
(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Concurrent and Event-Based
Programming

course slides

(c)Dan Cosma, 2008-2014

v. 1.4.1

1

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Preliminaries

2

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Course structure

Two main parts

Laboratory support

Exam?

3

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Interaction

Course: presentation -> discussion

Laboratory: problems -> solutions

Both: feedback -> improvement

4

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Feedback

E-mail: danc@cs.upt.ro

Forum (if needed)

‘Live’ discussions at the course or laboratory

5

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Course support
(bibliography)

[1] Java Concurrency in Practice by Brian Goetz,
Tim Peierls, Joshua Bloch, Joseph Bowbeer,
David Holmes, Doug Lea; Addison Wesley
Professional, 2006 ISBN-10: 0-321-34960-1

[2] Pattern Oriented Software Architectures -
Volume 2 - Patterns for Concurrent and
Networked Objects, by Douglas Schmidt, Michael
Stal, Hans Rohnert and Frank Buschmann,
Wiley&Sons, 2000, ISBN-10: 0-471-60695-2

6

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Course support
(bibliography)

[3] Event-Based Programming: Taking Events
to the Limit, by Ted Faison, Apress 2006,
ISBN-10: 1-59059-643-9

[4] Concurrent and distributed computing in
Java by Vijay K. Garg., Wiley & Sons, 2004,
ISBN 0-471-43230-X

7

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Part A. Concurrent
Programming

8

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Chapter 1. Introduction

9

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

What is concurrency?

several computing tasks that execute at the
same time

the tasks may interact with each other at
various times during execution

10

A.1 Introduction - 1.1 The problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Do we need it?

11

A.1 Introduction - 1.1 The problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Do we need it?

Yes.

12

A.1 Introduction - 1.1 The problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Do we need it?

Yes.

Why?

13

A.1 Introduction - 1.1 The problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Why really study it?

Understand the differences between
concurrent and mono-thread programming

Know the main problems that may arise

Understand the solutions

Grasp the concepts

Learn the language-specific primitives

14

A.1 Introduction - 1.1 The problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Where is it applied?

Parallel systems

Multithreaded or multiprocess programs (even
on non-parallel computers)

Distributed systems

15

A.1 Introduction - 1.1 The problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Parallel systems
Machines with many
processors, shared bus,
shared memory

The model also applies
to parallel software
infrastructures or
languages

Solve problems by
breaking them in
parallel subtasks

Shared

Memory

CP
U

CP
U

CP
U

CP
U

Local

Memory

Local

Memory

Local

Memory

Local

Memory

Bus

16

A.1 Introduction - 1.1 The problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Multithreaded or
multiprocess programs

...

if((pid=fork()) < 0) {

 perror("Error");

 exit(1);

}

if(pid==0) {

 /* child */

 ...

 exit(0);

}

/* parent */

...

wait(&status);

Parent process Child process

17

A.1 Introduction - 1.1 The problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Task scheduling
Even on mono-processor architectures, the OS
provides parallel functionality

18

A.1 Introduction - 1.1 The problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Distributed Systems
multiple processing units
running at different
locations

the components can be:  
- relatively independent  
- heterogenous

the model can be
applied to both
hardware and software

Communication
Infrastructure

Node Node

Node

Node
Node

Node

Node

19

A.1 Introduction - 1.1 The problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Thread safety

20

A.1 Introduction - 1.2 Thread safety. Concepts.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Definition

Applies to classes, methods, ...

The part of the program behaves safely even
when executed in multiple threads

The part of the program runs correctly
when executed in multiple threads (no
changes in behavior)

21

A.1 Introduction - 1.2 Thread safety. Concepts.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A code sequence...

global int number;

!
void function increment()

{

 number = number + 1;

}

memory stored number;

!
assembly routine increment()

{

 load value of number in register;

 increment register;

 store register in number;

}

22

A.1 Introduction - 1.2 Thread safety. Concepts.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Solution

...?

23

A.1 Introduction - 1.2 Thread safety. Concepts.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The State

It’s all about the state

variables, instance fields, static fields

State:

mutable

immutable

24

A.1 Introduction - 1.2 Thread safety. Concepts.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Thread-safe class

A stateless class is always thread safe

When a state variable can be modified
without synchronization the class is NOT
thread-safe

Good OO techniques help (encapsulation,
immutability, etc.) but do not guarantee
thread safety

25

A.1 Introduction - 1.2 Thread safety. Concepts.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Terminology
Race conditions: the correctness of a
computation depends on the relative timing
of the runtime threads

Atomic execution: the sequence is executed
without interruption

Critical region: the part of the code where
race conditions may occur, and which has to
be executed atomically

Mutual exclusion: atomic execution of critical
regions

26

A.1 Introduction - 1.2 Thread safety. Concepts.

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Classical Issues.
Synchronization Primitives

27

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Binary Semaphores
A primitive that can be shared between threads

Two operations: DOWN (P), UP (V)

DOWN

if value==0 blocks the thread

if value==1 decrements the value

UP

if value==0 unblock a thread or increments

if value==1 does nothing

An UP when value=0 releases a thread
28

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Application

Mutual exclusion between code sequences

29

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A code sequence...

global int number;

!
void function increment()

{

 semaphore.down();

 number = number + 1;

 semaphore.up()

}

30

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Generalized semaphores

The value can be a natural number (0..N)

UP increments the semaphore when value!=0

DOWN decrements the semaphore when
value!=0

31

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Dining Philosophers
Problem

Five philosophers need to eat spaghetti

They are poor

Sit at a round table with 5 plates and only 5
forks

Each philosopher needs 2 forks to eat

They don’t mind sharing

Three phases for each: think, hungry, eat
32

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A Picture

33

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A philosopher
//this is not a good solution

void philosopher()

{

 think();

 hungry();

 semaphore[left_fork].down();

 semaphore[right_fork].down();

 eat();

 semaphore[left_fork].up();

 semaphore[right_fork].up();

}

34

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Deadlock

Two or more threads wait for each other to
release a resource

Several threads wait for resources in a
circular chain

-> The concurrent program enters a state
where none of the involved parties progress

35

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Necessary Conditions for
Deadlock*

Mutual exclusion: a resource exists that cannot be
used by more than one threads at a time

Hold and wait: threads holding resources may request
new resources

No preemption: only the resource holder can release it

Circular wait: two or more threads form a circular
chain -- one waits for the next to release the
resource

*E. G. Coffman, 1971

Deadlock can occur only when all four conditions hold true
36

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Another philosopher
void philosopher()

{

 think();

 hungry();

 if(left_fork is available)

 left_fork.take();

 if(right_fork unavailable for 5 minutes)

 left_fork.release();

 else

 right_fork.take();

 eat();

 left_fork.release();

 right_fork.release();

}

What if ALL philosopher threads start EXACTLY
at the same time?

37

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Livelock

A situation where one or more threads do
not progress, while constantly changing their
relative state

The threads are not actually blocked, but
they don’t advance either

Example: Two polite persons in a narrow
doorway

38

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Resource Starvation

A condition that occurs when one ore more
threads never acquire the needed resource

The system itself is not deadlocked

The condition may occur due to faulty
scheduling algorithms or even unfortunate
timings

39

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Starvation Examples

The dining philosophers: imagine a solution
where a philosopher takes BOTH forks at the
same time: one of the five may remain
hungry

40

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Starvation Examples

Task scheduling algorithm: three processes:
A, B, C

A: priority HIGH, B: priority LOW, C: priority
VERY HIGH

C depends on B

The algorithm always selects the higher
priority unblocked (ready) process

A never blocks
41

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Producer-Consumer
A buffer shared between threads

Producer: puts items in the buffer

Consumer: extracts items from the buffer

Constraints:

consumer: should not try and read the empty
buffer

producer: should not try to write on full buffer

42

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Solution 1. Correct or not?
int itemCount

!
procedure producer() {

 while (true) {

 item = produceItem()

!
 if (itemCount == BUFFER_SIZE) {

 sleep()

 }

!
 putItemIntoBuffer(item)

 itemCount = itemCount + 1

 if (itemCount == 1) {

 wakeup(consumer)

 }

 }

}

procedure consumer() {

 while (true) {

 if (itemCount == 0) {

 sleep()

 }

 item = removeItemFromBuffer()

 itemCount = itemCount - 1

 if (itemCount == BUFFER_SIZE - 1) {

 wakeup(producer)

 }

 consumeItem(item)

 }

}

source: wikipedia.org43

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Solution 2. Correct?

semaphore fillCount = 0

semaphore emptyCount = BUFFER_SIZE

!
procedure producer() {

 while (true) {

 item = produceItem()

 down(emptyCount)

 putItemIntoBuffer(item)

 up(fillCount)

 }

 }

procedure consumer() {

 while (true) {

 down(fillCount)

 item = removeItemFromBuffer()

 up(emptyCount)

 consumeItem(item)

 }

}

source: wikipedia.org44

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Solution 3. Correct
semaphore fillCount = 0

semaphore emptyCount = BUFFER_SIZE

semaphore mutex = 1

!
procedure producer() {

 while (true) {

 item = produceItem()

 down(emptyCount)

 down(mutex)

 putItemIntoBuffer(item)

 up(mutex)

 up(fillCount)

 }

 }

procedure consumer() {

 while (true) {

 down(fillCount)

 down(mutex)

 item = removeItemFromBuffer()

 up(mutex)

 up(emptyCount)

 consumeItem(item)

 }

}

source: wikipedia.org45

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Readers-Writers
Deals with concurrent access to a shared
database-like resource

Constraints:

A reader and a writer must not access
the resource at the same time

Two or more writers cannot access the
resource at the same time

Multiple readers can access the resource
at the same time

46

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A solution
class Readerwriter {

int numReaders = 0;

BinarySemaphore mutex = new BinarySemaphore(true);

BinarySemaphore wlock = new BinarySemaphore(true);

!
public void startRead() {

 mutex.down();

 numReaders++;

 if (numReaders == 1)

 wlock. down();

 mutex.up();

}

!
public void endRead() {

 mutex.down();

 numReaders--;

 if(numReaders == 0) wlock.up();

 mutex.up();

}

public void startWrite() {

 wlock.down();

}

!
public void endWrite() {

 wlock.up() ;

}

!
}//end class

source: Concurrent and Distributed Computing in Java47

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Monitors

A synchronization mechanism part of the
programming language

Entry methods: methods that are guaranteed
to be synchronized (are “inside” the monitor)

Only one thread can enter the monitor (call
an entry method) at a time (“acquires the
monitor lock”)

48

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Monitors
//this is NOT Java

class AClass {

 entry_method aMethod()

 {

 ...

