard elements beyond those specified by the identified sub-
set of the UML meta-model. Standard element is a term used in the
UML meta-model specification to describe a standard instance of an UML
stereotype, tagged value, or constraint.

• Specifies semantics, expressed formal or in natural language, beyond those
specified by the identified subset of the UML meta-model.

5.1.4 OCL

The OCL convenience operations for UML Meta-model elements presented in
this section can be applied generally to UML version 1.5 (01.03.2003) and are
not specific to the UML Profile defined by OFL-ML. They are defined in order to
produce more compact and readable OCL. Indeed, they are used in UML profiles
already approved by OMG [OMG02, OMG01] in the same way we intend to do
here.

53



For ModelElement.

[1 ] The operation allStereotypes results in a Set containing the ModelElements
Stereotype and all Stereotypes inherited by that Stereotype (as opposed
to all Stereotypes inherited by the ModelElement).

allStereotypes : Set(Stereotype);
allStereotypes = self.stereotype->union

(self.stereotype.generalization.parent.allStereotypes)

[2 ] The operation isStereotyped determines whether the ModelElement has a
Stereotype whose name is equal to the input name.

isStereotyped : (stereotypeName : String) : Boolean;
self.stereotype.name = stereotypeName

[3 ] The operation isStereokinded determines whether the ModelElement has a
Stereotype whose name is equal to the input name or if it has a Stereotype
one of whose ancestors name is equal to the input name.

isStereokinded : (stereotypeName : String) : Boolean;
self.allStereotypes->exists (

stereotype | stereotype.name = stereotypeName)

There are some OCL convenience operations defined in this specification
that apply more narrowly to certain extensions of UML that the profile
defines. These operations appear inline with the Constraints for those
specific extensions.

For Classifier

[1 ] The operation navigableOppositeEnds results in a Set containing all navi-
gable AssociationEnds that are opposite to the Classifier.

navigableOppositeEnds : Set(AssociationEnd);
navigableOppositeEnds

= self.oppositeAssociationEnds ->
select(end | end.isNavigable)

[2 ] The operation allEnds results in a Set containing all AssociationEnds for
which the Classifier is the type.

allEnds : Set(AssociationEnd);
allEnds = self.associations ->

collect(assoc | assoc.connection)

[3 ] The operation nonNavigableNearEnds results in a Set containing all Asso-
ciationEnds that are adjacent to the Classifier and that are non-navigable.

54



nonNavigableNearEnds : Set(AssociationEnd);
nonNavigableNearEnds =

self.allEnds->select
(end | end.type = self and not end.isNavigable)

[4 ] The operation navigableEnds results in a Set containing all navigable As-
sociationEnds for which the Classifier ; that is, self is the type.

navigableEnds : Set(AssociationEnd);
navigableEnds = allEnds ->

select (end | end.isNavigable)

5.2 OFL-ML Definition

5.2.1 Identified Subset of UML

OFL-ML diagrams are based on UML Static Structures Diagrams (Class Di-
agrams). An UML class diagram is a graph of Classifier elements connected
by their various static relationships. These elements belong to standard UML
packages.

The OFL-ML extends the following standard UML packages: Core and
Model Management. Figure 5.1 shows the model elements that form the struc-
tural backbone of the meta-model and figure 5.2 shows the model elements that
define relationships. The abstract syntax for the Model Management package
is expressed in graphic notation in Figure 5.3.

UML use standard visibility markers to express access control at the level of
a classifier and feature. These markers has no meaning for an OFL-ML profile.
They are covered by tagged values that represents corresponding access control
modifiers. The reason resides in difficulty of an automatic translation between
access control modifiers and these markers. Yet, if a meta-programmer manual
intervention is accepted, mapping between these elements should be considered.

The following concrete metaclasses, and implicitly all super-metaclasses of
these metaclasses, are used:

5.2.2 From Core - Backbone

The backbone of the core package is shown in fig. 5.1.

Attribute An attribute is a named slot within a classifier that describes a
range of values that instances of the classifier may hold.

Class A class is a description of a set of objects that share the same attributes,
operations, methods, relationships, and semantics.

Classifier A classifier is an element that describes behavioral and structural
features; it comes in several specific forms, including class, data type, inter-
face, component, artifact, and others that are defined in other metamodel
packages.

55



Comment A comment is an annotation attached to a model element or a set
of model elements. It has no semantic force but may contain information
useful to the modeler.

Constraint A constraint is a semantic condition or restriction expressed in
text.

DataType A data type is a type whose values have no identity (i.e., they are
pure values). Data types include primitive built-in types (such as integer
and string) as well as definable enumeration types (such as the predefined
enumeration type boolean whose literals are false and true).

ElementOwnership Element ownership defines the visibility of a ModelEle-
ment contained in a Namespace.

Feature A feature is a property, like operation or attribute, which is encapsu-
lated within a Classifier.

Namespace A namespace is a part of a model that contains a set of Mod-
elElements each of whose names designates an unique element within the
namespace.

Operation An operation is a service that can be requested from an object to
effect behavior. An operation has a signature, which describes the actual
parameters that are possible (including possible return values).

Parameter A parameter is an unbound variable that can be changed, passed,
or returned. A parameter may include a name, type, and direction of
communication.

ProgrammingLanguageDataType A data type is a type whose values have
no identity (i.e., they are pure values). A programming language data
type is a data type specified according to the semantics of a particular
programming language, using constructs available in that language.

From Core - Relationships The UML relationships described in the core
package are presented in fig. 5.2.

Abstraction An abstraction is a Dependency relationship that relates two el-
ements or sets of elements that represent the same concept at different
levels of abstraction or from different viewpoints.

Association An association declares a connection (link) between instances of
the associated classifiers (e.g., classes). It consists of at least two associ-
ation ends, each specifying a connected classifier and a set of properties
that must be fulfilled for the relationship to be valid.

AssociationEnd An association end is an endpoint of an association, which
connects the association to a classifier. Each association end is part of one
association.

56



Figure 5.1: The UML Core Package - Backbone

Dependency A term of convenience for a Relationship other than Associa-
tion, Generalization, Flow, or metarelationship (such as the relationship
between a Classifier and one of its Instances).

Generalization A generalization is a taxonomic relationship between a more
general element and a more specific element. The more specific element is
fully consistent with the more general element (it has all of its properties,
members, and relationships) and may contain additional information.

Usage An usage is a relationship in which one element requires another element
(or set of elements) for its full implementation or operation.

From Model Management The main elements of the model management
package are shown in fig. 5.3.

57



Figure 5.2: The UML Core Package - Relationships

58



Figure 5.3: The UML Model Management Package

ElementImport An element import defines the visibility and alias of a model
element included in the namespace within a package, as a result of the
package importing another package.

Package A package is a grouping of model elements.

5.2.3 The Virtual Meta-model

Definition. A virtual meta-model is a formal model of a set of UML exten-
sions, expressed in UML. The virtual meta-model for the UML Profile for OFL-
ML is presented in this chapter as a set of class diagrams. More information
about virtual meta-models can be found in [OMG02, OMG01]. The semantics
of stereotypes described in this virtual meta-model is given in the next sections.

Representation of Stereotypes. The virtual meta-model represents a
Stereotype as a Class stereotyped stereotype. The Class that represents the
Stereotype is the client of a Dependency stereotyped baseElement, whose sup-
plier is the UML meta-model element being extended.

59



Figure 5.4: Virtual Model for OFL Basic Types

Representation of Tagged Values. The virtual meta-model represents
a TaggedValue associated with a Stereotype as an Attribute of the Class that
represents the Stereotype. The Attribute is stereotyped �TaggedValue�. An
expression of the form < x, y, ..., z > indicates that the TaggedValue value is a
comma-delimited tuple. An expression of the form (x, y, ..., z) indicates that the
value is an enumeration.

A big challenge for OFL-ML is to generate a clean and understandable profile
in an automatically way. To following rules are designed to help this aspect:

• every OFL-component will be represented through an individual stereo-
type

• every combination of characteristics values of OFL non-customizable el-
ements(reified by OFL-atoms) will generate a different stereotype. This
rule is based on the UML stereotype definition:”... a stereotype may be
used to indicate a difference in meaning or usage between two model ele-
ments with identical structure”.

• additional OFL-elements (like OFL-modifiers or OFL-assertions) will be
considered in generated tagged values or constraints of constructed profile

5.2.4 Virtual Metamodel of OFL-ML.

Figure 5.4 presents stereotype used to model the basic types defined by a lan-
guage. These types are managed as a characteristic of OFL-language compo-
nent, which is actually a list. Stereotype is derived from UML programming
language data type.

Figure 5.5 shows stereotype used to model OFL-description components.
This stereotype is derived from UML class. An UML class is a description of a
set of objects that share the same attributes, operations, methods, relationships,
and semantics.

60



Figure 5.5: Virtual Model for OFL-description Components

Figure 5.6: Virtual Model for External Description

Figure 5.6 present a stereotype used to model an External Description. This
element does not exists in the OFL-model. It is defined at the level of OFL-
ML and specify a Description that has no OFL reification. It is necessary for
helping usage of class libraries that have no OFL representation. The stereotype
is derived from UML classifier.

Figure 5.7 shows how to represent an OFL-package. Generated profile will
contain entities that inherit from this stereotype and denote specific language
class organization mechanisms. The stereotype is derived from UML package.

In figure 5.8 we show the stereotypes used to represent OFL-features. Stereo-
types are derived from UML attribute and method. Also, stereotypes are special-
ized based on OFL-AtomAttribute characteristics: isDescriptionAttribute and
isConstant, and OFL-AtomMethod : isConstructor and isDestructor.

Stereotype for association end that belongs to OFL-UseRelationship are pre-
sented in figure 5.9. These stereotypes follows same rules as features stereotypes.

61



Figure 5.7: Virtual Model for OFL Package

Figure 5.8: Virtual Model for OFL Features - attributes and methods

62



Figure 5.9: Virtual Model for Association End

Figure 5.10 presents stereotypes used to represent OFL-relationships. Stereo-
types are derived from UML generalization and association.

5.3 The OFL Type Representations

This section describes all the Stereotypes introduced in the Virtual Meta-model
for OFL-BasicType, OFL-ML-ExternalDescription and OFL-Description. It
adds the necessary TaggedValues, Constraints, and Common Model Elements
to complete the Profile.

These stereotypes could be used in modelling tools to generate correspond-
ing instances of OFL elements and to fill them with appropriate information.
Thereby, the following elements are considered to be generated: instances of
OFL-Primitive Type components and OFL-Description components. The re-
sult will be an OFL representation for application in XML.

5.3.1 The OFL BasicType Element

An OFL BasicType is a model of a primitive type found in the language binding
such as int, boolean, char (from Java) etc.

Stereotypes and Tagged Values. The OFL-ML basic types are represented
by UML ProgrammingLanguageDataType from Core package with the�OFLBasicType�
stereotype.

63



Figure 5.10: Virtual Model for OFL Relationships

Constraints. All �OFLBasicType� stereotyped elements has direct corre-
spondence in characteristic OFL-languge.basicTypes.

Elements Generation. A profile element stereotyped �OFLBasicType�
will be generated for each element of the list OFL-language.basicTypes. All
strings contained by this list will became a name for a profile element.

Example. If we consider Java language, eight elements will be considered.
Those elements will have following names:

• boolean

• char

• byte

• short

• int

• long

• float

• double

64



5.3.2 The OFL Description Element

OFL Description Components represent reification of Class types in different
programming languages. They are created by the meta-programmer when he
model the language. If we consider support for automatic code generation,
OFL-ML has to include elements representation for all these components.

Stereotypes and Tagged Values. The abstract stereotype�OFLDescriptionType�
is the base for all the concrete stereotypes representing OFL Description of the
considered language. The name of the generated stereotypes are the name of
the OFL components with ”Component” prefix removed (ex. for a component
ComponentJavaClass, a stereotype named �JavaClass� will be created).

