
The Era of the Cloud

Florin Barbuceanu
Senior Solutions Architect @ Amazon Web Services Berlin
florin.gabriel.barbuceanu@gmail.com

mailto:florin.gabriel.barbuceanu@gmail.com


What is Amazon Web Services?

A broad and deep platform that helps customers
build sophisticated, scalable, secure applications



What is the Cloud?

IT as a commodity No more building, 
operating, maintaining 

data centers



What is an application?

Software system designed to serve end users
for example web browser, video game



What is a server?

A server is an application that exposes functionality 
for clients



What is an API?
Application Programming Interface

Abstract standard of 
interaction 

How do classes, applications, 
computers interact and 

communicate?



What is an API?

What do we achieve by using interfaces?
• Defined a contract
• Decoupled clients from implementors

interface BankingService {
double getAccountBalance(String accountId);

}



The simplest implementation of this API?

Does it work?
• Yes*

class DummyBankingService implements BankingService {
public double getAccountBalance(String accountId) {

return 42.0;
}

}

* - The API clients can work with this mock implementation until the real implementation is delivered

Is it correct?
• No



Another example of API?
GET
https://api.apistorebt.ro/bt/sb/bt-psd2-aisp/v2/accounts/K13RONCRT0060214301
{

"account": {
"iban": "RO98BTRLRONCRT0ABCDEFGHI",
"resourceId": "K13RONCRT0060214301",
"currency": "RON",
"product": "Cont de debit",
"name": "Contul meu",
"cashAccountType": "CurrentAccount",
"balances": [{

"balanceType": "expected",
"creditLimitIncluded": false,
"balanceAmount": {

"currency": "RON",
"amount": 675.502

},
"referenceDate": "2019-03-26"

}

],
"_links": {

"balances": {
"href": "https://apistorebt.ro/bt/sb/bt-psd2-aisp/v1/accounts/K13RONCRT0060214301/balances"

},
"transactions": {

"href": "https://apistorebt.ro/bt/sb/bt-psd2-aisp/v1/accounts/K13RONCRT0060214301/transactions"
}

}



What are the Benefits of the Cloud?

Cost 
Optimisation

Elasticity Agility Security Global Footprint

Read more: https://aws.amazon.com/what-is-cloud-computing/

https://aws.amazon.com/what-is-cloud-computing/


How is all this elasticity possible?
• Observability – metrics such as CPU utilisation
• Orchestration – create and release virtualized resources 



Example CloudWatch Metric

Read more: https://aws.amazon.com/products/management-and-governance/use-cases/monitoring-and-observability/

https://aws.amazon.com/products/management-and-governance/use-cases/monitoring-and-observability/


Case Study – Netflix

Read more: https://aws.amazon.com/solutions/case-studies/netflix/

https://aws.amazon.com/solutions/case-studies/netflix/


Modernising Applications
The three-tier web application

Read more: https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/introduction.html

• How can we scale this architecture?
• Monitor utilisation – build our own or use existing solutions
• But who monitors the monitoring system?
• How can we ensure we add hardware in time?
• What if we reach limits? (storage, CPU, space in datacenter facility?)

Client Server Database

Presentation Tier Logic Tier Data Tier

https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/introduction.html


Scalability Patterns
Vertical Scaling

Increasing the machine size, but..
• We run out of bigger processors to upgrade to, or
• They get so expensive that it’s not worth it anymore

Scale by growing servers



Scalability Patterns
Horizontal Scaling

• Stateless applications
• Easy to recreate and deploy by recipes
• Infrastructure becomes immutable
• Load Balancer and Auto Scaling
• Better cost optimisations!

Scale by adding servers



What are Microservices?
Well, it’s very easy…

Florin, 2021

“Share-nothing distributed architecture, 
where each microservice is bounded by 
domain, and relies on APIs to interact 
and implement functionality, therefore 
streamlining independent scalability of 
components and autonomy of developer 
teams.”



Yeah, I know some of those words

Florin, 2021

“Share-nothing distributed architecture, 
where each microservice is bounded by 
domain, and relies on APIs to interact 
and implement functionality, therefore 
streamlining independent scalability of 
components and autonomy of developer 
teams.”



What are Microservices?
Now seriously

Florin, 2021

“Share-nothing distributed architecture, 
where each microservice is bounded by 
domain, and relies on APIs to interact and 
implement functionality, therefore 
streamlining independent scalability of 
components and autonomy of developer 
teams.”



Scalability Patterns
Microservices

Read more: https://martinfowler.com/articles/microservices.html

https://martinfowler.com/articles/microservices.html


Microservices - Organisational Change
From This

Read more: https://martinfowler.com/articles/microservices.html

https://en.wikipedia.org/wiki/Conway%27s_law

https://martinfowler.com/articles/microservices.html
https://en.wikipedia.org/wiki/Conway%27s_law


Microservices - Organisational Change
To This

Read more: https://martinfowler.com/articles/microservices.html

https://martinfowler.com/articles/microservices.html


Distributed Systems
Quick Detour

In how many ways can this code fail?
• Consider a local Java application
• Can we handle all of them?

board.move(pacman, user.joystickDirection());

Read more: https://aws.amazon.com/builders-library/challenges-with-distributed-systems/

https://aws.amazon.com/builders-library/challenges-with-distributed-systems/


Distributed Systems
What if the game was multiplayer?
8 additional steps:
1. POST REQUEST
2. DELIVER REQUEST
3. VALIDATE REQUEST
4. UPDATE SERVER STATE
5. POST REPLY
6. DELIVER REPLY
7. VALIDATE REPLY
8. UPDATE CLIENT STATE

Read more: https://aws.amazon.com/builders-library/challenges-with-distributed-systems/

https://aws.amazon.com/builders-library/challenges-with-distributed-systems/


Serverless
Make it somebody else’s problem…
•You don’t manage servers
•Focus on what matters
•From few requests per day to 
millions per second

Read more: https://aws.amazon.com/builders-library/challenges-with-distributed-systems/

https://aws.amazon.com/builders-library/challenges-with-distributed-systems/


Synchronous Communication

Read more: https://aws.amazon.com/builders-library/challenges-with-distributed-systems/

Ordering Service
30ms Delivery Service

2000ms

Email Service
100ms

Payment Service
200ms

•User waits 2330ms
•Or 2000ms if we can parallelise requests

https://aws.amazon.com/builders-library/challenges-with-distributed-systems/


Asynchronous Communication
Decouple producers and consumers

Read more: https://aws.amazon.com/message-queue/

•Wait only until order is confirmed
• Process the rest in the background
• Avoid overwhelming slow consumers
• User now only waits 35ms

Ordering 
Service
35ms

Delivery 
Service
2000ms

Email Service
100ms

Payment 
Service
200ms

Order Queue

https://aws.amazon.com/message-queue/


Questions?
Complaints?
Objections?
Florin Barbuceanu
Senior Solutions Architect @ Amazon Web Services Berlin
florin.gabriel.barbuceanu@gmail.com ß for extra complaints/thoughts

mailto:florin.gabriel.barbuceanu@gmail.com