 }

!
 entry_method anotherMethod()

 {

 ...

 }

!
 method nonentryMethod()

 {

 ...

 }

}

49

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Condition Variables in
Monitors

Once in monitor, a thread can apply two
operations on the condition variable:  
 - wait (threads can wait for the condition
variable) 
 - notify (other threads are signaled the
condition is met)

Waiting threads are blocked until notification
(moved in the variable’s waiting queue)

The wait operation releases the monitor lock
50

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Condition Notification

On notify, which thread continues: the
waiting thread, or the one that called notify? 
 
A. Hoare monitors: one of the waiting threads 
 
B. The thread that called notify continues;
when it exits the monitor, one of the waiting
threads can enter the monitor (Java behavior)

51

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Differences

Case A: the waiting thread that is unblocked
can be certain the condition is true:  
 if(!condition) conditionVariable.wait();

Case B: the waiting thread only knows the
condition MAY be true (it may have been at
a previous moment):  
 while(!condition) conditionVariable.wait();

52

A.2 Thread Synchronization - 2.1 Classical Issues. Synchronization Primitives

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Concurrency in Java

53

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Threads
public class MyThread extends Thread {

!
public void run ()

{

 System.out. println(”Hello World”);

}

!
public static void main(String[]args)

{

 MyThread th = new MyThread() ;

 th.start();

}

public class MyClass implements Runnable {

!
public void run ()

{

 System.out. println(”Hello World”);

}

!
public static void main(String[]args)

{

 MyCLass cls = new MyClass();

 Thread th = new Thread(cls);

 th.start();

}

54

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Monitors in Java
class AClass {

 public synchronized void method1()

 {

 ...

 }

!
 public synchronized void method2()

 {

 ...

 }

!
 public void otherMethod()

 {

 ...

 }

}

55

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Monitors in Java
Each Java object provides an ‘intrinsic
lock’ (‘monitor lock’) which is automatically acquired
when entering a synchronized method or block

Java does not have explicit condition variables

Two wait queues for the monitor

one for the lock to enter the monitor

one for a condition (threads waiting to be
notified)

56

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

wait() and notify()

wait() - blocks the calling thread

notify() - wakes up a waiting thread

notifyAll() - wakes up all waiting threads

57

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

public class SimpleProducerConsumer {

 //Message sent from producer to consumer.

 private String message;

!
 //True if consumer should wait for producer to send message,

 //false if producer should wait for consumer to retrieve message.

 private boolean empty = true;

!
 public synchronized void put(String message) {

 //Wait until message has been retrieved.

 while (!empty) {

 try {

 wait();

 } catch (InterruptedException e) {}

 }

 //Toggle status.

 empty = false;

 //Store message.

 this.message = message;

 //Notify consumer that status has changed.

 notifyAll();

 }

continued on next slide
source: Java Tutorial at java.sun.com58

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

public synchronized String take() {

 //Wait until message is available.

 while (empty) {

 try {

 wait();

 } catch (InterruptedException e) {}

 }

 //Toggle status.

 empty = true;

 //Notify producer that status has changed.

 notifyAll();

 return message;

 }

}

source: Java Tutorial at java.sun.com59

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronized statements
...

private Object anObject = new Object();

...

public void aMethod()

{

 ...

 synchronized (anObject)

 {

 //this block is protected with the anObject lock

 ...

 }

 ...

}

...

60

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronized statements

public void aMethod()

{

 synchronized(this)

 {

 //method body

 ...

 }

}

A synchronized method is equivalent with:

61

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronized statements

public class IndependentLocking {

 private long c1 = 0;

 private long c2 = 0;

 private Object lock1 = new Object();

 private Object lock2 = new Object();

!
 public void inc1() {

 synchronized(lock1) {

 c1++;

 }

 }

!

Example of usage:

!
 public void inc2() {

 synchronized(lock2) {

 c2++;

 }

 }

}

source: Java Concurrency in Practice62

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Reentrancy

Intrinsic locks in Java are reentrant:  
if a thread tries to acquire a lock that it
already holds, the operation succeeds

Locks are acquired by per-thread rather
than per-invocation basis

63

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Code that would deadlock
if locks were not reentrant

public class AnAncestor {

 public synchronized void method()

 {

 ...

 }

}

!
public class AClass extends AnAncestor {

 public synchronized void method()

 {

 System.out.println(“Hello World!”);

 super.method();

 }

}

64

A.2 Thread Synchronization - 2.2 Concurrency in Java

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Rules for guarding the
state with locking

There is no inherent link between the lock
and the state it protects

A mutable state variable must be guarded by
using the same lock object from all threads

Every shared state variable must be guarded
using only one lock object

For an invariant that uses several state
variables, all the respective variables must
be guarded by the same lock

65

A.2 Thread Synchronization - 2.3 Rules for locking

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Visibility

66

A.3 Resource Sharing - 3.1 Visibility

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Compiler optimizations

To benefit on the pipelined, multiprocessor, or
multicore architectures, compilers do complex
optimizations on the code

Frequent cases:  
- reordering -- operations can be done in a
different order than the one specified by
the program 
- caching -- variables can be cached in
registers or processor caches

67

A.3 Resource Sharing - 3.1 Visibility

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Compiler optimizations

If explicit synchronization is missing, the
compiler optimizes the code so that it runs
faster as a single thread

The programmer cannot make assumptions
regarding  
- the order the operations are executed  
- the time or sequence when memory values
become visible for other threads

68

A.3 Resource Sharing - 3.1 Visibility

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

The three assignments below can safely be
reordered by the compiler: 
 
...  
int a, b, c; 
...  
void aMethod()  
{ 
 a=1;  
 b=2;  
 c=3;  
 System.out.println(“a=” + a + ” b=” + b + “ c=” + c);  
}

69

A.3 Resource Sharing - 3.1 Visibility

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

However...

Declarations 
...  
int a, b, c; 
boolean initialized = false;  
...

Thread A:  
void initialize() 
{ 
 a=1;  
 b=2;  
 c=3;  
 initialized=true;  
}

Thread B: 
 
void printValues() 
{ 
 while(!initialized)  
 Thread.yield();  
 
 System.out.println(“a=” + a + ” b=”
+  
 b + “ c=” + c);  
}

The reordered assignments can have unpredictable consequences
in a concurrent context:

70

A.3 Resource Sharing - 3.1 Visibility

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Another example:

Possible outcomes: (0, 1) (1, 0) (1, 1) and even... (0, 0)

public class PossibleReordering {

 static int x = 0, y = 0;

 static int a = 0, b = 0;

!
 public static void main(String[] args)

 throws InterruptedException {  

 Thread one = new Thread(new Runnable(){

 public void run() {

 a = 1;

 x = b;

 }

 });

  
Thread other = new Thread(new Runnable()
{

 public void run() {

 b = 1;

 y = a;

 }

 });

 one.start(); other.start();

 one.join(); other.join();

 System.out.println("("+x+", "+y+")");

 }

}

source: Java Concurrency in Practice71

A.3 Resource Sharing - 3.1 Visibility

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Visibility
In a concurrent context, the visibility of the state
variables is not guaranteed between threads without
proper synchronization

Reader threads can get stale values of the data

The stale data is unpredictable: some variables may be
up to date, others may be seen with old values

The values can be out of order (variables can be stale
even if their new values were assigned in statements
occurring before the assignments for variables that are
observed as updated)

72

A.3 Resource Sharing - 3.1 Visibility

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The solution

In order to ensure correct visibility, always use
explicit synchronization when accessing shared
state

Intrinsic locking: 
- Thread A executes a synchronized block  
- Thread B subsequently locks on the same lock  
--> all the variables visible to A before releasing
the lock are guaranteed to be visible to B when
acquiring the same lock

73

A.3 Resource Sharing - 3.1 Visibility

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Volatile variables

74

A.3 Resource Sharing - 3.2 Volatile Variables

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Volatile variables

A Java construct that provides cheap yet
weak synchronization on memory accesses  
 
...  
volatile int variable;  
...