Tagged values are created to express all OFL-modifiers associated with that
component. These tags have boolean values and take the name from modifier
keyword attribute.

Constraints. Constraints related with components stereotypes have to con-
sider parameter values, characteristics and associated OFL Modifiers constraints
for that component. Not all OFL parameters are considered but only that one
which have impact on static model of the application.

This paragraph presents constraints that have to be generated for all stereo-
types derived from abstract stereotype�OFLDescriptionType�. Each of them
will consider parameter values, characteristics and modifiers associated with
corresponding OFL component. Thus all constraints related with stereotype
�JavaClass� consider parameter values, characteristics and modifiers associ-
ated with component ComponentJavaClass defined by OFL-Java.

Parameter ConceptDescription::attribute. This parameter specify if
the description could declare or not attributes. Legal values are allowed and
forbidden. Constraint related with value forbidden of this parameter will ensure
an empty attribute compartment:

context: OFLDescriptionType (Core::Class)
self.allAttributes->size = 0

The operation allAttributes results in a Set containing all Attributes of the Class
itself and all its inherited Attributes. It is defined in [OMG03] as a standard
operation on classifies.

allAttributes : set(Attribute);
allAttributes =

self.allFeatures->select(f | f.oclIsKindOf(Attribute))

Parameter ConceptDescription::methods. This parameter specify if the
description could declare or not methods. Legal values are allowed and forbid-
den. Constraint related with value forbidden of this parameter will ensure an
empty method compartment:

65



context: OFLDescriptionType(Core::Class)
self.allMethods->size = 0

The operation allMethods results in a Set containing all Methods of the Class
itself and all its inherited Methods.

allMethods : set(Methods);
allMethods =

self.allFeatures->select(f | f.oclIsKindOf(Method))

OFL Modifiers Constraints. All modifiers constraints defined for the con-
sidered description component will be added in the generated profile. These
constraints have to be transformed to deal with profile tagged values and stereo-
types instead OFL entities. Transformations that should be made to deal with
profile tagged values are very basic. The purpose is to translate OFL-Atoms
and OFL-Components attributes into the corresponding tagged values.

Regarding modifiers assertions that deal with OFL-Description components,
only parameter modifier inherited from OFL-AtomDescription is involved. It
has to be translated into taggedValue with same name like the modifier. Indeed,
transformations are based on the following two rules:

• Syntax:

self.modifiers->includes(’modifier_name’)

is translated in:

self.stereotype.taggedValue
->select(name = ’modifier_name’)->size = 1

• and syntax:

NOT self.modifiers->includes(’modifier_name’)

is translated in:

self.stereotype.taggedValue
->select(name = ’modifier_name’)->size = 0

These constraints test presence or absence of tagged value that corresponds to
a given modifiers in context of considered entity.

Elements Generation. A profile stereotype derived from�OFLDescriptionType�
will be generated for each OFL component. For a language with description
types reified in OFL by components: ComponentLanguageDescriptionType1,
ComponentLanguageDescriptionType2 etc, resulting hierarchy is presented in
figure 5.11.

66



Figure 5.11: Generated stereotypes for Descriptions Components

Example. Considering Java language, following description types are iden-
tified [CCL02, Cre01a]: class, abstract class, interface, static member class,
abstract static member class, static member interface, member class, abstract
member class, local class, abstract local class and anonymous class. Indeed, the
OFL model for Java will contain eleven components derived from OFLCompo-
nentDescription.

Stereotypes generated for Java language are shown in figure 5.12.
Modifiers supported by these description components are summarized in

table 5.1.

\ Modifier Basic Access Complex Access Optimization Service Additional
Description Control Control
Class public, package final strictfp - -
AbstractClass public, package - strictfp - -
Interface public, package final strictfp - -
StaticMemberClass public, protected final strictfp - -

private, package - -
AbstractStaticMemberClass public, protected - strictfp - -

private, package - -
StaticMemberInterface public, protected final strictfp - -

private, package - -
MemberClass public, protected final strictfp - -

private, package - -
AbstractMemberClass public, protected - strictfp - -

private, package - -
LocalClass - final strictfp - -
AbstractLocalClass - final strictfp - -
AnonymousClass - final strictfp - -

Table 5.1: Modifiers for Java Description Components

Table 5.2 presents the generated tagged values corresponding to these mod-
ifiers.

No OFL-Java component has OFL parameters ConceptDescription::attribute
and ConceptDescription::methods set to forbidden. Indeed, even Java interface
could have attributes (final static). As a result, no constraints will be added to
the generated profile for these parameters.

For Java components, only constraints dealing with incompatible modifiers

67



Figure 5.12: Generated stereotypes for OFL-Java Descriptions Components

are defined regarding basic access control modifiers and optimization modifiers
.

If we consider JavaClass component, action control modifier assertion for
that component is:

context ComponentJavaClass
inv: self.modifiers->includes(’public’)

implies
NOT self.modifiers->includes(’package’)

The transformed constraint for generated profile is very close to the original
one:

context JavaClass::OFLDescriptionType (Core::Class)
inv: self.stereotype.taggedValue

->select(name=’public’)->size=1
implies
self.stereotype.taggedValue

->select(name=’package’)->size=0

Complex modifier final will be considered further, when relationships con-
straints will be presented.

5.3.3 Additional constraints.

OFL parameters, characteristics and modifiers does not cover all language se-
mantic. There is no option for automatic extraction of constrains from OFL
actions. To solve these situations, additional constraints should be added by

68



Stereotype Tagged Values
JavaClass {public}, {package}, {final}, {strictfp}
JavaAbstractClass {public}, {package} {strictfp}
JavaInterface {public}, {package}, {final}, {strictfp}
StaticMemberClass {public}, {protected}, {final}, {strictfp}

{private}, {package}
AbstractStaticMemberClass {public}, {protected}, {strictfp}

{private}, {package}
StaticMemberInterface {public}, {protected}, {final}, {strictfp}

{private}, {package}
MemberClass {public}, {protected}, {final}, {strictfp}

{private}, {package}
AbstractMemberClass {public}, {protected}, {strictfp}

{private}, {package}
LocalClass {final}, {strictfp}
AbstractLocalClass {final}, {strictfp}
AnonymousClass {final}, {strictfp}

Table 5.2: Tagged Values for Java Description Components Stereotypes

meta-programmer. These constraints follow the same rules like OFL Assertions
added with the same goal. As an example, if we considering Java Interfaces, the
following rule has to be expressed:

An interface should not contain attributes that are not final (constant) and
static (class attribute).

This rule will have an associated OFL-assertion at the level of Component-
JavaInterface.

context: ComponentJavaInterface inv: self->features->forAll(
a:OFLAttribute |

a.isConstant and a.isDescriptionFeature )

The OCL constrain added into profile to cover this rule is (for transformation
see Section 5.4.1):

context: JavaInterface:OFLDescriptionType(Core::Class)
self->allAttributes

->forAll ( a | a.oclIsKindOf(Attribute) implies
a.isStereokinded("OFLConstantClassAttribute") )

5.3.4 The External Description Element

The External Description element does not exists in the OFL-model. It is
defined at the level of OFL-ML and specify a Description that belong to ”outside
world” (outside current project). This description is written usually in original

69



language and have no OFL information associated. It is useful especially when
application access descriptions coming from class libraries.

OFL-ML could not treat the External Descriptions in the same manner as
normal OFL-Descriptions are treated. The main impediment is their opacity.
The internal structures of them are hidden and could not be seen through usual
OFL-relationships. As a result of that, just few profile constraints could be
defined for them.

OFL-ML defines special relationships to deal with external descriptions.
Those relationships are called ”external relationships”. For more information
see the section ”External Relationships”. An external description could be in-
volved only in external relationships and can act only as a target.

The usage of external descriptions is adequate only if the goal of OFL-
application modelling is to obtain executable code. Control of semantics in-
volved by these entities is done in that case by final compiler or linker.

Stereotypes and Tagged Values There is only one stereotype involved in
external description representation. It is presented in figure 5.6.

Also, one tagged value are specified here. This is the taggedValue { exter-
nalPath = importPathSpecification }. It allows specification of the place where
the resource is originated. The value of this tag is a string that depends much
on language syntax related with using external resources (ex. of legal values are
”import java.util.Vector” for Java or ”#include ’MyApp.h’” for C++).

Constraints Using of external descriptions are heavy liked with specific lan-
guage semantics. Just light control could be made. Constraints related with
external descriptions are added at the level of relationships that could involve
these elements.

Elements Generation Only one profile element stereotyped as�OFLExternal
Description� will be generated. As already presented, this stereotype will be
tagged with an externalPath tagged value. The value of this tag will be included
in the generated source file. For models that are intended to be used in other
purpose than execution this tag may be ignored.

In case of languages with complex importing syntax, meta-programmer could
define additional tags for this stereotype.

Example Figure 5.13 presents examples of external descriptions representa-
tion for Java and C++.

5.4 The OFL Feature Representations

Features represents primitives declared by an OFL-Description. They describe
the state (attributes) and the behavior (methods) of the considered description.
Every feature has associated a name and a list of modifiers.

70



Figure 5.13: Example of using External Description Stereotype

These stereotypes could be used in modelling tools to generate correspond-
ing instances of OFL elements and to fill them with appropriate information.
Thereby, the following elements are considered to be generated: instances of
OFL-Attribute atom and OFL-Method atom.

5.4.1 The OFL Attributes

Attributes inherit form feature and keep values that describe the state of the
description. An attribute has a name, a type, an initial value and a set of
modifiers.

An OFL-attribute definition whose type is a language basic type (modelled
as OFLBasicType) is represented as:

• An UML Attribute of a Class stereotyped with a stereotype derived from
�OFLDescriptionType� corresponding to the OFL-description that the
attribute is defined in.

An OFL-attribute whose type is an OFL-description is represented as:

• An UML Association between the Class stereotyped with a stereotype
derived from�OFLDescriptionType� that declare the attribute and the
UML stereotype that represents the OFL-description type of the attribute.
The name of the attribute is used as the role name for the attribute type
AssociationEnd of this Association.

Stereotypes and Tagged Values.

Instance Attributes. Whenever a new instance of a description is cre-
ated, a new attribute associated with that instance is created for all of this

71



kind of attributes. OFL treats them by setting the value of isDescriptionAt-
tribute characteristic of the OFL-attribute instance to false. OFL-ML represents
those attributes using�OFLAttribute� stereotype for basic type attributes or
�OFL-AssociationEnd� for attributes that represent aggregation with other
descriptions.

Class Attributes. For a class exists exactly one incarnation of each at-
tribute of this kind, no matter how many instances (possibly zero) of the
class may eventually be created. In OFL these attributes are modelled by
true value in the isDescriptionAttribute characteristic of OFL-AtomAttribute
instance. OFL-ML represents these attributes using �OFLClassAttribute�
stereotype for basic type attributes and �OFLClassAssociationEnd� for at-
tributes that represent aggregation with other OFL-descriptions.

Constant Attributes. Constant attributes are attributes that could not
change their value after initialization. OFL use the OFL-attribute’s isConstant
characteristic to model them. If this characteristic has value true, the attribute
is constant and OFL-ML will represent it through �OFLConstantAttribute�,
�OFLConstantClassAttribute�, �OFLClassAssociationEnd�, respectively
�OFLConstantClassAssociationEnd� stereotype.

Tagged values are created to express all OFL-modifiers associated with an
OFL-attribute. These tags have boolean values and take the name from modifier
keyword attribute.

Constraints. All modifiers constraints defined for AtomAttribute will be added
in the generated profile. For incompatible modifiers, constraint transformation
is the same as presented in Section 5.3.2. Transformation of constraints regard-
ing stereotypes for attributes are the following:

• Syntax :

a.isConstant

is translated into:

a.isStereokinded("OFLConstantAttribute")

This transformation refer constant attributes. OFL use AtomAttribute.isCostant
to keep this information. OFL-ML will represent this as an UML Attribute
stereokinded as �OFLConstantAttribute�.