Usually, volatile provides better performance
than synchronized

Must be used with great care

75

A.3 Resource Sharing - 3.2 Volatile Variables

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

What does volatile do?
Guarantees visibility but does NOT provide
atomicity or locking

Operations on a volatile variable are not
reordered: threads will see the most up to date
value of a volatile variable

The effect extends to other variables:  
-> all variable values visible (at the time of
writing) to the thread that writes a volatile are
guaranteed to be visible to threads that
subsequently read the respective volatile value

76

A.3 Resource Sharing - 3.2 Volatile Variables

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

When is it safe to use
volatile?

Both of the following criteria must be met:

writes to the volatile variable must not depend
on its current value

the volatile variable does not participate in
invariants with other variables

77

A.3 Resource Sharing - 3.2 Volatile Variables

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Therefore...
The first criterion shows that

a volatile variable can NOT be safely used as
a counter or for similar purposes: the
incrementing/modification is NOT atomic.

Still, if the write on a volatile is done from a
SINGLE thread, this criterion can be ignored

The second criterion warns the programmer
there are many cases when using volatile is
dangerous (its effect may not be that obvious)

78

A.3 Resource Sharing - 3.2 Volatile Variables

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example of participation
in an invariant

Class invariant:  
lower < upper

Initial state: (0,7);  
Concurrent access:  
thread A: setLower(5),  
thread B: setUpper(3)

Can result in a wrong
state of (5,3) because
of timing and lack of
locking

public class NumberRange {

 private volatile int lower, upper;

 public int getLower() { return lower; }

 public int getUpper() { return upper; }

!
 public void setLower(int value) {

 if (value > upper)

 throw new IllegalArgumentException(...);

 lower = value;

 }

!
 public void setUpper(int value) {

 if (value < lower)

 throw new IllegalArgumentException(...);

 upper = value;

 }

} source: http://www.ibm.com/developerworks/java/library/j-jtp06197.html79

A.3 Resource Sharing - 3.2 Volatile Variables

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example of using volatile

A status flag: 
volatile boolean exitProgram = false;  
...  
void setExit(boolean value) { 
 exitProgram = true;  
}  
 
void run() { 
 while(!exitProgram)  
 { 
 //exitProgram not modified here  
 ...  
 }  
...

If volatile wasn’t used, the
compiler may have
optimized the code:  
 
 
...  
if(!exitProgram)  
 while(true) 
 { 
 //exitProgram not modified here  
 ...  
 }  
...

80

A.3 Resource Sharing - 3.2 Volatile Variables

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Object Publication

81

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The Problem

When using primitive variables the
synchronization is easier (they can be
modified only within the language-specific
visibility scope)

Objects can be referred from more than one
places (multiple references are possible)

We must control the way references are
created and passed between threads

82

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The simplest mistake

Publishing an object reference in a static
field 
 
public static Set<Secret> knownSecrets;  
public void initialize() { 
 knownSecrets = new HashSet<Secret>();  
}

The Secret object can be modified by any
class  

source: Java Concurrency in Practice83

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Escaped objects

An object is considered escaped when it is
published when it should not have been

Escaped objects can make the code thread
unsafe.

Why? -- It’s all about control (who, where,
how accesses the object)

84

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Therefore...

The programmer must be careful when
allowing the reference to an object to
become available for other classes

The thread safety related characteristics of
objects must be well documented by the
programmer:  
 - is the object thread safe? 
 - can the field be published? 
 - is the object part of an invariant?  
 - ...

85

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Escaped internal state
The internal mutable state of objects should
be carefully protected

If possible, do not create public methods
that return references to state objects 
 
//do NOT do this  
class UnsafeStates {

 private String[] states = new String[] {

 "AK", "AL" ...

 };

 public String[] getStates() { return states; }

}

source: Java Concurrency in Practice86

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Side effects

Publishing an object will automatically
publish  
 - all its public fields 
 - all objects its public methods return

Complex chains of published objects can be
created by a single inadvertent publication

87

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Alien methods

Alien method: a method whose behavior is
not fully specified by the current class

Examples:  
 - methods in other classes  
 - overrideable methods (neither private,
nor final)

Passing an object to an alien method is
dangerous for the thread safety

88

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

2 (problems) in 1

Publishing an inner class implicitly publishes the enclosing object

An object can inadvertently escape during construction without being constructed
completely (here: this escapes due to the publishing of the enclosed EventListener)

public class ThisEscape {

 public ThisEscape(EventSource source) {

 source.registerListener(

 new EventListener() {

 public void onEvent(Event e) {

 doSomething(e);

 }

 });

 }

}

source: Java Concurrency in Practice89

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Object construction
The reference to the current object should
not be published:  
 - avoid calling alien methods with the
object as a parameter (either explicit or
implicit) 
 - even if the escape is the last statement
in the constructor, it is NOT safe

Escaping the current object during
construction can lead to threads being
provided incomplete (partially initialized)
objects

90

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A solution
A factory method is
used for creating the
object

The actual construction
is done in a private
constructor

public class SafeListener {

 private final EventListener listener;

!
 private SafeListener() {

 listener = new EventListener() {

 public void onEvent(Event e) {

 doSomething(e);

 }

 };

 }

!
 public static SafeListener newInstance(EventSource source) {

 SafeListener safe = new SafeListener();

 source.registerListener(safe.listener);

 return safe;

 }

}

source: Java Concurrency in Practice91

A.3 Resource Sharing - 3.3 Object Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Thread Confinement

92

A.3 Resource Sharing - 3.4 Thread Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The context

The simplest solution for thread-safety
problems related to shared objects: do not
share

It’s not always feasible

However, if applicable, it can solve the
concurrency problems in an efficient manner

93

A.3 Resource Sharing - 3.4 Thread Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Thread Confinement

Ensure the non-thread safe code is executed
within a single thread

Examples of such approaches:  
 - Swing: the visual components are not
thread safe; there is a single dispatch
thread that confines them all 
 - Pooling JDBC Connection objects (the
Connection object is not thread safe)

94

A.3 Resource Sharing - 3.4 Thread Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Ad-hoc Thread Confinement

The confinement is entirely managed by the
implementation

There is no support in languages for this
scenario

The confinement must be carefully
implemented and thoroughly documented

Advantage: provides flexibility and complete
control over the way the thread confinement
behaves

95

A.3 Resource Sharing - 3.4 Thread Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Stack Confinement

Exploit the way local variables are allocated 
 - they are stored on the thread’s stack

Consequently, the local variables are not
shared between threads

Local primitive variables (int, long, etc.) are
always safe to use

For local objects -- their escape from the
method must also be prevented

96

A.3 Resource Sharing - 3.4 Thread Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example of stack confinement

numPairs is safe

animals is kept
inside the method

the confinement
of animals MUST
be DOCUMENTED

public int loadTheArk(Collection<Animal> candidates) {

 SortedSet<Animal> animals;

 int numPairs = 0;

 Animal candidate = null;

!
 // animals confined to method, don't let them escape!

 animals = new TreeSet<Animal>(new SpeciesGenderComparator());

 animals.addAll(candidates);

 for (Animal a : animals) {

 if (candidate == null || !candidate.isPotentialMate(a))

 candidate = a;

 else {

 ark.load(new AnimalPair(candidate, a));

 ++numPairs;

 candidate = null;

 }

 }

 return numPairs;

} source: Java Concurrency in Practice97

A.3 Resource Sharing - 3.4 Thread Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

ThreadLocal

ThreadLocal is a class provided by the Java
API

Encapsulates an user object and makes them
private to each thread

Each thread will work on its own copy of the
object

98

A.3 Resource Sharing - 3.4 Thread Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

ThreadLocal

Each thread that accesses a ThreadLocal will be provided a
separate copy for the enclosed variable

It’s as if ThreadLocal stored a map of values for the threads
(although the actual implementation is different)

public class ThreadLocal<T> {

 public T get(); // Returns the value of the current thread’s copy of the variable.

 public void set(T newValue); // Sets the current thread’s copy of the variable.

 void remove(); // Removes the current thread’s copy of the variable.

 public T initialValue(); // Returns null; can be overriden. Invoked in each thread

 // at the first get() that was not preceded by a set(),

 // or the first get() after a remove().

}

99

A.3 Resource Sharing - 3.4 Thread Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

private static ThreadLocal<Connection> connectionHolder

 = new ThreadLocal<Connection>() {

 public Connection initialValue() {

 return DriverManager.getConnection(DB_URL);

 }

 };

!
public static Connection getConnection() {

 return connectionHolder.get();

}

source: Java Concurrency in Practice100

A.3 Resource Sharing - 3.4 Thread Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Immutability

101

A.3 Resource Sharing - 3.5 Immutability

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Immutable objects

Objects whose state  
 - does not change after construction  
 - cannot be changed by other objects

Immutable objects are always thread-safe

102

A.3 Resource Sharing - 3.5 Immutability

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Benefits of immutability

Simplicity: they only have one state during
their entire life cycle

Safety: they can be safely passed to
untrusted code, as their state cannot be
modified maliciously or due to bugs

Can be easily cached: their state doesn’t
change, therefore the cached values are
consistent with the original object

103

A.3 Resource Sharing - 3.5 Immutability

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example: problem...

java.util.Date is mutable

If the implementation of AppoinmentManager.setAppointment
does not copy (clone) the date value into its internal state:  
- both appointments may be set to the next day  
- the internal data used in the AppointmentManager may
become corrupt in a concurrent context

This is a subtle and easy to make mistake

java.util.Date crtDate = new java.util.Date();

AppointmentManager.setAppointment(crtDate, team, “Off-world mission to ” + planet);

crtDate.setTime(crtDate.getTime() + ONEDAY);

AppointmentManager.setAppointment(crtDate, team, “Briefing for mission to ” + planet);

104

A.3 Resource Sharing - 3.5 Immutability

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

...and solution
public final class ImmutableDate {

private final Date date;

!
public ImmutableDate(Date date) {this.date = date.clone();}

public ImmutableDate(long milliseconds) {this.date = new Date(milliseconds);}

!
public long getTime() {

 return this.date.getTime();

}

}

...

ImmutableDate crtDate = new ImmutableDate(new java.util.Date());

AppointmentManager.setAppointment(crtDate, team, “Off-world mission to ” + planet);

crtDate = new ImmutableDate(crtDate.getTime() + ONEDAY);

AppointmentManager.setAppointment(crtDate, team, “Briefing for mission to ” + planet);

105

A.3 Resource Sharing - 3.5 Immutability

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Immutable class containing
mutable objects

public final class FlagColors_RO {

 private final Set<String> colors = new HashSet<String>();

 public FlagColors() {

 colors.add(“blue”); colors.add(“yellow”); colors.add(“red”);

 }

!
 public boolean isOnFlag(String color) {

 return colors.contains(color);

 }

}

106

A.3 Resource Sharing - 3.5 Immutability

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Conditions for immutability
For a class to be immutable, all of the following
conditions must be true:  
- all fields are final 
- the class is declared final 
- the this reference does not escape during
construction 
- any fields referring mutable objects must:  
 + be private  
 + never be returned or exposed in any way to callers  
 + be the only references to the respective objects 
 + not change the state of the referenced objects after 
 construction

107

A.3 Resource Sharing - 3.5 Immutability

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Safe Publication

108

A.3 Resource Sharing - 3.6 Safe Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Improper publication

Do not publish an object without proper
synchronization

109

A.3 Resource Sharing - 3.6 Safe Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Unwanted effects

Improper publication can lead to threads
accessing partially constructed objects

The state of the improperly published
objects can change from “partially
constructed” to “initialized” at any time

110

A.3 Resource Sharing - 3.6 Safe Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

assertSanity() may throw
the exception!

// Unsafe publication

public Holder holder;

!
public void initialize() {

 holder = new Holder(42);

}

public class Holder {

 private int n;

!
 public Holder(int n) { this.n = n; }

!
 public void assertSanity() {

 if (n != n)

 throw new AssertionError("This statement is false.");

 }

}

source: Java Concurrency in Practice111

A.3 Resource Sharing - 3.6 Safe Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

When coding...

There are two separate concerns regarding
the objects:  
- how safely are they published  
- how safely are they used

Both concerns are essential for thread
safety

112

A.3 Resource Sharing - 3.6 Safe Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Immutable objects

Can be safely published without
synchronization

Can be safely used without synchronization

Note: to be immutable, the object must
follow all the immutability requirements
specific to the programming language

113

A.3 Resource Sharing - 3.6 Safe Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Effectively immutable
objects

Objects that are not immutable by the
definition, but are never modified after
publication

Example: a Date object that is never
modified

The only concern is to publish them properly;
afterwards they can be used without
synchronization

114

A.3 Resource Sharing - 3.6 Safe Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Safe Publication

For objects that are not immutable, safe
publication of properly constructed objects
can be done by:  
- initializing the reference from a static
initializer 
- storing the reference in a volatile variable 
- storing a reference in a final field of a
properly constructed object  
- storing a reference in a variable correctly
guarded by a lock  

115

A.3 Resource Sharing - 3.6 Safe Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Sharing objects safely

When acquiring a reference to an object, the
programmer must clearly understand:  
- does a lock need to be acquired? 
- is it allowed to modify the object’s state?  
- does it need to be copied rather than used
directly?

116

A.3 Resource Sharing - 3.6 Safe Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Strategies for safe use

Thread confined objects can be safely used
by the confining thread

Shared read-only objects are safe to read
without synchronization

Shared thread-safe -- an object documented
as thread safe manages the synchronization
internally, therefore is safe to use

Guarded objects -- protecting objects with
locks makes them safe to use

117

A.3 Resource Sharing - 3.6 Safe Publication

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Building Concurrent
Applications

118

A.4 Building Concurrent Applications

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Designing a thread-safe
class

119

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Designing a thread safe
class

Identify the variables that form the state

Identify the invariants constraining the state

Understand the preconditions and
postconditions for the operations

Establish a synchronization policy

120

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronization policy

How an object coordinates the access to its
state

Specifies:  
- the combination of techniques such as
immutability, thread confinement, locking 
- which variables are guarded by which locks

121

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The object’s state

The state of an object is made of:  
- its primitive type fields 
- some of the object’s fields that refer other
objects

Encapsulating the state is very important:
significantly eases the process of making the
class thread safe

122

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The state space

State space: the range of possible states
objects and variables can take on

The smaller the state space, the easier to
reason about it

123

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Invariants specify the valid states:  
-> if certain states are invalid, the respective
state variables must be encapsulated to
prevent clients to create invalid states

Complex invariants may imply several state
variables 
-> atomic operations: the related variables
must be all modified in a single atomic
operation. Example: the interval bounds (a,b)

The state space

124

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Operations may have postconditions that
identify which state transitions are valid 
- example: a counter n, the only possible
next state is n+1

Operations for which invalid transitions are
possible must be made atomic

Postconditions

125

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Preconditions

Some operations can have preconditions
regarding the state.  
- example: a queue must not be full before
storing an item

These operations are called state-dependent

In a non-concurrent context, an operation for
which the precondition is false simply fails

In concurrent programs, threads can wait for
the precondition to become true

126

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

State ownership

Not all the objects stored in a class’ fields form
its state

Only the objects it owns are part of the state

Example: a collection owns its internal storage-
related data, but not the stored objects

Usually, encapsulation and ownership are good
together: the object encapsulates the owned
state, and owns the state it encapsulates

127

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Types of ownership
Exclusive ownership -- only one class owns the objects

Long-term shared ownership -- the same state object
is owned by more classes 
- example: a state object published to communicate
with another class

Temporary shared ownership -- a class is given an
object to use it temporarily 
- example: parameters in constructors

Split ownership -- although it receives the reference,
it does not own or use the object  
 - example: the objects stored in collections

128

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Understanding the
ownership

Is important so that the fields that form the
state are identified

Classes should not modify objects they do
not own

While the programming language doesn’t
specifically support the ownership
delimitation, this is a very important issue in
the class design

The ownership must be documented
129

A.4 Building Concurrent Applications - 4.1 Designing a Thread-Safe Class

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Instance confinement

130

A.4 Building Concurrent Applications - 4.2 Instance Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Instance confinement
A method that makes implementing thread
safety simpler

It implies the encapsulation of a non-thread-
safe object within another object which we
control 
-> the paths accessing the data are known  
-> to analyze the thread safety we have to
look only at a small part of the code

Combined with proper locking, ensures
thread safety

131

A.4 Building Concurrent Applications - 4.2 Instance Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

The HashSet is
not thread safe

By encapsulating
it and by locking
on the implicit
lock this code
ensures thread
safety

@ThreadSafe

public class PersonSet {

 @GuardedBy("this")

 private final Set<Person> mySet = new
HashSet<Person>();

!
 public synchronized void addPerson(Person p) {

 mySet.add(p);

 }

!
 public synchronized boolean
containsPerson(Person p) {

 return mySet.contains(p);

 }

}

source: Java Concurrency in Practice132

A.4 Building Concurrent Applications - 4.2 Instance Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Instance Confinement with
the Java Monitor Pattern

Encapsulate all the state and guard it with the
intrinsic lock of the object

Alternatively to this pattern, private locks can
also be used: public class PrivateLock {

 private final Object myLock = new Object();

 @GuardedBy("myLock") Widget widget;

!
 void someMethod() {

 synchronized(myLock) {

 // Access or modify the state of widget

 }

 }

}

source: Java Concurrency in Practice133

A.4 Building Concurrent Applications - 4.2 Instance Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A slightly more complex
example

A class that tracks the locations of vehicles

Designed to be used concurrently by a view
and updater thread (in an MVC pattern)

134

A.4 Building Concurrent Applications - 4.2 Instance Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

@ThreadSafe

public class MonitorVehicleTracker {

 @GuardedBy("this")

 private final Map<String, MutablePoint>
locations;

!
 public MonitorVehicleTracker(

 Map<String, MutablePoint> locations) {

 this.locations = deepCopy(locations);

 }

!
 public synchronized Map<String, MutablePoint>
getLocations() {

 return deepCopy(locations);

 }

!
 public synchronized MutablePoint
getLocation(String id) {

 MutablePoint loc = locations.get(id);

 return loc == null ? null : new
MutablePoint(loc);

 }

 public synchronized void
setLocation(String id, int x, int y) {

 MutablePoint loc = locations.get(id);

 if (loc == null)

 throw new
IllegalArgumentException("No such ID: " + id);

 loc.x = x;

 loc.y = y;

 }

!
 private static Map<String, MutablePoint>
deepCopy(

 Map<String, MutablePoint> m) {

 Map<String, MutablePoint> result =

 new HashMap<String,  
 MutablePoint>();

 for (String id : m.keySet())

 result.put(id, new
MutablePoint(m.get(id)));

 return
Collections.unmodifiableMap(result);