• Syntax :

72



a.isDescriptionAttribute

is translated into:

a.isStereokinded("OFLClassAttribute")

This transformation refer class attributes. OFL use AtomAttribute.isDescriptionAttribute
to keep this information. OFL-ML will represent this as an UML Attribute
stereokinded as �OFLClassAttribute�.

• Syntax :

a.isConstant
AND

a.isDescriptionAttribute

is translated into:

a.isStereokinded("OFLConstantClassAttribute")

This transformation refer class attributes that are constant. OFL use Atom-
Attribute.isConstant and AtomAttribute.isDescriptionAttribute to keep this in-
formation. OFL-ML will represent this as an UML Attribute stereokinded as
�OFLConstantClassAttribute�.

Elements Generation. Four profile stereotypes will be generated automat-
ically for basic types attributes and four for association end that corresponds
with relationships of the kind of OFL-UseRelationships. These stereotypes are
presented in table 5.3.

To increase expressiveness of the profile, meta-programmer could derive
new stereotypes from �OFLAttribute� and give them suggestive named as
�OFLJavaStaticAttribute�,�OFLJavaFinalAttribute�, respectively�OFL
JavaFinalStaticAttribute�. Same work could be done also for AssociationEnd
stereotypes. To help this task, a kind of ”wizard” could be add to the profile
generator tool. The additional stereotypes will inherit all generated constraints
from the standard ones.

Example. Profile elements mapping to Java attributes are presented in table
5.4.

Table 5.5 presents tagged values generated for modifiers associated with
Java attributes. This corresponds to public, protected, package and private ac-
cess control modifiers, respectively volatile optimization modifier and transient
service modifier.

73



Stereotype Applies To Definition
�OFLAttribute� Attribute An attribute of a

basic type
�OFLConstantAttribute� Attribute A constant attribute

of a basic type
�OFLClassAttribute� Attribute A class attribute

of a basic type
�OFLConstantClassAttribute� Attribute A constant class

attribute of a basic
type

�OFLAssociationEnd� Attribute An attribute that
represent an OFL
use relationship

�OFLConstantAssociationEnd� Attribute A constant attribute
that represent an OFL
use relationship

�OFLClassAssociationEnd� Attribute A class attribute that
represent an OFL use
relationship

�OFLConstantClassAssociationEnd� Attribute A constant class
attribute that represent
an OFL use relationship

Table 5.3: OFL-ML Attribute Stereotypes

5.4.2 The OFL Methods

Methods inherit from features and specify the behavior of the description.
Method elements could represent both procedures and functions. Functions

differs from procedures because they return a result.
Method declaration specify a list of parameters. This list could be empty or

not. If not, it contains a list of OFL-parameter elements.
Abstract methods are methods that are not implemented. An abstract meth-

ods has an empty body.
Additionally, OFL make distinction between normal methods, constructors

and destructors.

Stereotypes and Tagged Values Three stereotypes defined in the OFL-ML
virtual meta-model are used also in the generated profile: �OFLMethod�,
�OFLConstructorMethod� and �OFLDestructorMethod�. In addition, an
�OFLParameter� is derived from UML-parameter element to express method
parameters. The returned value is represented in following the UML convention
as a parameter that have attribute ’kind = return’.

The standard attribute body of UML-Method element is used to keep the list

74



Stereotype Java Mapping Example

OFLJavaAttribute instance non-final Java char a
(:OFLAttribute) basic types attributes (for Java

basic types see Section 5.3.1)
OFLJavaFinalAttribute instance final Java basic types final char a
(:OFLConstantAttribute) attributes
OFLJavaStaticAttribute static (class) non-final static char a
(:OFLClassAttribute) Java basic types attributes
OFLJavaFinalStaticAttribute static (class) final final static char a
(:OFLConstantClassAttribute) Java basic types attributes
OFLJavaAssociationEnd instance non-final Java AClass a
(:OFLAssociationEnd) aggregation attributes
OFLJavaFinalAssociationEnd instance final Java final AClass a
(:OFLConstantAssociationEnd) aggregation attributes
OFLJavaStaticAssociationEnd static (class) non-final static AClass a
(OFLClassAssociationEnd:) Java aggregation attributes
OFLJavaFinalStaticAssociationEnd static (class) final Java final static AClass a
(:OFLConstantClassAssociationEnd) aggregation attributes

Table 5.4: OFL-ML Stereotypes of Java Attribute

of statements that represents the method body. The UML represents that list
like ProcedureExpression, that is actually a list of strings. When code are gen-
erated from the model, these strings have to be translated into OFL-Statement
elements. Other possibility is to represent the body using UML-Actions Seman-
tic Model. This option will be discussed at the end of this chapter.

For abstract methods, OFL-ML use attribute isAbstract inherited from UML-
Operation element. If true, then the operation does not have an implementation
and the method body will be empty. If false, the operation must have an im-
plementation in the description or inherited from an ancestor.

To stop method overriding, UML use Operation isLeaf boolean attribute.
If true, then the implementation of the operation may not be overridden by
a descendant class. If false, then the implementation of the operation may
be overridden by a descendant class (but it need not be overridden). If we
consider automatic generation of profile, OFL-ML could not use directly this
attribute. In OFL rights about method overriding or redefining are specified
through modifiers rather than characteristics.

Method parameters are represented as a list of UML-parameter elements.
An UML-parameter is an unbound variable that can be changed, passed, or
returned. A parameter may include a name, type, and direction of communi-
cation. If we consider reification of parameter semantics (as the Eiffel agent
parameter modifier) constraints have to be added at the level of these elements.

Other constraints could be added related to parameters semantics. The
standard attribute kind of the UML-parameter element could represent follow-
ing values:

in An input Parameter (may not be modified).

out An output Parameter (may be modified to communicate information to
the caller).

inout An input Parameter that may be modified.

return A return value of a call.

75



Stereotype Tagged Values
OFLAttributes {public}, {protected}, {private}, {package}

{volatile}, {transient}
OFLConstantAttributes {public}, {protected}, {private}, {package}

{transient}
OFLClassAttributes {public}, {protected}, {private}, {package}

{volatile}, {transient}
OFLConstantClassAttributes {public}, {protected}, {private}, {package}

{transient}
OFLAssociationEnd {public}, {protected}, {private}, {package}

{volatile}, {transient}
OFLConstantAssociationEnd {public}, {protected}, {private}, {package}

{transient}
OFLClassAssociationEnd {public}, {protected}, {private}, {package}

{volatile}, {transient}
OFLConstantClassAssociationEnd {public}, {protected}, {private}, {package}

{transient}

Table 5.5: Tagged Values for Java Attribute Stereotypes

Tagged values are created to express all OFL-modifiers associated with an
OFL-method. These tags have boolean values and take the name from modifier
keyword attribute.

Constraints Some constraints are imported from UML semantics. In fact,
all usage of standard UML attributes implies also constraints.

In this context, from UML-BehavioralFeature which UML-Method inherit
from, we have:

• All Parameters should have a unique name.

self.parameter->
forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

• The type of the Parameters should be included in the Namespace of the
Classifier.

self.parameter->forAll( p |
self.owner.namespace.allContents->includes (p.type))

Also, as for attributes, all modifiers constraints defined for AtomMethod will
be added.

76



Elements Generation. Four stereotypes will be generated for methods. These
are �OFLMethod�, �OFLConstructorMethod�, �OFLDestructorMethod�
and �OFLParame-ter�. First tree stereotypes apply to UML Method ele-
ment. The last one apply to UML Parameter. �OFLConstructorMethod�
corresponds to a OFL-method that have attribute isConstructor set to true.
�OFLDestructorMethod� corresponds to a OFL-method that have attribute
isDestructor set to true. As mentioned in the section 5.4.1, to increase expres-
siveness of the profile elements, meta-programmer could decide to derive specific
stereotypes from the generated ones.

Generated tags will correspond to OFL-method modifiers defined for con-
sidered language.

No tags will be generated for abstract methods and, if is the case, for non-
overriding methods. Instead, the profile will use standard UML attributes as
mentioned in the previous section.

Following list presents transformation rules for constraints related with meth-
ods.

• Syntax :

m.isConstructor

is translated into:

m.isStereokinded("OFLConstructorMethod")

This transformation refer constructor methods. OFL use AtomMethod. is-
Constructor to keep this information. OFL-ML will represent this as an UML
Method stereokinded as �OFLConstructorMethod�.

• Syntax :

m.isDestructor

is translated into:

m.isStereokinded("OFLDestructorMethod")

This transformation refer destructor methods. OFL use AtomMethod.isDestruc-
tor to keep this information. OFL-ML will represent this as an UML Method
stereokinded as �OFLDestructorMethod�.

Both characteristics body and parameters are collection also in OFL and in
UML, so collection operation could be applied on both in same way.

77



Stereotype Java Mapping Example

OFLMethod standard Java method returnType aMethod(listOfParameters)
(:Method)
OFLConstructorMethod a Java constructor method className(listOfParameters)
(:OFLMethod) must have same name as the

class itself and no return type
OFLFinalizeMethod a Java finalizer protected void finalize()
(:OFLDestructorMethod) (not exactly a destructor)

Table 5.6: OFL-ML Stereotypes of Java Method

Example. Profile elements mapping to Java methods are presented in table
5.6.

Tagged values generated for modifiers associated with Java methods are
presented in table 5.7. This corresponds to public, protected, package, private
and final access control modifiers, respectively native and strictfp optimization
modifiers and synchronized service modifier.

To handle java language, additional tagged value is need to express exception
mechanism. Considering that OFL does not provide any customization for
exceptions handling, this tagged value have to be added manually. We propose
a tag {javaThrows = string}. The value of this tag will represent a comma-
delimited list of names of Java Exception Classes thrown by considered method.

Stereotype Tagged Values
OFLMethod {public}, {protected}, {private}, {package}, {final}

{native}, {strictfp}, {synchronized}, {javaThrows}
OFLConstructorMethod {public}, {protected}, {private}, {package}

{javaThrows}
OFLFinalizeMethod {protected}

{javaThrows}

Table 5.7: Tagged Values for Java Method Stereotypes

Constraints that correspond to access control modifiers are generated using
same translation as presented in the previous section.

For native modifier the assertion has also to be transformed.

context AtomMethod
inv: self.modifiers->includes(’native’)

implies
self.isConstructor = false

and
self.body->isEmpty()

and
NOT self.modifiers->includes(’synchronized’)

Transformation are made using already presented transformation rules.

78



context OFLMethod (Core::Method)
inv: self.stereotype.taggedValue

->select(name = ’native’)->size = 1
implies

NOT self.isStereotyped(’OFLConstructorMethod’)
and

self.body->isEmpty()
and

self.stereotype.taggedValue
->select(name = ’synchronized’)->size = 0

Additional constraints. As we mentioned in 5.3.2, the generated constraints
will not cover all language model semantics.

For Java, all method parameters have to have attribute kind set to value in,
except one that is set to return.

An Java method could not be abstract unless it is contained be a Java
Interface or a Java abstract class.

context OFLMethod (Core::Method)
inv: let owner:Classifier = self.specification.owner

in
( owner.isStereokinded(’JavaAbstractClass’)

or
owner.isStereokinded(’JavaAbstractMemberClass’)
or
owner.isStereokinded(’JavaAbstractStaticMemberClass’)
or
owner.isStereokinded(’JavaAbstractLocalClass’)
or
owner.isStereokinded(’JavaInterface’)
or
owner.isStereokinded(’JavaStaticMemberInterface’))

Following Java constraint is related with a finalize method. A finalize
method has to be declared as protected, return no value (has void as return
type) and throws Throwable exception.

context OFLFinalizeMethod (Core::Method)
inv: self.stereotype.taggedValue

->select(name = ’protected’)->size = 1
and

self.parameter->select(p |
p.kind = return
implies

( p.type.isStereotyped(’OFLBasicType’)
and

p.type.name = ’void’)

79



)
and

self.stereotype.taggedValue
->select(tag | tag.name = ’javaThrows’

implies tag.value = ’Throwable’)

5.5 The OFL Relationship Representations

This section describes all the Stereotypes introduced in the Virtual Meta-model
for OFL-ImportRelationship and OFL-UseRelationship. It also adds the neces-
sary TaggedValues, Constraints, and Common Model Elements to complete the
Profile.