 }

}

A slightly more complex example

source: Java Concurrency in Practice135

A.4 Building Concurrent Applications - 4.2 Instance Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A slightly more complex
example. Remarks

MutablePoint is not thread safe

VehicleTracker is thread safe 
- the map and the contained points are
never published  
- when initialized and returned, the locations
are copied in depth (both the map and the
elements) 
- deepCopy() holds the lock for a relatively
complex operation (performance problem)

136

A.4 Building Concurrent Applications - 4.2 Instance Confinement

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Delegating thread safety

137

A.4 Building Concurrent Applications - 4.3 Delegating Thread Safety

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Delegating thread safety

Sometimes a class can be made thread safe
by using classes that are already thread
safe

However, composing thread safe classes does
not necessarily make a new thread safe
class

138

A.4 Building Concurrent Applications - 4.3 Delegating Thread Safety

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

An example

Modify the VehicleTracker example so that:  
- it uses a ConcurrentMap  
- wraps the map in an
Collections.unmodifiableMap object  
- use an immutable Point object:  
 @immutable 
 public class Point { 
 public final int x, y;  
 public Point(int x, int y) { this.x = x; this.y = y; }  
 }

source: Java Concurrency in Practice139

A.4 Building Concurrent Applications - 4.3 Delegating Thread Safety

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

@ThreadSafe

public class DelegatingVehicleTracker {

 private final ConcurrentMap<String, Point> locations;

 private final Map<String, Point> unmodifiableMap;

!
 public DelegatingVehicleTracker(Map<String, Point> points) {

 locations = new ConcurrentHashMap<String, Point>(points);

 unmodifiableMap = Collections.unmodifiableMap(locations);

 }

!
 public Map<String, Point> getLocations() {

 return unmodifiableMap;

 }

 public Point getLocation(String id) {

 return locations.get(id);

 }

!
 public void setLocation(String id, int x, int y) {

 if (locations.replace(id, new Point(x, y)) == null)

 throw new IllegalArgumentException(

 "invalid vehicle name: " + id);

 }

}

source: Java Concurrency in Practice140

A.4 Building Concurrent Applications - 4.3 Delegating Thread Safety

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Remarks

The Point was made immutable because it is
published by the getLocations() method

As getLocations() does not copy the map upon
returning it, the modifications in the location
elements with setLocations() are visible “live” in
threads. If a static copy is needed, the method
must be changed as follows:  
 return Collections.unmodifiableMap( 
 new HashMap<String, Point>(locations));  

source: Java Concurrency in Practice141

A.4 Building Concurrent Applications - 4.3 Delegating Thread Safety

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Independent state
variables

The thread safety is properly delegated when:  
- the delegation is done to one or several
independent thread safe state variables (which
do NOT participate in an invariant for the
state) 
- there are no operations that have invalid
state transitions

142

A.4 Building Concurrent Applications - 4.3 Delegating Thread Safety

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Incorrect delegation

Delegation to variables participating in an invariant

public class NumberRange {

 // INVARIANT: lower <= upper

 private final AtomicInteger lower =
new AtomicInteger(0);

 private final AtomicInteger upper =
new AtomicInteger(0);

!
 public void setLower(int i) {

 //Warning:unsafe check-then-act

 if (i > upper.get())

 throw new  
 IllegalArgumentException(

 "can't set lower to " +  
 i + " > upper");

 lower.set(i);

 }

 public void setUpper(int i) {

 //Warning:unsafe check-then-act

 if (i < lower.get())

 throw new  
 IllegalArgumentException(

 "can't set upper to " + i + "  
 < lower");

 upper.set(i);

 }

!
 public boolean isInRange(int i) {

 return (i >= lower.get() && i <=  
 upper.get());

 }

}

source: Java Concurrency in Practice143

A.4 Building Concurrent Applications - 4.3 Delegating Thread Safety

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Publishing underlying
state variables

Can we publish a (thread safe) state variable
to which we have delegated the thread
safety? 
-> YES, but only if:  
 - it does not participate in invariants
constraining its value  
 - has no invalid state transitions for its
operations

144

A.4 Building Concurrent Applications - 4.3 Delegating Thread Safety

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Extending existing
thread-safe functionality

145

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The problem

We are provided thread safe classes that
almost meet our requirements

Can we modify/extend/use them by adding
the needed (thread safe) functionality?

146

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Solution 1. Modify the
source code of the class

If the source code is available, modify it to
add the new functionality

Make sure the thread safe requirements of
the existing class are followed

This is the safest solution, because all the
thread-safety-related issues remain
addressed within the class itself

147

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Solution 2. Extend the
class

When the source code is not available, we
can extend the class if permitted

We must make sure the class was designed
to be extended

It is more fragile than Solution 1, because:  
- the thread safety is addressed within
multiple source files  
- if the base class changes its thread safe
policy (e.g. changes the locks it uses), the
extensions may cease to work properly

148

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example for Solution 2.

Vector is thread safe

The synchronization policy for Vector is fixed
and specified in its documentation, therefore
is safe to extend it this way

@ThreadSafe

public class BetterVector<E> extends Vector<E> {

 public synchronized boolean putIfAbsent(E x)  
 {

 boolean absent = !contains(x);

 if (absent)

 add(x);

 return absent;

 }

}

source: Java Concurrency in Practice149

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Solution 3. Client-side
locking

Extend the functionality without extending
the class itself

It is more fragile than Solutions 1 and 2, as
it adds thread safety handling to classes
unrelated to the extended one

150

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Incorrect example for
Solution 3

Attempt to add a put-if-absent method to a
synchronized list  
 @NotThreadSafe 
 public class ListHelper<E> { 
 public List<E> list =  
 Collections.synchronizedList(new ArrayList<E>());  
 ...  
 public synchronized boolean putIfAbsent(E x) { 
 boolean absent = !list.contains(x);  
 if (absent) list.add(x);  
 return absent;  
 }}

Extends the synchronizedList behavior

Why is it incorrect? source: Java Concurrency in Practice151

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Why is it incorrect?

putIfAbsent synchronizes on the wrong lock!
(the List implementation certainly doesn’t lock
on OUR object)

152

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Correct example for
Solution 3

Add a put-if-absent functionality in a synchronized list  
@ThreadSafe 
public class ListHelper<E> { 
public List<E> list =  
Collections.synchronizedList(new ArrayList<E>());  
...  
public boolean putIfAbsent(E x) { 
synchronized (list) {  
 boolean absent = !list.contains(x);  
 if (absent)  
 list.add(x);  
 return absent;  
}}}

The documentation states that the synchronized wrapper classes support client-side
locking on the intrinsic lock of the wrapper collection (not the wrapped one!)

source: Java Concurrency in Practice153

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Solution 4. Composition

Use composition to add the needed
functionality

The solution is better than client-side locking

154

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example for Solution 4
Add a put-if-absent functionality to a list  
@ThreadSafe 
public class ImprovedList<T> implements List<T> { 
private final List<T> list;  
 public ImprovedList(List<T> list) { this.list = list; }  
 public synchronized boolean putIfAbsent(T x) { 
 boolean contains = list.contains(x);  
 if (contains)  
 list.add(x);  
 return !contains;  
 }  
 public synchronized void clear() { list.clear(); }  
 // ... similarly delegate other List methods  
}

It works even if List is not thread safe

Assumes the client will not use the underlying (initial) list directly, only through
ImprovedList source: Java Concurrency in Practice155

A.4 Building Concurrent Applications - 4.4 Extending existing thread-safe functionality

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Rules of Engagement
for writing concurrent programs

156

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Rules of Engagement

Beware the mutable state

Make all fields final, unless they need to be
mutable

Remember: immutable objects are always
thread safe

Encapsulate the state: it eases the thread
safe design

157

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Rules of Engagement

Guard each mutable variable with a lock

Guard all variables in an invariant with the
same lock

Hold the lock during critical compound
actions

Do not access a mutable variable without
locking

158

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Rules of Engagement

Don’t rely on “clever” reasonings about why
you shouldn’t use synchronization

Think about thread safety from the
beginning (at design time)

If your class is not thread safe, say so (in
the documentation)

Document the details of the synchronization
policy

159

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Java API Support

160

A.5 Java API Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronized Collections

161

A.5 Java API Support - 5.1 Synchronized Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronized collections

Two types of synchronized classes:  
- Collections: Vector, Hashtable  
- Wrapper classes for other collections

Ensure thread safety by synchronizing all
their public methods

The state is encapsulated by the classes

162

A.5 Java API Support - 5.1 Synchronized Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Wrappers

The wrapper classes 
- are usable with several collections  
- are returned by specific factory methods in the
class Collections:  
 synchronizedCollection(), synchronizedList(),
synchronizedMap(), synchronizedSet(),
synchronizedSortedMap(), synchronizedSortedSet() 
- encapsulate the collections and synchronize
them

163

A.5 Java API Support - 5.1 Synchronized Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Possible problems
Compound actions on synchronized collections may have
undesired results:  
 
Vector v; 
...  
//in thread A:  
System.out.println(v.get(v.size()-1));  
 
...  
//in thread B:  
v.remove(v.size()-1);

This code may throw ArrayIndexOutOfBoundsException if the last item is removed
before thread A reads the data

164

A.5 Java API Support - 5.1 Synchronized Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Possible problems

Iterations can throw ArrayIndexOutOfBoundsException:  
for(int i=0; i<v.size(); i++) System.out.println(v.get(i));  

Solution: use client-side locking on v:  
synchronized(v) {  
 for(int i=0; i<v.size(); i++;  
 System.out.println(v.get(i));  
}  
--> inefficient due to long-time locking  

165

A.5 Java API Support - 5.1 Synchronized Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Possible problems

Using iterators: 
- iterators are built so that they capture
concurrent modifications and throw an
exception (ConcurrentModificationException)  
- beware of hidden iterators! :  
 Vector v;  
 ...  
 System.out.println(v); //<-- println actually iterates the  
 //vector elements

166

A.5 Java API Support - 5.1 Synchronized Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Concurrent Collections

167

A.5 Java API Support - 5.2 Concurrent Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Concurrent Collections

More efficient (scalable) than synchronized
collections

Built specifically for multiple threads

168

A.5 Java API Support - 5.2 Concurrent Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Concurrent Collections
The operations on the entire collection have
weaker semantics: size(), isEmpty()...