These stereotypes could be used in modelling tools to generate correspond-
ing instances of OFL elements and to fill them with appropriate information.
Thereby, the following elements are considered to be generated: instances of
OFL-Import Relationship components and OFL-Use Relationship components.

This version of OFL-ML does not consider dynamic relationships reified by
OFL-ObjectToClassRelationhip and OFL-ObjectToObjectRelationship. That
is because OFL-ML profiles could represent only static models corresponding to
UML Static Class Diagrams.

5.5.1 The OFL Import Relationship

The OFL-import relationship is a generalization of the inheritance mechanism
found in object oriented languages. The meta-programmer has responsibility to
create an OFL relationship component for each import relationships existing in
the modelled language. OFL-ML will generates necessary elements in order to
represents all these components.

5.5.2 Stereotypes and Tagged Values.

The abstract stereotype�OFLImportRelationship� is the base for all the con-
crete stereotypes representing OFL ImportRelationhip components of the con-
sidered language. The name of the generated stereotypes are the same as the
name of the OFL components with ”Component” prefix removed (ex. for a com-
ponent ”ComponentJavaExtends”, a stereotype named�JavaExtends� will be
created).

All relationships stereotyped as specialization of�OFLImportRelationship�
will have associated a set of tagged values. Values of these elements correspond
to some OFL-AtomRelationship characteristics. These tagged values are pre-
sented in table 5.8.

In addition, one tagged value will exists for each modifier associated with a
relationship component.

80



TaggedValue TaggedValue Comment
Name Value
abstractedFeatures string list of concrete methods

(list of feature names) that are abstracted
effectedFeatures string list of abstract methods

(list of feature names) that are effected
hiddenFeatures string list of features that

(list of feature names) are hidden
redefinedFeatures string list of features that

(list of feature names) are redefined
renamedFeatures string list of features that

(list of feature names) are renamed
removedFeatures string list of features that

(list of feature names) are removed
shownFeatures string list of features that pass

(list of feature names) the relationship unchanged

Table 5.8: OFL-ML Tagged Values for OFLImportRelationhip

Constraints. All modifiers constraints defined at the level of relationship
components will be added. Transformation rules will translate all character-
istics of relationships components into corresponding tagged values. Following
rules will apply:

• Syntax:

self.relationshipCharacteristic->forall(f:Feature |
f.modifiers->includes(’modifier_name’))

is translated in:

self.stereotype.taggedValue
->forall(t:taggedValue |

( t.name = ’relationshipCharacteristic’ and
t.values->includes(feature_name) )

imply
self.parent.features->forall(f:Feature |

f.name = feature_name imply
f.stereotype.taggedValue->

select(name = ’modifier_name’)->
size = 1))

Following example apply to Java private modifier in context of�JavaClassExtends�
stereotype.

• Syntax:

81



self.hiddenFeature->forall(f:Feature |
f.modifiers->includes(’private’))

is translated in:

self.stereotype.taggedValue
->forall(t:taggedValue |

( t.name = ’hiddenFeatures’ and
t.values->includes(feature_name) )

imply
self.parent.features->forall(f:Feature |

f.name = feature_name
imply

f.stereotype.taggedValue->
select(name = ’private’)->

size = 1))

Additionally, the generated profile will contains constraints regarding each
stereotype which corresponds to language relationship components. The generic
name ComponentRelationhip designate these stereotypes. Indeed, each OFL-
ML generic constraint presented next will have one instance for each component
into the generated OFL-ML Profile.

Parameter ConceptRelationship::cardinality. This parameter spec-
ify the cardinality of relationship as an integer value n in the meaning of cardi-
nality 1-n. This specify that relationship has one source (child) description and
could have between 1 and n target (parent) descriptions. As an example, for
simple inheritance n = 1 and the cardinality is 1-1. For a general relationship
n could be ∞.

Constraint related with this parameter will check conformance with cardi-
nality specification. If cardinality is ∞ no constraint is necessary.

OFL-ML: if cardinality 6=∞

context ComponentRelationhip(OFLImportRelationship)
inv: self.child.generalization->select( gen |

gen.isStereotyped(’ComponentRelationship’)
and

gen.child = self.child)->size = n

Parameter ConceptRelationship::repetition. Repetition denote if a di-
rect repetition of target (parent) is permitted or not. The possible values of
this parameter are allowed and forbidden. Value allowed make sense just in a
relationship with cardinality n < 1 (1-1).

If the cardinality value n is 1 or if the repetition value is allowed, no con-
straint is necessary.

82



OFL-ML: if cardinality 6= 1 and repetition = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: self.parent.generalization->select( gen |

gen.isStereotyped(’ComponentRelationship’)
and

gen.child = self.child)->size = 1

Parameter ConceptRelationship::circularity. Circularity parameter
express the possibility to create cycles using considered relationship compo-
nent. Constraint make sense only if parameter contain value forbidden.

OFL-ML: if circularity = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: let dp(d:Classifier) =

d.generalisation.select(g |
g.isStereotyped(’ComponentRelationship’))

->collect(g.parent) in
allParents(p:Set(Classifier)) =
self.dp(self.child)->union((self.dp(self.child)-p)

->collect(np |
np.allParents(p->including(self.child)))) in

NOT self.child.allParents(Set{})->includes(self.child))

First OCL let expression (dp) calculates all direct parents of a Classifier in the
meaning of considered relationship. Expression allParents calculates all parents
of a Classifier. Parameter p contain all already visited parents and is used to
stop recursions. Constraint check if the source of relationship is included or not
in its list of parents.

Parameter ConceptRelationship::feature variance. This parameter
specify the type of variance of relationship concerning method parameters,
method result and attributes. The value is a triplet where each component
could have one of the following values:

covariant elements that change on redefinition need to have same type or a
sub-type like original one (defined by the source).

contravariant elements that change on redefinition need to have same type or
a super-type like original one (defined by the source).

nonvariant elements could not change the type on redefinition.

non applicable parameter is not applicable

83



Constraint has to consider first three values separately for each triplet com-
ponent.

All constraint use the following definitions for direct parent and all parents
of a Classifier:

context Classifier
def: directParent =

self.generalisation->collect(g.parent)
def: allParents(p:Set(Classifier)) =

self.directParent->union((self->directParent-p)
->collect(np | np.allParents(p->including(self))))

Constraints regarding method parameters variance are presented next.

OFL-ML: if feature variance for method parameter = covariant

context ComponentRelationhip (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

m | m.oclIsKindOf(Method) implies
m.parameters->forAll(
p | p.kind <> return
implies

self.source.features->forAll( rm |
rm.oclIsKindOf(Method)

implies
if (rm.name = m.name and

rm.parameters->count() = m.parameters->count())
rm.parameters->forAll( rp |
rp.name = p.name

implies
p.allParents(Set{})

->including(p.type)->include(rp.type)))
))

OFL-ML: if feature variance for method parameter = contravariant

context ComponentRelationhip (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

m | m.oclIsKindOf(Method) implies
m.parameters->forAll(
p | p.kind <> return
implies

self.source.features->forAll( rm |
rm.oclIsKindOf(Method)
implies

if (rm.name = m.name and
rm.parameters->count() = m.parameters->count())
rm.parameters->forAll( rp |

84



rp.name = p.name
implies

rp.allParents(Set{})
->including(rp.type)->include(p.type)))

))

OFL-ML: if feature variance for method parameter = nonvariant

context ComponentRelationhip (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

m | m.oclIsKindOf(Method) implies m.parameters->forAll(
p | p.kind <> return
implies

self.source.features->forAll( rm |
rm.oclIsKindOf(Method)
implies

if (rm.name = m.name and
rm.parameters->count() = m.parameters->count())
rm.parameters->forAll( rp |
rp.name = p.name

implies
p.allParents

->including(p.type)->include(rp.type)))
))

For method result variance constraints are the same but the term ’p.kind
<> return’ are replaced by ’p.kind = return’.

Next list show constraints for attribute variance.

OFL-ML: if feature variance for attributes = covariant

context ComponentRelationhip (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

a | a.oclIsKindOf(Attribute) implies
self.source.features->forAll( ra |

ra.oclIsKindOf(Attribute)
implies

ra.name = a.name
implies

a.type.allParents
->including(a.type)->include(ra.type)))

OFL-ML: if feature variance for attributes = contravariant

context ComponentRelationhip (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

a | a.oclIsKindOf(Attribute) implies
self.source.features->forAll( ra |

85



ra.oclIsKindOf(Attribute)
implies

ra.name = a.name
implies

ra.type.allParents->including(ra.type)
->include(a.type)))

OFL-ML: if feature variance for method parameter = nonvariant

context ComponentRelationhip (OFLImportRelationship)
inv: self.redefinedFeatures->forAll(

a | a.oclIsKindOf(Attribute) implies
self.source.features->forAll( ra |

ra.oclIsKindOf(Attribute)
implies

ra.name = a.name
implies

a.type=ra.type)))

Parameter ConceptRelationship::abstracting. This parameter spec-
ify if relationship permits or not to abstract methods (to transform methods
that pass relationship from implemented to abstract status). Permitted values
are mandatory, allowed and forbidden. The OFL-ML constraint for this param-
eter refer only first and last value.

OFL-ML: if abstracting = mandatory

context ComponentRelationhip (OFLImportRelationship)
inv: self.parent.features->forAll(

m | m.oclIsKindOf(Method) implies
NOT m.isAbstract

implies
self.stereotype.taggedValue

->forAll(t | t.name=’abstractedFeatures’
implies t.value->include(m)))

OFL-ML: if abstracting = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’abstractedFeatures’)->size=0

Parameter ConceptRelationship::effecting. This parameter specify if
relationship permits or not to effect methods (to implements methods that pass
relationship). Permitted values are mandatory, allowed and forbidden. The
OFL-ML constraint for this parameter refer only first and last value.

OFL-ML: if effecting = mandatory

86



context ComponentRelationhip (OFLImportRelationship)
inv: self.parent.features->forAll(

m | m.oclIsKindOf(Method) implies
m.isAbstract

implies
self.stereotype.taggedValue

->forAll(t | t.name=’effectedFeatures’
implies t.value->include(m)))

OFL-ML: if effecting = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’efectedFeatures’)->size=0

Parameter ConceptRelationship::masking. The masking parameter
establish if features could be hidden or not when pass a relationship. Legal
values are mandatory, allowed and forbidden.

OFL-ML: if masking = mandatory

context ComponentRelationhip (OFLImportRelationship)
inv: self.parent.features->forAll(

f:Feature |
self.stereotype.taggedValue

->forAll(t | t.name=’hiddenFeatures’
implies t.value->include(f)))

OFL-ML: if masking = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’hiddenFeatures’)->size=0

Parameter ConceptRelationship::redefining. This parameter indicate
if the redefinition of features is mandatory, allowed or forbidden.

OFL-ML: if redefining = mandatory

context ComponentRelationhip (OFLImportRelationship)
inv: self.parent.features->forAll(

f:Feature |
self.stereotype.taggedValue

->forAll(t | t.name=’redefinedFeatures’
implies t.value->include(f)))

OFL-ML: if redefining = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’redefinedFeatures’)->size=0

87



Parameter ConceptRelationship::renaming. This parameter indicate
if renaming of features that pass considered relationship is mandatory, allowed
or forbidden.

OFL-ML: if renaming = mandatory

context ComponentRelationhip (OFLImportRelationship)
inv: self.parent.features->forAll(

f:Feature |
self.stereotype.taggedValue

->forAll(t | t.name=’renamedFeatures’
implies t.value->include(f)))

OFL-ML: if renaming = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’renamedFeatures’)->size=0

Parameter ConceptRelationship::removing. This parameter estab-
lish if removing of features is mandatory, allowed or forbidden.

OFL-ML: if removing = mandatory

context ComponentRelationhip (OFLImportRelationship)
inv: self.parent.features->forAll(

f:Feature |
self.stereotype.taggedValue

->forAll(t | t.name=’removedFeatures’
implies t.value->include(f)))

OFL-ML: if removing = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’removedFeatures’)->size=0

Parameter ConceptRelationship::showing. This parameter is oppo-
site for masking. It indicate if the primitive is make again visible after it was
masked. Possible values are mandatory, allowed and forbidden.

OFL-ML: if showing = mandatory

context ComponentRelationhip (OFLImportRelationship)
inv: self.parent.features->forAll(

f:Feature |
self.stereotype.taggedValue

->forAll(t | t.name=’showedFeatures’
implies t.value->include(f)))

88



OFL-ML: if showing = forbidden

context ComponentRelationhip (OFLImportRelationship)
inv: self.stereotype.taggedValue

->select(name=’showedFeatures’)->size=0

Characteristic AtomLanguage::validRelationships. This character-
istic indicate descriptions types that could act as sources and targets for con-
sidered relationship. Values are triplets of <componentRelationship, compo-
nentDescriptionSource, componentDescriptionTarget>. The OFL-ML will add
a constraint that check for legal source type according to that.

Next we present generated constraints consider the value {< componentRela-
tionship, LanguageDescriptionTypeSource1, LanguageDescriptionTypeTarget1>,
<componentRelationship, LanguageDescriptionTypeSorce2, LanguageDescription-
TypeTarget2>, ... } for this characteristic.

context ComponentRelationhip (OFLImportRelationship)
inv: let st = self.child in

(
st.isStereotyped(’LanguageDescriptionTypeSource1’)

or
st.isStereotyped(’LanguageDescriptionTypeSource2’)

or
...

)

context ComponentRelationhip (OFLImportRelationship)
inv: let st = self.parent in

(
st.isStereotyped(’LanguageDescriptionTypeTarget1’)

or
st.isStereotyped(’LanguageDescriptionTypeTarget2’)

or
...

)

Elements Generation. A profile stereotype derived from�OFLImportRelationship�
will be generated for each OFL component. For a language with import relation-
ships reified in OFL by components: ComponentLanguageImportRelationship1,
ComponentLanguageImportRelationship2 etc, resulting hierarchy is presented
in figure 5.14.

Tagged values will be generated for each relationship component according
to values of OFL-parameters: abstracting, effecting, masking, redefining, re-
naming, removing and showing. Indeed, tags will be added considering values
mandatory and allowed for these parameters.

Constraints are generated regarding OFL-ML generation-conditions. These
condition was presented as statements like:

89



Figure 5.14: Generated stereotypes for Import Relationships Components

OFL-ML: if condition

The test condition will be evaluated by the module that generates the OFL-
ML profile.

Example. Considering Java language, following import relationships are iden-
tified [CCL02, Cre01a]: between classes inheritance (JavaClassExtends), be-
tween interfaces inheritance (JavaInterfaceExtends), concretization (JavaCon-
cretization) and implementation (JavaImplements).

TaggedValues that corresponds to these stereotypes are shown in table 5.9.
Valid sources and targets for components are presented in table 5.10. Example

Stereotype Tagged Values
JavaClassExtends {redefinedFeatures}, {hiddenFeatures}

{effectedFeatures}
JavaInterfaceExtends {redefinedFeatures}
JavaConcretization {redefinedFeatures}, {hiddenFeatures}

{effectedFeatures}(mandatory)
JavaImplements {redefinedFeatures}, {effectedFeatures}

Table 5.9: Tagged Values for Java Import Relationship Components Stereotypes

of generated constraints for valid sources and targets for JavaInterfaceExtends
relationship are given bellow.

context JavaInterfaceExtends (OFLImportRelationship)

90



Stereotype Valid Sources Valid Targets
JavaClassExtends {JavaClass} {JavaClass}

{JavaAbstractClass} {JavaAbstractClass}
{JavaStaticMemberClass} {JavaStaticMemberClass}
{JavaAbstractStaticMemberClass} {JavaAbstractStaticMemberClass}
{JavaMemberClass} {JavaMemberClass}
{JavaAbstractMemberClass} {JavaAbstractMemberClass}
{JavaLocalClass} {JavaLocalClass}
{JavaAbstractLocalClass} {JavaAbstractLocalClass}
{JavaAnonymousClass}

JavaInterfaceExtends {JavaInterface} {JavaInterface}
{JavaStaticMemberInteface} {JavaStaticMemberInteface}

JavaConcretization {JavaClass} {JavaAbstractClass}
{JavaStaticMemberClass} {JavaAbstractStaticMemberClass}
{JavaMemberClass} {JavaAbstractMemberClass}
{JavaLocalClass} {JavaAbstractLocalClass}
{JavaAnonymousClass}

JavaImplements {JavaClass} {JavaInterface}
{JavaAbstractClass} {JavaStaticInterface}
{JavaStaticMemberClass}
{JavaAbstractStaticMemberClass}
{JavaMemberClass}
{JavaAbstractMemberClass}
{JavaLocalClass}
{JavaAbstractLocalClass}
{JavaAnonymousClass}

Table 5.10: Valid sources and targets for Java Import Relationship Components
Stereotypes

inv: let st = self.child in
(

st.isStereotyped(’JavaInterface’)
or

st.isStereotyped(’JavaStaticMemberInteface’)
)

context JavaInterfaceExtends (OFLImportRelationship)
inv: let st = self.parent in

(
st.isStereotyped(’JavaInterface’)

or
st.isStereotyped(’JavaStaticMemberInteface’)

)

91



5.5.3 The OFL Use Relationships

The OFL-use relationship is a generalization of the aggregation mechanism
found in object oriented languages. The meta-programmer has responsibility
to create an OFL relationship component for each kind of use relationships ex-
isting in the modelled language. OFL-ML will generates necessary stereotypes,
tagged values and constraints in order to represents all these components.

Stereotypes and Tagged Values. The abstract stereotype�OFLUseRelationship�
is the base for all the concrete stereotypes representing OFL UseRelationhip
components of the considered language. As for import relationships presented
in the section above, the name of the generated stereotypes are the same as the
name of the OFL components with ”Component” prefix removed (ex. for a com-
ponent ”ComponentJavaAggregation”, a stereotype named�JavaAggregation�
will be created).

TaggedValue TaggedValue Comment
Name Value
hiddenFeatures string list of features that

(list of feature names) are hidden
renamedFeatures string list of features that

(list of feature names) are renamed
removedFeatures string list of features that

(list of feature names) are removed
shownFeatures string list of features that pass

(list of feature names) the relationship unchanged

Table 5.11: OFL-ML Tagged Values for OFLUseRelationhip

Also, same way as for import relationship, all use relationships stereotyped
as specialization of�OFLUseRelationship� will have associated a set of tagged
values that corresponds to some OFL-AtomRelationship characteristics. These
tagged values are presented in table 5.11.

Constraints. All associations that correspond to an OFL use relationship
must have exactly two ends that correspond to source and target of relationship.

context ComponentRelationhip(OFLUseRelationship) inv:
self.allConnections->size = 2

Some constraints regarding parameters of OFL-concept-relationship gener-
ated for import relationships are valid also for use relationships. In this context,
the OFLUseRelationship stereotype will replace OFLImportRelationship as an-
cestor of ComponentRelationship stereotype. Also, UML-associations attribute
will replace the UML-generalization. This attribute is a set that contains all
association relationships in which considered classifier is involved. Considering

92



parameter ConceptRelationship::cardinality, transformed constraint will be the
following:

OFL-ML: if cardinality 6=∞

context ComponentRelationhip(OFLUseRelationship)
inv: self.child.associations->select( assoc |

assoc.isStereotyped(’ComponentRelationship’)
and

assoc.child = self.child)->size = n

The list of parameters that are valid in context of an use relationship is:

• cardinality

• repetition

• circularity

• masking

• renaming

• removing

• showing

Parameter ConceptRelation::dependence. This parameter specify if
instances of target description have a life time dependent or independent of
source description. Possible values are dependent and independent.

This parameter has meaning just for an use relationship.
OFL-ML links this parameter with aggregation attribute of UML-association-

End element. Possible values for this attribute are:

aggregate The target class is an aggregate; therefore, the source class is a part
and must have the aggregation value of none. The part may be contained
in other aggregates. This value is mapped to independent values of the
OFL dependence parameter.

composite The target class is a composite; therefore, the source class is a part
and must have the aggregation value of none. The part is strongly owned
by the composite and may not be part of any other composite. This value
is mapped to dependent values of the OFL dependence parameter.

OFL-ML: if dependance = independent

context ComponentRelationhip(OFLUseRelationship)
inv: self.conection->select( assocEnd |

assocEnd.aggregation = aggregate )->size = 1

93



OFL-ML: if dependance = dependent

context ComponentRelationhip(OFLUseRelationship)
inv: self.conection->select( assocEnd |

assocEnd.aggregation = composite )->size = 1

Constraints related with characteristic AtomLanguage::validRelationships
are the same as presented for import relationships (see section above).

Elements Generation. OFL-ML will generates one stereotype derived from
�OFLUseRelationship� for each OFL use relationship component.

Tagged values will be generated also for each use relationship according
to values of OFL-parameters masking, renaming, removing and showing. As
already presented, tags will be added considering values mandatory and allowed
for these parameters.

Example. If we consider Java language, following use relationship components
are identified [CCL02, Cre01a]: aggregation (JavaAggregation), class aggrega-
tion (JavaClassAgregation), composition (JavaComposition) and class compo-
sition (JavaClassComposition). Because the last two components imply only
Java primitive types, which are OFL-ML basic types, they are represented by
stereotypes derived from basic type composition (presented in section 5.5.4).

TaggedValues that correspond to these stereotypes are presented in table
5.12. The deletedFeatures specify the features that are deleted passing this
relationship (ex. features declared with private modifier). Table 5.13 presents

Stereotype Tagged Values
JavaAggregation {deletedFeatures}
JavaClassAggregation {deletedFeatures}

Table 5.12: Tagged Values for Java Use Relationship Components Stereotypes

valid sources and targets for these relationships. Constraints and tags will be
added regarding parameters values.

For JavaAggregation we will have:

• cardinality = ∞ (no OFL-ML constraint)

• circularity = allowed (no OFL-ML constraint)

• repetition = allowed (no OFL-ML constraint)

• removing = allowed (no OFL-ML constraint but ’removedFeatures’ gen-
erated tag)

For JavaClassAggregation we will have:

• cardinality = ∞ (no OFL-ML constraint)

94



Stereotype Valid Sources Valid Targets
JavaAggregation {JavaClass} {JavaClass}

{JavaAbstractClass} {JavaAbstractClass}
{JavaStaticMemberClass} {JavaInterface}
{JavaAbstractStaticMemberClass} {JavaStaticMemberClass}
{JavaMemberClass} {JavaAbstractStaticMemberClass}
{JavaAbstractMemberClass} {JavaMemberClass}
{JavaLocalClass} {JavaAbstractMemberClass}
{JavaAbstractLocalClass} {JavaLocalClass}
{JavaAnonymousClass} {JavaAbstractLocalClass}

{JavaAnonymousClass}
{JavaStaticMemberInteface}

JavaClassAggregation {JavaClass} {JavaClass}
{JavaAbstractClass} {JavaAbstractClass}
{JavaInterface} {JavaInterface}
{JavaStaticMemberClass} {JavaStaticMemberClass}
{JavaAbstractStaticMemberClass} {JavaAbstractStaticMemberClass}
{JavaMemberClass} {JavaMemberClass}
{JavaAbstractMemberClass} {JavaAbstractMemberClass}
{JavaLocalClass} {JavaLocalClass}
{JavaAbstractLocalClass} {JavaAbstractLocalClass}
{JavaAnonymousClass} {JavaAnonymousClass}
{JavaStaticMemberInteface} {JavaStaticMemberInteface}

Table 5.13: Valid sources and targets for Java Use Relationship Components
Stereotypes

• circularity = allowed (no OFL-ML constraint)

• repetition = allowed (no OFL-ML constraint)

• removing = allowed (no OFL-ML constraint but ’removedFeatures’ gen-
erated tag)

5.5.4 The Basic Type Composition

Basic type composition association stereotypes are used to represent composi-
tion with language primitive types. The relationship corresponds to primitive
type attribute declaration by a description. This relationship is all time com-
position because basic types instances represents values but not objects.