Client-side locking can NOT be used

Iterators are weakly consistent:  
- can tolerate concurrent modifications  
- do not guarantee to reflect the changes in
the collection after the iterator was
constructed

The collections cannot be locked for
exclusive access

169

A.5 Java API Support - 5.2 Concurrent Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

CopyOnWriteArrayList

Replaces ArrayList for some concurrent
contexts

They are effectively immutable objects:  
- on each modification, a new copy of the list
is created and re-published

170

A.5 Java API Support - 5.2 Concurrent Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Blocking Queues

Several implementations of queues providing
blocking put() and take() methods

Suitable for producer-consumer problems

Implement FIFO and priority-based policies

171

A.5 Java API Support - 5.2 Concurrent Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Blocking Queues

They are properly synchronized so that the
objects are safely published from the
producers to the consumer

The blocking methods throw
InterruptedException when the calling
thread was interrupted

172

A.5 Java API Support - 5.2 Concurrent Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Interruptible Methods
The InterruptedException must be handled
with care

The code that catches it must either 
- propagate it after necessary cleanup is
done (throw it again) 
- restore the interrupt status by calling
Thread.currentThread().interrupt() (e.g. when
throwing InterruptedException is not possible)

Catching the exception and doing nothing is
NOT recommended (unless you know what you
are doing)

173

A.5 Java API Support - 5.2 Concurrent Collections

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronizers

174

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronizers

Several primitives provided by the Java API
supporting various thread synchronization
needs

A synchronizer coordinates the control flow
of the threads based on its state

The encapsulated state determines whether
the calling threads block or are allowed to
continue execution

175

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronizers. Latches

Latches delay the progress of threads until
a terminal state is reached

All calling threads are blocked until the
terminal state is reached

Once reached, the latch does not change its
state (remains open, threads never block
again)

176

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Usage of latches

Waiting for initialization of resources before
proceeding with the computations

Implementing dependencies between
activities -- an activity does not start until
all tasks it depends on finish

Wait until all the parties involved in a
collaborative task (such as a game) are ready
to go on

177

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

CountDownLatch
The state is a counter initialized upon
construction

countdown() decrements the counter

await() blocks the calling thread until the
counter reaches 0

Once counter is 0, it never changes value

Binary Latch: a latch initialized with
counter=1

178

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

CountDownLatch Example
public class TestHarness {

 public long timeTasks(int nThreads, final Runnable task)

 throws InterruptedException {

 final CountDownLatch startGate = new CountDownLatch(1);

 final CountDownLatch endGate = new CountDownLatch(nThreads);

!
 for (int i = 0; i < nThreads; i++) {

 Thread t = new Thread() {

 public void run() {

 try {

 startGate.await();

 try {

 task.run();

 } finally {

 endGate.countDown();

 }

 } catch (InterruptedException ignored) { }

 }

 };

 t.start();

 }

!
 long start = System.nanoTime();

 startGate.countDown();

 endGate.await();

 long end = System.nanoTime();

 return end-start;

 }

}

- none of the worker threads start
until all of them are ready to start
(startGate)  
 
- the main thread awaits the
termination of all threads
efficiently (it does not have to
sequentially wait for them, it
blocks until the last thread ends)
(endGate)

source: Java Concurrency in Practice179

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronizers. FutureTask
A class that allows for starting tasks in
advance

It acts as a latch, the open condition is the
termination of the task

The task returns a result upon termination

Threads calling get() receive the result; if
the task isn’t finished, they block until the
task ends

Once the task was ended, get() never blocks
180

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

FutureTask example
!
public class Example { 
 private final FutureTask<Integer> future =

 new FutureTask<Integer>(new Callable<Integer>() {

 public Integer call() {

 return calculateTheInteger();

 }

 });

 private final Thread thread = new Thread(future);

!
 public void aMethod(){

 ...

 thread.start();

 ...

 try {

 System.out.println(future.get());

 } catch (InterruptedException e) {

 System.err.println(“Exception”);

 throw e;

 }

 }

 ...

}

181

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronizers. Semaphores

Class Semaphore implements a generalized
semaphore in Java

Two operations: acquire(), release()
(equivalent to down, up)

Can be initialized with a number N; with N=1,
a binary semaphore can be created

182

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronizers. Barriers
A barrier is a synchronization primitive that
allows threads to wait for each other before
proceeding

Unlike latches, barriers can be reset for
future use

Latches implement waiting for events, while
barriers implement waiting for threads

Barriers are useful for gathering the
threads that solve parts of the same
problem

183

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

CyclicBarrier

Implements a barrier that can be used
repeatedly by threads that need to wait for
each other

Initialized with the number of threads that
will stop at the barrier point

Threads block with await(); when all the
threads arrive, all of them are released

184

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

CyclicBarrier

await() returns an unique index of arrival for
each thread, which can be used in programs

If a blocked thread is interrupted or a
timeout occurs, the barrier becomes broken

When barriers break, all the waiting threads
receive a specific exception

185

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

CyclicBarrier

When constructed, the barrier can be
configured with an action to be done when
the barrier is passed

The action is given as a Runnable class

The class is executed when all threads have
arrived, but before they are released

The action executes in one of the threads
(usually the last one)

186

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

CyclicBarrier example

Workers wait until all other workers have
finished their tasks (computing a row in a
matrix), at which point mergeRows() is
called

class Solver {

 final int N;

 final float[][] data;

 final CyclicBarrier barrier;

 class Worker implements Runnable {

 int myRow;

 Worker(int row) { myRow = row; }

 public void run() {

 while (!done()) {

 processRow(myRow);

!
 try {

 barrier.await();

 } catch (InterruptedException ex) {

 return;

 } catch (BrokenBarrierException ex) {

 return;

 }

 }

 }

 }

!
 public Solver(float[][] matrix) {

 data = matrix;

 N = matrix.length;

 barrier = new CyclicBarrier(N,

 new Runnable() {

 public void run() {

 mergeRows(...);

 }

 });

 for (int i = 0; i < N; ++i)

 new Thread(new Worker(i)).start();

!
 waitUntilDone();

 }

 }

source: Java API reference at java.sun.com187

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Task Execution

188

A.6 Task Execution

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Executing tasks in
threads

189

A.6 Task Execution - 6.1 Executing Tasks in Threads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Task identification
Concurrency is useful in many real-world
applications

At design time, the tasks that can or need
to be executed concurrently should be
clearly identified

The designer must define the task boundary
which should delimit activities that are:  
- relatively independent  
- focused on clear goals 
- contributors to a balanced execution  

190

A.6 Task Execution - 6.1 Executing Tasks in Threads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Examples of tasks

Subproblems of a larger problem  
- e.g. matrix processing approached at the
row or column level

Stateless responses to client requests 
- e.g. a ‘current time’ service

Stateful services available to clients  
- e.g. electronic e-mail access for users

191

A.6 Task Execution - 6.1 Executing Tasks in Threads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Task execution

The design must specify how the tasks will
be executed at runtime so that the
application  
- is responsive  
- has good throughput  
- exhibits graceful degradation at overload

192

A.6 Task Execution - 6.1 Executing Tasks in Threads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Sequential execution

The simplest method of executing the tasks,
by serializing them in a single thread 
 
...  
while(acceptServiceRequest()) { 
 processRequest();  
}  
...

193

A.6 Task Execution - 6.1 Executing Tasks in Threads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Unbounded thread
creation

For each request, a new thread is created 
 
...  
while(acceptServiceRequest()) { 
 Runnable task = new Runnable() { 
 public void run() { processRequest(); }  
 };  
 Thread t = new Thread(task);  
 t.start();  
}  
...

194

A.6 Task Execution - 6.1 Executing Tasks in Threads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Consequences

Consequences of unbounded thread creation:  
- The requests are decoupled from the main
thread, allowing it to respond immediately to
new clients 
- Multiple clients are served in parallel
which can improve the throughput  
- The code that implements the task must be
thread-safe

195

A.6 Task Execution - 6.1 Executing Tasks in Threads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Disadvantages

Drawbacks of unbounded thread creation  
- creating and managing threads takes time
and processing power (OS and JVM)  
- threads consume resources (especially
memory) 
- may lead to stability / scalability /security
problems: the number of threads that can be
run at the same time is limited

196

A.6 Task Execution - 6.1 Executing Tasks in Threads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Thread Pools and the
Executor Framework

197

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Thread pools

 A thread pool is a set of threads that are
used for executing a set of activities

The pool is associated a task queue that
stores the activities to be executed

When free, a thread reads a task from the
queue, and executes it

Upon terminating the task, the thread
becomes available for a new activity

198

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Thread pools
The size of the pool (number of threads) and
the policy of task scheduling vary by thread
pool design

The behavior when threads end abruptly or
are interrupted is specific to the various
types of pools

The pool must be fit (in terms of size and
behavior) for the necessities of the
particular application

199

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Advantages of thread pools

The threads are created a limited number of
times and reused, independent on the
number of requests 
=> good performance regarding the thread
management  
=> adequate system resources used for the
threads 
=> The system is not overloaded, as the
number of threads can be easily controlled

200

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Execution Policies
Another advantage of using thread pools: easy
implementation of execution policies

Facilitated by the submission/execution decoupling

Execution policies specify:  
- in what threads will the tasks be executed  
- the order of task execution (FIFO, LIFO, etc.)  
- the number of concurrent/postponed tasks  
- task control (e.g. which tasks are rejected)  
- task environment control

201

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The Executor Framework

A framework provided by the Java API for
asynchronous task execution

Decouples the task submission from the
actual task execution

Provides support for various task execution
policies

202

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The framework consists of...

Three interfaces:  
Executor,  
ExecutorService,
ScheduledExecutorService  
 

A set of Executor
implementations

Executor

ScheduledExecutorService

ExecutorService

AbstractExecutorService

ThreadPoolExecutor

ScheduledThreadPoolExecutor

203

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

public interface Executor { 
 void execute(Runnable command);  
}

 
public interface ExecutorService extends Executor { //adds lifecycle management

 void shutdown();

 List<Runnable> shutdownNow();

 boolean isShutdown();

 boolean isTerminated();

 boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;

 <T> Future<T> submit(Callable<T> task);

 Future<?> submit(Runnable task);

 ...

}  

public interface ScheduledExecutorService extends ExecutorService { 
 <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit);

 ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);  
 ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay,  
 long period, TimeUnit unit);  
 ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay,

 long delay, TimeUnit unit)

}  

204

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The Executors class
The preferred way of creating Executors

Provides a set of factory methods for different
variants of executors:  
- newSingleThreadExecutor() -- an executor that executes a single task at a
time 
- newFixedThreadPool() -- an executor that uses a fixed thread pool (the
number of threads is specified)  
- newCachedThreadPool() -- an executor that uses an expandable thread pool 
- newScheduledThreadPool() -- an executor using a thread pool capable of
scheduling tasks to run after a given delay or periodically 
- ...

Directly instantiating the executor classes in the
hierarchy is practical only when additional options
are needed

205

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

A thread pool that executes client requests:  
 
private static final Executor executor = Executors.newFixedThreadPool(50);  
...  
while(acceptServiceRequest()) { 
 Runnable task = new Runnable() { 
 public void run() { processRequest(); }  
 };  
 executor.execute(task);  
}  
...

206

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

A custom executor that creates one thread
per task: 
 
public class ThreadPerTaskExecutor implements Executor { 
 public void execute(Runnable r) { 
 new Thread(r).start();  
 };  
}

source: Java Concurrency in Practice207

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

A custom executor that executes tasks
sequentially, in the current thread:  
 
public class WithinThreadExecutor implements Executor { 
 public void execute(Runnable r) { 
 r.run();  
 };  
}

208

A.6 Task Execution - 6.2 Thread Pools and the Executor Framework

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Tasks that return
results

209

A.6 Task Execution - 6.3 Tasks that Return Results

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The Callable Interface

Runnable represents a task to be run, but it
does not provide means for the task to
return a result

Callable solves this problem:  
public interface Callable<V> { 
 V call() throws Exception;  
}

210

A.6 Task Execution - 6.3 Tasks that Return Results

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The Future Interface
Represents an asynchronous task

Provides methods allowing to 
- test whether the task is completed 
- cancel the task  
- retrieve the result  

public interface Future<V> {

 boolean cancel(boolean mayInterruptIfRunning);

 boolean isCancelled();

 boolean isDone();

 V get() throws InterruptedException, ExecutionException,

 CancellationException;

 V get(long timeout, TimeUnit unit)

 throws InterruptedException, ExecutionException,

 CancellationException, TimeoutException;

}

211

A.6 Task Execution - 6.3 Tasks that Return Results

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Executing tasks that
return results

Use FutureTask and run it in a thread. As
FutureTask implements Runnable, it can also
be passed to an Executor

Use the submit methods in an
ExecutorService, e.g.: <T> Future<T>
submit(Callable<T> task);

As of Java 6, an override-able method exists
in AbstractExecutorService: 
protected <T> RunnableFuture<T> newTaskFor(Callable<T> task) { 
 return new FutureTask<T>(task);  
}

212

A.6 Task Execution - 6.3 Tasks that Return Results

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example
A web page renderer
that consists of two
tasks:  
- one that renders
the text  
- one that downloads
images

The image download is
done asynchronously,
as a task submitted to
an Executor

public class FutureRenderer {

 private final ExecutorService executor = ...;

!
 void renderPage(CharSequence source) {

 final List<ImageInfo> imageInfos = scanForImageInfo(source);

 Callable<List<ImageData>> task =

 new Callable<List<ImageData>>() {

 public List<ImageData> call() {

 List<ImageData> result

 = new ArrayList<ImageData>();

 for (ImageInfo imageInfo : imageInfos)

 result.add(imageInfo.downloadImage());

 return result;

 }

 };

!
 Future<List<ImageData>> future = executor.submit(task);

 renderText(source);

!
 try {

 List<ImageData> imageData = future.get();

 for (ImageData data : imageData)

 renderImage(data);

 } catch (InterruptedException e) {

 // Re-assert the thread's interrupted status

 Thread.currentThread().interrupt();

 // We don't need the result, so cancel the task too

 future.cancel(true);

 } catch (ExecutionException e) {

 ...

 }

 }}

source: Java Concurrency in Practice213

A.6 Task Execution  
- 6.3 Tasks that Return Results

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Cancellation and
Shutdown

214

A.7 Cancellation and Shutdown

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The problem

The tasks that run in parallel usually end by
themselves and provide results

The need to stop them before their normal
termination may arise because of various
reasons: 
- timeouts 
- errors 
- the user cancelled the operation  
- the application must shutdown

215

A.7 Cancellation and Shutdown - 7.1 The Problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The problem

The termination policy must deal with the
following issues: 
- it must manage possibly numerous
concurrent entities 
- the threads can be in various stages of
accomplishing the tasks

216

A.7 Cancellation and Shutdown - 7.1 The Problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The problem
The cancellation or shutdown must be:

coordinated 
-> all threads must finish when requested

quick  
-> the reason for cancellation is usually
important

 reliable 
-> the cancellation policy must deal with
all the necessary cleanup so that the
application/task ends safely

217

A.7 Cancellation and Shutdown - 7.1 The Problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Issues

The concurrent entities must be designed so
that they properly consider interruption

The cancellation activities in threads must be
quick

The design must ensure that no thread
remains uninformed on the cancellation event

218

A.7 Cancellation and Shutdown - 7.1 The Problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The policy

The cancellation/shutdown policy  
- is a property of the application’s design  
- can rely on specific mechanisms provided
by the software platform (operating system,
virtual machine)

219

A.7 Cancellation and Shutdown - 7.1 The Problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Considering cancellation

The programs can be written with the
cancellation as one of their features 
 
public class AClassThatCanBeCancelled { 
 private volatile boolean isCancelled = false;  
  
 public void cancel() { this.isCancelled = true; }  
 
 public void doTheWork() 
 { 
 while(!isCancelled)  
 { 
 ...  
 }  
 }   220

A.7 Cancellation and Shutdown - 7.1 The Problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Possible problems

The threads only check for the cancellation
status at certain times (cancellation points)

The response may be too slow

The solution does NOT cover the case of
blocked threads (waiting on blocking queues,
etc.)