Stereotypes and Tagged Values. Stereotypes have to be derived from two
stereotypes�OFLMLBasicTypeCompo-sition� and�OFLMLBasicTypeClassComposition�.
The first represents instance association and the second represents class associ-
ation. No tagged values are necessary.

95



Constraints. An OFLMLBasicTypeComposition represents a composition.

context OFLMLBasicTypeComposition (Core::Association)
inv: self.conection->select( assocEnd |

assocEnd.aggregation = composite )->size = 1

An OFLMLBasicTypeComposition could have as a target only an OFLBa-
sicType.

context OFLMLBasicTypeComposition (Core::Association)
inv: self.conection->forAll( assocEnd |

assocEnd.aggregation = composition
implies

assocEnd.participant.isStereokinded(OFLBasicType))

A �OFLBasicType�-stereotyped Classifier may not participate in any As-
sociations with navigable opposite AssociationEnds.

context OFLBasicType (Core::ProgrammingLanguageDataType)
inv: self.navigableOppositeEnds->isEmpty

An OFLMLBasicTypeComposition could have only OFLAssociationEnd as
a target end.

context OFLMLBasicTypeComposition (Core::Association)
inv: self.conection->forAll( assocEnd |

assocEnd.aggregation = composition
implies

assocEnd.isStereotyped(OFLAssociationEnd))

An OFLMLBasicTypeClassComposition could have only OFLClassAssocia-
tionEnd as a target end.

context OFLMLBasicTypeClassComposition (Core::Association)
inv: self.conection->forAll( assocEnd |

assocEnd.aggregation = composition
implies

assocEnd.isStereotyped(OFLClassAssociationEnd))

Elements Generation. Usually maxim two stereotypes are generated: one
derived from�OFLMLBasic-TypeComposition� and one from�OFLMLBasicTypeClassComposition�.
If considered language have more than two type of relationships involving basic
types, additional constraints could be also necessary.

No tagged values are necessary.

96



Figure 5.15: Example of using OFLML ExternalImportRelationship

Example. For Java language we will have two relationship components that
involve Java primitive types: composition (JavaComposition) and class com-
position (JavaClassComposition). The JavaComposition stereotype is derived
from OFLMLBasicTypeComposition and the JavaClassComposition is derived
from OFLMLBasicTypeClassComposition.

5.5.5 The External Import Relationship

External import relationships involve external descriptions. External descrip-
tions are presented in sec. 5.3.4 and represents descriptions imported from
external class libraries. These descriptions are usually opaque and they could
not be involved in OFL relationships.

OFL-ML use standard UML-generalization to represent these values.

Stereotypes and Tagged Values. No stereotypes and tagged values are
necessary.

5.5.6 Constraints.

Any generalization relationship that is not stereotyped has to have an external
description as target.

context generalization
inv: self.stereotype->isEmpty

implies
self.parent.isStereokinded(OFLExternalType)

Elements Generation. No stereotypes or tagged values are generated. Only
presented constraint is added to the profile.

Example. An example of using an external import relationship in OFL-ML
Java profile is presented in fig. 5.15.

97



Figure 5.16: Example of using OFLML ExternalUseRelationship

5.5.7 The External Use Relationship

External use relationships involve external descriptions. Treatment of external
use relationship is done in same way as for external import relationship.

OFL-ML use standard UML-association to represent these values.

Stereotypes and Tagged Values. No stereotypes and tagged values are
necessary.

Constraints. Any association relationship that is not stereotyped has to have
an external description at one end.

context association
inv: self.stereotype->isEmpty

implies
self.connection->select( assocEnd |
assoEnd.participant.isStereotyped(OFLExternalDescription))

->size = 1

Elements Generation. No stereotypes or tagged values are generated. Only
presented constraint is added to the profile.

Example. An example of using an external use relationship in OFL-ML Java
profile is presented in fig. 5.16.

5.6 The OFL Model Organization

OFL organizes application elements into OFL-packages. An OFL-package will
contain a group of Description, Relationships and other OFL-packages. OFL-
package is intended to maps to different module organization founded in existing
object oriented languages.

98



5.6.1 The OFL Package

An UML-package is a grouping of model elements. In the metamodel, Package is
a subclass of Namespace and GeneralizableElement. A Package contains Mod-
elElements like Packages, Classifiers, and Associations. A Package may also
contain Constraints and Dependencies between ModelElements of the Package.

Stereotypes and Tagged Values. An OFL package is represented by an
UML package (from Model Management) stereotyped as�OFLPackage�. OFL
package containment (nesting) is modelled by Namespace containment of one
�OFLPackage�-stereotyped UML package within another. For each consid-
ered OFL-language stereotypes must be derived from �OFLPackage�. Be-
cause current version of OFL does not provides customization for package or-
ganization, these stereotypes have to be created by the meta-programmer.

Constraints. An OFLPackage could contain only OFLDescriptionTypes, OFLEx-
ternalDescriptions, OFLImportRelationships, OFLUseRelationships and other
OFLPackages .

context OFLPackge (ModelManagament::Package)
inv: self.ownedElement->forAll(el |

el.isStereokinded(’OFLDescriptionType’) or
el.isStereokinded(’OFLExternalDescription’) or
el.isStereokinded(’OFLImportRelationships) or
el.isStereokinded(’OFLUseRelationships) or
el.isStereokinded(’OFLPackage’))

Elements Generation. Profile package stereotypes must be generated man-
ually by the meta-programmer. If necessary, it could add also tagged values to
catch additional semantics of model organization.

Example. A Java Package maps to an�OFLJavaPackage�, which is derived
from �OFL-Package�. The simple name of the OFL Package is the simple
name of the Java Package. A hierarchy of Java Packages maps to a hierarchy
of OFL-packages.

PackageName is the fully-qualified name of the Java Package. The fully-
qualified name of a top level Java Package is its simple name. The fully-qualified
name of a Java Package contained by another Java Package is the fully-qualified
name of the containing Java Package, followed by ”.”, followed by the simple
name of the Java Package. The fully-qualified name of a Java Package maps to
the fully-qualified name of the corresponding OFLPackage by replacing every
occurrence of ”.” with ”::”.

99



5.7 Modelling Example Using an OFL-Java Pro-
file

As an example we consider the following Java code:

// file: Vehicle.java //
package OFLML_JavaCars;

abstract class Vehicle {
public int type;
public abstract void start();

}
/* Class Vehicle is the base for all vehicle hierarchy */

// file: Color.java //
package OFLML_JavaCars;

public class Color { }

// file: Car.java //
package OFLML_JavaCars;

public class Car {
public Color color;

public void setColor(Color c) {};
public Color getColor() {

return color; };
public void start() {};

}

Figure 5.17 gives an example of a model for application which use an OLF-
ML profile for OFL-Java:

• three descriptions: Vehicle, Car, and Color,

• one Java concretization relationship: Car is a concretization of the ab-
stract class Vehicle,

• one Java aggregation relationship: Car has an attribute of the Color type.

The diagram corresponds to above Java code. The OFL-ML Java Profile
elements used have bin defined according to previous sections. The diagram
was generated with Objecteering UML Modeler version 5.2.2 [Sof03a].

100



Figure 5.17: Example of using OFLML Java Profile

5.8 Conclusions and Future Work

5.8.1 Conclusions

This paper has presented an approach for generation of UML profiles for an
object oriented languages described in OFL. This approach is based on a profiles
meta-languages named OFL-ML. We present on detail generation mechanisms
of OFL-ML and its drawbacks related with some language semantics. Then,
based on this meta-language, we present an OFL-Java Profile that is generated
based on OFL-ML rules.

To define a profile, OFL-ML use meta-information existing at the level of
OFL. Profiles elements are generated based on following OFL entities:

• OFL-DescriptionComponents

• OFL-AtomAttribute

• OFL-AtomMethod

• OFL-ImportRelationshipComponents

• OFL-UseRelationshipComponents

• OFL-Package

To complete the Profile, for each elements, additional taggedValues and OCL
constraints are also generated.

101



Because each OFL-ML Profile respect UML 1.5 standard specification, gen-
erated profiles are guaranteed to be used with commercial UML modelling tools
that support profile mechanisms.

Presented approach has some limitations. It not consider following issues:

• other UML diagrams, additional to static class diagrams

• do not model OFLObjects

• do not address dynamic relationships like OFL-class-to-object-relationships
and OFL-object-to-object-relationships

• do not treat type multiplicity (arrays or collection classes like java.util.Vector)

5.8.2 Future Work

We identify two main directions for future work.
First intend is to go deeper with language customization. Current version

of OFL provides just a light reification and no customization of semantics at
the level of routine body. Using UML definition of Action Model [OMG03,
MTAL98], we intent to provide a way to represent also semantics at this level.
Our proposal is to extend the generated OFL-ML profile with UML-Actions for
routine body representation.

Briefly, UML actions represent:

• a fundamental unit of computational behavior

• action semantics are based on proven concepts from computer science

• action semantics remove assumptions about specific computing environ-
ments in user models:

– execution engines, PLs, implementation details

– do not require specification of software components, tasking struc-
tures or forms of transfer of control

– yet allows modelers to produce executable specifications

Considering usage of Action, all OFL parameter should be considered into
the Profile constraints. As some example we can consider:

ConceptDescription parameters .

• generator - specify if description could create or not instances. This
parameter will be involved in constraints at the level of all UML
Actions that implies creation of description instances.

• destructor - specify if description instances could be destroyed or not.
This parameter will be involved in constraints at the level of all UML
Actions that implies destroying of objects.

102



ConceptRelationship parameters .

• direct access - specify if the relationship allow direct access to a fea-
ture of target description. This parameter will be involved in con-
straints at the level of UML Read and Write Actions

• polymophism implication - specify if considered relationship accept
or not polymorphism for instances of classes involved in. This pa-
rameter will be involved in constraints at the level of UML Read and
Write Actions and Messaging Actions

The second proposed task is to generate a representation in XML [CCCL00]
or in a proprietary language representation of profile elements. We consider
here specifications for profile representation provided by some major tools like
Objecteering UML, Rational Rose etc.

103



Chapter 6

OFL-ML Tools Support and
Validation

Tools are the way most people interact with a modeling language. Therefore
one important concern is to help tools offer as much support as possible to the
modeler. We also use tools support to demonstrate the validity of the presented
approach.

6.1 The OFL Framework

The OFL framework presented here describes a set of tools that make possible
the implementation and usage of the OFL model. This implementation could
serve a language designer, to help him to try new modeling facilities (descrip-
tions and relationships types). It can assist an analyst to validate a model or
to extract metrics from application implementation model. Also it can help a
programmer who needs an extension of an existing language to be closer to a
specific domain. Basically there are four main tools included in the proposed
framework: OFL-Meta - a tool for meta-programming work; OFL-ML tool for
application design and implementation or as an alternative the OFL-ML pro-
file generator; OFL-Parser for code generation and OFL Database that allows
interactions between previously mentioned tools and keeps OFL languages and
OFL applications meta-data. The framework architecture is presented in figure
6.1.

As an implementation language we considered Java, a modern object ori-
ented language that permits a great portability and, furthermore, has powerful
libraries, essential in implementation of complex applications. Parts of pre-
sented tools were developed or are under development in collaboration with
researchers from ”Sophia Antipolis” University of Nice. Some of them were cre-
ated as diploma projects by graduating students from ”Politehnica” University
of Timisoara.

104



Figure 6.1: The OFL Framework for OFL Applications Development

105



Figure 6.2: Using the OFL Meta Tool to describe an OFL-Language

6.1.1 The OFL-Meta Tool

The OFL-Meta tool is designed to help meta-programmers to describe an OFL-
Language or to extend an existing one. It allows in fact to define a new OFL-
Language and to add OFL-Components, OFL-Modifiers, OFL-Assertions and
OFL-Actions to it.

It presents a synthetic view of the tree representing the OFL hierarchy. It
allows inspection of already made components or creating of new components.
These could be new components designed from the scratch or could be copies
of existing components modified as needed as presented in figure 6.2.

6.1.2 The OFL-Database

All tools from OFL-Framework are designed around OFL-Database. It repre-
sents a repository for OFL language components and for OFL application enti-
ties. A meta-programmer will use OFL Database to store information about his
OFL-Languages. A programmer will use OFL Database to retrieve components
that he is planning to use and to store developed application. An early version
of OFL Database was considered a PJAMA [ADJ+96, ADJS96] implementa-
tion. The current version is developed in POET [Sof02, Sof03b] which is a free
object oriented database management system. References for OFL-Database
implementation could be founded in [Pes98, Cap99].This system supports the
ODMG specifications [CBB+97], allows storage of Java Objects and export to
XML [Mic99].

6.1.3 The OFL-ML Modeling Tool

To implement OFL-ML we decide to implement both a dedicated modeling tool
and a profile generator. The reason is the incipient support for UML Profiles
included in standard UML modeling tools.

The OFL-ML modeling tool [PP01] is designed to help programmers create
OFL models. The architecture used is showed in figure 6.5. In this version, we
don’t implement the package concept. Furthermore, we don’t implement the

106



Figure 6.3: OFL-ML Tool: Import Relationship Dialog Window - the List of
Characteristics

concept of local description, the reason for this decision being that the actual
version of OFL reification did not support the local description. We study
carefully the necessity to have two levels of visualization of the application
model of OFL-ML and we adopt the following solutions as presented in figures
6.3 and 6.4:

• The visualization of the import relationship characteristics (level two of
visualization) was not drawn on the model view, but we created a dialog
window, which presents the list of its characteristics. The advantage of
this solution is its capacity to allow visualization and modification of the
relationship parameter at the same time and in the same mode (reduce
the code). Instead of using two commands: one for the visualization
(that draws in model view) and one for the modification of the import
relationship parameters (normally a dialog box) the programmer has one
command for both cases. Another problem of the specification was the
overlapping of the draw parameters (of the import relationship), on top
of other elements of the model and in this situation the visibility of the
model is drastically reduced.

• To increase the contrast and visibility of the programmer’s model we’ve
introduced the full colored termination for relationship (we draw a solid
triangle and a solid diamond instead of the empty geometrical shape).

• The use relationship is visible to the designer only on demand. This so-
lution was adopted in order to reduce the complexity of the model view
and to permit the programmer to concentrate on the modeling side of his
project. In conclusion, the model view only includes representations of the

107



Figure 6.4: OFL ML Tool: Application Window

descriptions and import relationships, by default. The core of OFL doesn’t
provide any support for storage or usage of graphical information of the
description representation. Consequently, we supplement the specifica-
tion with additional the classes. Analyzing the necessities of description
drawing, we find it essential to store the position of the description; other
information (frame of the description, the position of the relation) will be
generated at the run time. This approach reduces the space claimed by
the saved file on the disk. Another solution, which we have considered,
is to automatically generate the graph of the model, but in this way the
organization of the model will be harder.

The application offers the programmer the possibility to create descriptions
and relationships in his project. Both description and relationship have a second
level of visualization, more detailed, which also permits the modification of the
parameter’s characteristics.

6.1.4 The OFL-ML Profiles Generator

The OFL-ML Profiles Generator in under development. It has the mission
to generate both a Profile spcification in LaTex format and the XML Profile
representation.

This generator will consider all the rules presented in Chapter 5. As an
extension of it we think to also generate action routines in J-Language defined by
Objecteering Software [Sof03a]. This actions could be used into the Objecteering

108



Figure 6.5: The OFL ML Tool Implementation Class Diagram

UML modeling tool in order to generate the XML representation of the OFL
application.

6.1.5 The OFL Parser

The OFL Parser [PT01] could be described as a compiler for OFL applications.
In the current version it is a translator which generates pure Java code. The
generated code is augmented with OFL run-time information including both
OFL assertions and OFL actions.

The OFL Parser has a modular construction and could be adapted to gener-
ate information like metrics or to do some formal verification of the application
model.

6.2 Perspectives

We describe in this section five tools involved in OFL applications development.
We plan to adapt this tools in the future to follow changing of the UML Profile
standard. Also we start discussions with Objecteering for a future collaboration
that have as goal a possible integration of our approach into tools developed by
them.

109



Chapter 7

Conclusions and
Perspectives

7.1 Conclusions

The main benefit of our approach is the possibility to have a direct and an exact
matching between model and implementation of an application. This desiderate
is achieved through two facilities supported by our approach. The first one is
represented by the possibility of programming language tailoring through meta-
language extension mechanisms. The second one resides in increasing sematic
precision of modeling language based on generation of an UML Profile (OFL-
ML Profile). The backbone of both facilities is the meta-information existing
at the level of OFL.

The strong integration of our approach with standard programming and
modeling tools and technology represents also a validation for it.

7.2 Author Contributions

The approach presented in this thesis brings a number of significant contribu-
tions to the field of object oriented programming and modeling languages. This
contributions are presented split in three categories.

Contribution at the level of OFL model extension

• Analysis of the OFL non-customizable elements that are used frequently
by programmers in practical works

• Definition of the Component Modifier and OFL Modifier

• Identification of Component Modifiers in Java, C++ and Eiffel

110



• Definition of new atoms and components in addition to original OFL
Model

• Classification of modifiers based on origin and semantic

• Definition of implementation rules for each category

• Reification of several modifiers belonging to Java, C++ and Eiffel

Contribution at the level of OFL-ML meta-profile definition

• Analysis of main modeling and meta-modeling approaches

• Definition of a method which allowed to increase sematic precision for a
modeling language (an UML Profile) based on OFL meta-information

• Definition of the notions of OFL-ML Profile and OFL-ML Meta-profile

• Identification of the UML subset covering all OFL-ML Profiles

• Definition of the Virtual Meta-Model for OFL-ML Profile

• Definition for all modelling elements belonging to a generated profile

• Definition of generation rules for all elements considering OFL compo-
nents, parameters, characteristics and actions

• Definition of a mechanism which allow to add constraints for the generated
profile

• Rules for automatic constraints generation

• Example of a elements generation considering OFL-Java language

Contribution at the level of tools implementation

• Definition of a framework which provides support for OFL application
developments

• Development and integration of various tools into the OFL Framework

7.3 Perspectives

As perspective we plan to develop and refine OFL and OFL-ML approaches
by adding direct support for metrics extraction, aspect oriented programming
and service definitions. We plan also to keep the OFL-ML meta-profile up
to date with new versions for UML Profile standard. We also intend to test
our approach in at industry level by starting cooperation with modeling and
programming tools vendors like Objecteering Software.

111



Bibliography

[A. 00] A. Capouillez, R. Chignoli, P. Crescenzo, and P. Lahire. Mod-
eling Hypergeneric Relationships between Types in XML. In In
ETC2000, 4th Edition of Symposium of Electronics and Telecom-
munications, November 2000.

[Aal02] W. M. Van Der Aalst. Inheritance of Dynamic Behaviour in UML.
In In Proceedings of the Second Workshop on Modelling of Objects,
Components and Agents (MOCA 2002), Aarhus, Denmark, August
2002, University of Aarhus, D. Moldt, editor, 2002.

[Aba98] M. Abadi. Protection in Programming Language Translation. In
Automata, Languages and Programming: 25th International Collo-
quium, ICALP’98, Springer-Verlag, July 1998.

[ACL03] G. Ardourel, P. Crescenzo, and P. Lahire. Lamp : vers un Langage
de definition de Mecanismes de Protection pour les langages de pro-
grammation a objets. In LMO 2003, Vannes, France, February
2003.

[ADJ+96] M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and
S. Spence. An orthogonally persistent java. SIGMOD Record, 25(4),
1996.

[ADJS96] M. P. Atkinson, L. Daynes, M. J. Jordan, and S. Spence. Design
issues for persistent Java: A type-safe, object-oriented, orthogonally
persistent system. In Proceedings of the 7th Workshop on Persistent
Object Systems (POS’96), Cape May (NJ), USA, 1996.

[AK00] C. Atkinson and T. Kühne. Strict profiles: Why and how. In
UML 2000 – The Unified Modeling Language, Third International
Conference, University of York, UK, LNCS 1939, page 13. Springer
Verlag, October 2000.

[Ard02] G. Ardourel. Modelisation des Mechanismes de Protection
dans les Langages a Objets. Phd thesis, University of Mont-
pellier, France, December 2002. http://www.lirmm.fr/ ar-
dourel/cv/theseArdourel.pdf.

112



[BCR00] E. Börger, A. Cavarra, and E. Riccobene. An ASM semantics for
UML activity diagrams. In Proceedings Algebraic Methodology and
Software Technology, 8th International Conference, AMAST 2000,
Iowa City, Iowa, USA, May 2000, LNCS. Springer, 2000.

[BH00] T. Baar and R. Hahnle. An integrated metamodel for OCL types. In
In Proc. OOPSLA 2000, Workshop Refactoring the UML: In Search
of the Core, Minneapolis, Minnesota, USA, 2000.

[BR01] C. Boyapati and M. Rinard. A Parameterized Type System for
Race-Free Java Programs. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA
2001), Tampa, Florida, October 2001.

[Cap99] A. Capouillez. ROOPS: un Service parametrable de persistance
pour OFL. Technical Report I3S/RR–1999-15–FR, Laboratoire
d’Informatique, Signaux et Systmes de Sophia-Antipolis, France,
September 1999. http://www.i3s.unice.fr/I3S/FR/.

[Car88] L. Cardelli. A semantics of multiple inheritance. In Information
and Computation, 76(2/3), February 1988.

[CBB+97] R. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamer-
man, D. Jordan, A. Springer, A. Strickland, and D. Wade. Object
Database Standard : ODMG 2.0. Morgan Kaufmann Publishers,
Inc, 1997.

[CCCL00] A. Capouillez, R. Chignoli, P. Crescenzo, and P. Lahire. Modeling
Hypergeneric Relationships between Types in XML. In ETC’2000,
4th Edition of Symposium of Electronics and Telecommunications,
November 2000.

[CCCL01] A. Capouillez, R. Chignoli, P. Crescenzo, and P. Lahire. Hyper-
genéricité pour les Langages a Objets : le Modèle OFL. In
LMO’2001 (Langages et Modèles a Objets), page 16. Hermes Science
Publications, L’objet : logiciels, bases de donnes, réseaux, volume
7, nr. 1-2/2001, January 2001.

[CCL99] R. Chignoli, P. Crescenzo, and P. Lahire. OFL: An Open
Object Model based on Class and Link Semantics Customiza-
tion. Technical Report 99-08, Laboratoire d’Informatique, Sig-
naux et Systmes de Sophia-Antipolis, France, March 1999.
http://www.i3s.unice.fr/I3S/FR/.

[CCL02] A. Capouillez, P. Crescenzo, and P. Lahire. OFL: Hyper-
Genericity for Meta-Programming: an Application to Java. Tech-
nical Report I3S/RR–2002-16–FR, Laboratoire d’Informatique,
Signaux et Systmes de Sophia-Antipolis, France, April 2002.
http://www.i3s.unice.fr/I3S/FR/.

113



[CD94] S. Cook and J. Daniels. Designing Object Systems: Object-Oriented
Modelling with Syntropy. Prentice Hall, 1st edition, November 1994.

[Chi99] S. Chiba. Open C++ 2.5 Reference Manual. University of Tsukuba,
Japan, http://www.csg.is.titech.ac.jp/ chiba/, May 1999.

[CKMR99] S. Cook, A. Kleppe, R. Mitchell, and R. Rumpe. The Amsterdam
Manifesto on OCL. Technical Report TUM-I9925, Technical Uni-
versity of Munchen, Germany, 1999.

[CL02a] P. Crescenzo and P. Lahire. Customisation of Inheritance. In
Springer Verlag, LNCS series, ECOOP’2002 (The Inheritance
Workshop) and Proceedings of the Inheritance Workshop at ECOOP
2002, University of Jyvskyl, Finlande, page 7, June 2002.

[CL02b] P. Crescenzo and P. Lahire. Using both specialisation and gener-
alisation in a programming language: Why and how? In In OOIS
2002 (8th International Conference on Object-Oriented Information
Systems) - MASPEGHI workshop, Montpellier, France, September
2002.

[CNP89] L. Cardelli, E. J. Neuhold, and M. Paul. Typefull Programming. In
IFIP Advanced Seminar on Formal Methods in Programming Lan-
gage Semantics, Lecture Notes in Computer Science. Springer Ver-
lag, 1989.

[Coo98] J. W. Cooper. The Design Patterns Java Companion. In Addison-
Wesley, 1998.

[Cre01a] P. Crescenzo. OFL : les relations et descriptions d’Eiffel et de Java.
Technical Report I3S/RR–2001-06–FR, Laboratoire d’Informatique,
Signaux et Systmes de Sophia-Antipolis, France, April 2001.
http://www.i3s.unice.fr/I3S/FR/.

[Cre01b] P. Crescenzo. OFL: un Modele pour Parameter la Semantique Op-
erationnele des Langages a Objets - Application aux Relations inter-
classes. Phd. thesis, University of Nice, Sophia Antipolis, France,
December 2001. http://www.crescenzo.nom.fr/.

[CW02] T. Clark and J.B. Warmer. Object Modeling With the Ocl: The
Rationale Behind the Object Constraint Language. Springer Verlag,
Lecture Notes in Computer Science, 2263, April 2002.

[Des99] P. Desfray. White Paper on the Profile Mechanism, OMG document
ad/99-04-07. http://www.omg.org, 1999.

[DSB99] D. F. D’Souza, A. Sane, and A. Birchenough. First Class Exten-
sibility for UML - Packaging of Profiles, Stereotypes, Patterns. In
2nd Int. Conf. on the Unified Modeling Language: UML’99, Fort
Collins, CO, USA, page 14. Springer-Verlag,LNCS series, UML’99,
October 1999.

114



[Ewi] G. Ewing. Class inheritance: The mechanism and its uses.
http://citeseer.nj.nec.com/ewing94class.html.

[Fla99a] D. Flanagan. Java in a Nutshell : A Desktop Quick Reference.
OReilly and Associates, 3rd edition, 1999.

[Fla99b] D. Flanagan. Java in a Nutshell : A Desktop Quick Reference.
O’Reilly and Associates, 3rd edition, November 1999.

[FS01] K. Flower and K. Scott. UML Distilled Second Edition. Addison-
Wesley, 2001.

[GC96] B. Gowing and V. Cahill. Meta-Object Protocols for C++: The
Iguana Approach. In Proceedings of Reflexion’96, Ed. Kiczales, Cal-
ifornia, April 1996.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns
- Elements of Reusable Object Oriented Software. Addison-Wesley
Publishing, 1994.

[GJSB00] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification Second Edition. Addison-Wesley, 2000.

[GK98] M. Golm and J. Kleinoder. metaXa and the Future of Reflexion,
PWRP’98. Technical Report UTCCP 98-4, University of Tsukuba,
Japan, October 1998.

[Gri99] W Grieskamp. A Set-Based Calculus and its Implementation. Phd.
thesis, Technischen Universität Berlin, Germany, November 1999.
http://research.microsoft.com/users/wrwg/.

[Gui98] J. Guimares. Reflection for Statically Typed Languages. In ECOOP
98, 12th European Conference on Object-Oriented Programming
Brussels, Belgium, July 1998.

[Hey01] T. Heyer. Semantic Inspection of Early UML Designs. In Proceed-
ings Workshop on Inspection in Software Engineering (WISE ’01),
July 2001.

[Kai99] K. Kaitanen. J-UML Specification. Version 1.02, February 1999.
http://www.vtt.fi/tte/papers/j-uml.

[KDRB91] G. Kiczales, J. Des Rivieres, and D. Bobrow. The Art of the
MetaObject Protocol. MIT-Press, 1991.

[Lem98] R. Lemesle. Meta-modeling and modularity : Comparison between
MOF and CDIF formalisms. In OOPSLA’98 Workshop Model En-
gineering, Methods and Tools, October 1998.

[Lip99] S. B. Lippman. Essential C++. Addison-Wesley Pub. Co., 1st
edition, October 1999.

115



[LYJW96] T. Lindholm, F. Yellin, B. Joy, and B. Walrath. The Java Vir-
tual Machine Specification. Addison-Wesley Pub. Co., 3rd edition,
September 1996.

[Mey91] B. Meyer. Eiffel : The Language. Prentice Hall, 1st edition, October
1991.

[Mey97] B. Meyer. Object-Oriented Software Construction. Professional
Technical Reference. Prentice Hall, second edition, 1997.

[Mey02] B. Meyer. Eiffel: The Language. Online version at
http://www.inf.ethz.ch/ meyer/, 2002.

[Mic99] A. Michard. XML Language and Applications. Eyrolles, 1999.

[MTAL98] S. J. Mellor, S. R. Tockey, R. Arthaud, and P. LeBlanc. An Action
Language for UML: Proposal for a Precise Execution Semantics. In
The Unified Modeling Language, UML’98 - Beyond the Notation.
First International Workshop, Mulhouse, France, LNCS, pages 307–
318. Springer, June 1998.

[Obe00] I. Ober. Defining Precise Semantics for UML. In Workshop at
ECOOP’2000, Cannes, Fance, June 2000.

[Obj01] Object Management Group - OMG. Meta Object Fa-
cility Specification (MOF), Version 1.3.1, November 2001.
http://www.omg.org/technology/documents/formal/meta.htm.

[OMG00] Object Management Group OMG. Object Constraint Language
Specification. Version 1.3, March 2000. http://www.omg.org.

[OMG01] Object Management Group OMG. UML Profile for EJB Specifica-
tion, Version 1.0. http://www.omg.org, May 2001.

[OMG02] Object Management Group OMG. UML Profile for CORBA Spec-
ification, Version 1.0. http://www.omg.org, April 2002.

[OMG03] Object Management Group OMG. Unified Modelling Lan-
guage Specification, version 1.5, 1st ed., March 2003.
http://www.omg.org.

[P. 02] P. Lahire, P. Crescenzo, and A. Capouillez. Le modele ofl au service
du metaprogrammeur - application a java. In In Proceedings of LMO
2002 (Langages et Modeles a Objets), Montpellier, France, January
2002.

[PCL03a] D. Pescaru, P. Crescenzo, and P. Lahire. An Extension for
OFL Model through modifiers. Technical report, Laboratoire
d’Informatique, Signaux et Systmes de Sophia-Antipolis, France,
Jully 2003.

116



[PCL03b] D. Pescaru, P. Crescenzo, and P. Lahire. Automatic Profile Genera-
tion for OFL-Languages. Technical report, submited to Laboratoire
d’Informatique, Signaux et Systmes de Sophia-Antipolis, France,
October 2003.

[Pes98] D. Pescaru. A Java Object Oriented Environment for Databases. In
Third International Conference on Technical Informatics, CONTI-
98, Timisoara, October 1998.

[Pes01] D. Pescaru. A Framework for an Hypergeneric System Implemen-
tation Based on OFL. PhD Report at ”Politehnica” University of
Timisoara, Romania, October 2001.

[Pes03] D. Pescaru. Implementation for OFL Modifiers Assertions. sub-
mited to Buletinul Stiintific al Univ. ”Politehnica” din Timisoara,
Vol.48(62)/03, ISSN 1224-600X, November 2003.

[PL00] D. Pescaru and P. Lahire. OpenIDL: an Open Modeling Language
Based on IDL and OFL. In Fourth International Conference on
Technical Informatics, CONTI-2000, Timisoara, Romania, October
2000.

[PL03] D. Pescaru and P. Lahire. Modifiers in OFL: An Approach for Ac-
cess Control Customization. In The 9th International Conferences
on Object-Orinted Information Systems - OOIS’03, WEAR work-
shop, Geneva, Swizerland, September 2003.

[Por92] H. H. Porter. Separating the subtype hierarchy from the inheritance
of implementation. In Journal of Object-Oriented Programming,
February 1992.

[PP01] D. Pescaru and C. Papandonatos. An OFL-ML tool implementa-
tion. Buletinul Stiintific al Univ. ”Politehnica” din Timisoara, nr.
46(60)/01, ISSN 1224-600X, October 2001.

[PT01] D. Pescaru and E. Tundrea. OFLParser - Code Generator for
OFL-ML Models. Buletinul Stiintific al Univ. ”Politehnica” din
Timisoara, nr. 46(60)/01, ISSN 1224-600X, October 2001.

[R. 02] R. Hennicker, H. Hussmann, and M. Bidoit. Object Modeling with
the OCL: The Rationale behind the Object Constraint Language.
In volume 2263 of LNCS. Springer, 2002.

[Sch02] N. Schirmer. Analasyng the Java Package/Access Concepts in Is-
abelle/HOL. In ECOOP Workshop on Formal Techniques for Java-
like Programs (FTfJP’2002), Malaga, Spain, June 2002.

[Sny86] A. Snyder. Encapsulation and Inheritance in Object-Oriented Pro-
gramming Languages. In Proceedings of OOPSLA ’86, Object-
Oriented Programming Systems, Languages, and Applications.,
November 1986.

117



[Sof97] Rational Software. UML semantics, September 1997.
http://www.rational.com/uml/html/semantics/.

[Sof99] SoftTeam. UML Profiles and the J Language: Totally
control your application development using UML, 1999.
http://www.softeam.fr/pdf/us/uml profiles.pdf.

[Sof02] Poet Software. Developing object oriented databases using POET.
FastObjects web site - http://www.fastobjects.com, 2002.

[Sof03a] Objecteering Software. Objecteering 5.2.2 Manual, 2003.
http://www.objecteering.com/.

[Sof03b] Poet Software. POET XML White Paper. Poet web site -
http://www.poet.com/, 2003.

[SPH+01] G. Suny, F. Pennaneac, W. Ho, A. Guennec, and H. Jzquel. Using
UML Action Semantics for Executable Modeling and Beyond. In
CAiSE 2001, LNCS 2068, 2001.

[Str94] B. Stroustrup. The Design and Evolution of C++. Addison-Wesley
Pub. Co., 1st edition, March 1994.

[Str97] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
third edition, 1997.

[TCKI00] M. Tatsubori, S. Chiba, M. Killijian, and K. Itano. A Class-based
Macro System for Java. In Reflection and Software Engineering,
LNCS 1826, Springer Verlag, 2000.

[W3C00] Org. W3C. Extensible Markup Language XML, Version 1.0 sec. ed.,
W3C Recommendation. http://www.w3c.org, October 2000.

[WK98] J. Warmer and A. Kleppe. The Object Constraint Language : Pre-
cise Modeling with UML. Addison-Wesley Pub. Co., 1st edition,
1998.

[WS98] I. Welch and R. Stround. Dalang - a Reflexive Java Extension,
PWRP’98. Technical Report UTCCP Report 98-4, University of
Tsukuba, Japan, October 1998.

[Wu98] Z. Wu. Reflexive Java and a Reflexive Component-based Transac-
tion Architecture. Technical Report UTCCP Report 98-4, Univer-
sity of Tsukuba, Japan, October 1998.

118