221

A.7 Cancellation and Shutdown - 7.1 The Problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

An example: this program
may block forever

If the producer
generates items
fast and blocks as
the consumer asks
for cancellation  
-> the producer
will never exit the
blocking method,
thus never noticing
the cancellation
status

public class Producer implements Runnable {

!
volatile boolean isCancelled = false;

BlockingQueue<String> queue;

!
public void Producer(BlockingQueue<String> q)

{

 this.queue = q;

}

!
public void cancel() { isCancelled = true;}

!
public void run()

{

 while(!isCancelled)

 {

 String item = generateItem();

 queue.put(item);

 }

}

}

public class Consumer implements Runnable {

!
BlockingQueue<String> queue;

!
public void Consumer(BlockingQueue<String> q)

{

 this.queue = q;

}

!
public void run()

{

 while(itemsAreNeeded())

 {

 String item = queue.take();

 useItem(item);

 }

}

}

222

A.7 Cancellation and Shutdown - 7.1 The Problem

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Java
Java provides a mechanism fit for cancellation,
based on a cooperative policy:  
- The main concept: threads can be requested
to interrupt  
- The implementation: threads can choose how
to respond

A properly designed application will always
respond to interruption

If interruption is used for cancellation or
shutdown the thread should do the necessary
cleanup and end as soon as possible

223

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Interruption

Each Thread has an ‘interrupted’ status
which is initially set on false

The status can be set to true by specific
methods in class Thread

A thread can set the interrupt status of
another thread at any time; however, the
interrupted thread’s behavior is dependent
on the system’s design

224

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Thread

Interruption-related methods in Thread:  
 
public class Thread extends Object implements Runnable { 
 ...  
 public void interrupt(); // interrupts the current thread 
 public static boolean interrupted(); // tests whether the current  
 // thread has been interrupted  
 // and clears the interrupted status  
 public boolean isInterrupted(); // tests whether this thread has  
 // been interrupted; the interrupted  
 // status remains unchanged  
 ...  
}

225

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

What about those
deprecated methods?
The Thread class defines a set of methods
that can force changes in the execution
status of threads: stop(), suspend(), resume(),
destroy()

These methods were marked as deprecated
relatively early in the API development

Their usage can lead to serious concurrency-
related issues

226

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Why was stop()
deprecated?

stop() forcibly stops the execution of a
thread

If the thread is inside a monitor, the lock
will eventually be released, which can lead
to other threads being able to access
inconsistent state (“damaged” objects)

227

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Why is suspend()
deprecated?

suspend() suspends a thread until another
thread calls resume()

suspend() can generate deadlock:  
-> if the suspended thread owns a lock it
will be not be released before resume()

228

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Why is destroy()
deprecated?

destroy() is meant to end a thread abruptly

Actually, destroy() was never implemented!!

The reason: it is deadlock-prone 
-> unlike suspend(), there isn’t even the
possibility of resuming the thread to release
the lock

229

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Are there replacements?

No.

However, if suspend/resume or stop
functionalities are necessary they can be
implemented in programs by combining  
- volatile status variables for the respective
state (e.g. isSuspended, isStopped)  
- wait() and notify() for suspending/resuming,
if needed (you can use them, with care!)

230

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Back to the topic...

The best mechanism to implement proper
cancellation of threads is making use of the
interruption status

While the interruption feature was not
explicitly built for cancellation, using it for
other purposes is not practical

231

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Interruption behavior

If the target (interrupted) thread is working
(not blocked) the status change will  
not affect its current activities 
-> The thread must explicitly test the
interrupt status periodically

If the target thread is blocked, the blocking
method returns immediately and throws
InterruptedException

232

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

InterruptedException
The InterruptedException must be handled
with care

The code that catches it must either 
- propagate it after necessary cleanup is
done (throw it again) 
- restore the interrupt status by calling
Thread.currentThread().interrupt() (e.g. when
throwing InterruptedException is not possible)

Catching the exception and doing nothing is
NOT recommended (unless you know what you
are doing)

Yes, you did see this slide before ☺233

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

An example: cancellation
using interruption

On interruption,
the blocked
method will return
and throw the
exception 
-> the producer
can check the
interruption status
and end properly

public class Producer implements Runnable {

!
BlockingQueue<String> queue;

!
public void Producer(BlockingQueue<String> q)

{

 this.queue = q;

}

!
public void cancel() { interrupt(); }

!
public void run()

{

 while(!Thread.currentThread.isInterrupted())

 {

 String item = generateItem();

 try{

 queue.put(item);

 } catch(InterruptedException e) {

 ... //cleanup and exit

 }

 }

}}

public class Consumer implements Runnable {

!
BlockingQueue<String> queue;

!
public void Consumer(BlockingQueue<String> q)

{

 this.queue = q;

}

!
public void run()

{

 while(itemsAreNeeded())

 {

 String item = queue.take();

 useItem(item);

 }

}

}

234

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notes about interruption
Interrupting a thread does not necessarily
stop its current activities -- it is only a
request

Each thread has its interruption policy.
Therefore, DO NOT interrupt a thread unless
you know how the interruption is handled in
the thread

Only code implementing the thread’s
interruption policy may swallow the
InterruptedException. General-purpose or
library code should never do it

235

A.7 Cancellation and Shutdown - 7.2 Java Support

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Implementing timeouts

236

A.7 Cancellation and Shutdown - 7.3 Implementing Timeouts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The problem

There are many cases when the execution of
asynchronous tasks does not end in a timely
manner, and they must be cancelled after a
pre-defined time 
- tasks that perform complex calculations  
- activities that continuously monitor states
(e.g. monitoring a thermal sensor) 
- tasks that log system activities 
- ...

237

A.7 Cancellation and Shutdown - 7.3 Implementing Timeouts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example of implementing
a timeout

@ThreadSafe

public class PrimeGenerator implements Runnable {

 @GuardedBy("this")

 private final List<BigInteger> primes

 = new ArrayList<BigInteger>();

 private volatile boolean cancelled;

!
 public void run() {

 BigInteger p = BigInteger.ONE;

 while (!cancelled) {

 p = p.nextProbablePrime();

 synchronized (this) {

 primes.add(p);

 }

 }

 }

!
 public void cancel() { cancelled = true; }

!
 public synchronized List<BigInteger> get() {

 return new ArrayList<BigInteger>(primes);

 }

}

List<BigInteger> aSecondOfPrimes() throws
InterruptedException {

 PrimeGenerator generator = new
PrimeGenerator();

 new Thread(generator).start();

 try {

 TimeUnit.SECONDS.sleep(1);

 } finally {

 generator.cancel();

 }

 return generator.get();

}

source: Java Concurrency in Practice238

A.7 Cancellation and Shutdown - 7.3 Implementing Timeouts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Discussion

In the previous example the main thread
does not catch the exceptions the task may
throw

This may be important, as the exceptions
may show the calculations did not perform
correctly

239

A.7 Cancellation and Shutdown - 7.3 Implementing Timeouts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

An attempt of
implementing timeout

Explanation: the timedRun()
method schedules an
interruption of the current
thread, then runs the run()
method of the Runnable it
receives

A Scheduled Executor is
used for executing the
interruption

//This code has some issues

private static final ScheduledExecutorService cancelExec = ...;

!
public static void timedRun(Runnable r,

 long timeout, TimeUnit unit) {

 final Thread taskThread = Thread.currentThread();

 cancelExec.schedule(new Runnable() {

 public void run() { taskThread.interrupt(); }

 }, timeout, unit);

 r.run();

}

source: Java Concurrency in Practice240

A.7 Cancellation and Shutdown - 7.3 Implementing Timeouts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Discussion
The previous example is able to catch the
exceptions thrown by the task

However, it does not follow the rule that
foreign threads should not be interrupted
(their interruption policy being unknown)

If the task does not handle the interruption,
it may end long after the timeout has
expired (or it may even run forever)

If the task ends before the timeout, the
interrupt could go off after timedRun()
returns, interrupting an unknown code

241

A.7 Cancellation and Shutdown - 7.3 Implementing Timeouts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A correct solution

Use a dedicated
thread for the task

The exceptions
from the task are
caught, stored and
re-thrown to the
client thread

public static void timedRun(final Runnable r,

 long timeout, TimeUnit unit)

 throws InterruptedException {

 class RethrowableTask implements Runnable {

 private volatile Throwable t;

 public void run() {

 try { r.run(); }

 catch (Throwable t) { this.t = t; }

 }

 void rethrow() {

 if (t != null)

 throw t;

 }

 }

!
 RethrowableTask task = new RethrowableTask();

 final Thread taskThread = new Thread(task);

 taskThread.start();

 cancelExec.schedule(new Runnable() {

 public void run() { taskThread.interrupt(); }

 }, timeout, unit);

 taskThread.join(unit.toMillis(timeout));

 task.rethrow();

}

source: Java Concurrency in Practice242

A.7 Cancellation and Shutdown - 7.3 Implementing Timeouts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Another solution
Use Future for
canceling

The exceptions
from the task are
caught, and
immediately re-
thrown to the
client thread

public static void timedRun(Runnable r,

 long timeout, TimeUnit unit)

 throws InterruptedException {

 Future<?> task = taskExec.submit(r);

 try {

 task.get(timeout, unit);

 } catch (TimeoutException e) {

 // task will be cancelled below

 } catch (ExecutionException e) {

 // exception thrown in task; rethrow

 throw e;

 } finally {

 // Harmless if task already completed

 task.cancel(true); // mayInterruptIfRunning=true

 }

}

source: Java Concurrency in Practice243

A.7 Cancellation and Shutdown - 7.3 Implementing Timeouts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Non-interruptible
blocking

Some blocking methods are not interrupted
by interrupt(): synchronous socket I/O,
waiting to acquire an intrinsic lock, etc.

These cases must be dealt with by using
specific mechanisms  
- socket I/O: close the socket from another
thread 
- instead of intrinsic locks, use the explicit
Lock classes (which provide interruptible
locking methods)

244

A.7 Cancellation and Shutdown - 7.4 Non-intreruptible Blocking

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

Non-standard
canceling of socket
I/O operations by
overriding the
interrupt() method

public class ReaderThread extends Thread {

 private final Socket socket;

 private final InputStream in;

!
 public ReaderThread(Socket socket) throws IOException {

 this.socket = socket;

 this.in = socket.getInputStream();

 }

!
 public void interrupt() {

 try {

 socket.close();

 }

 catch (IOException ignored) { }

 finally {

 super.interrupt();

 }

 }

!
 public void run() {

 try {

 byte[] buf = new byte[BUFSZ];

 while (true) {

 int count = in.read(buf);

 if (count < 0)

 break;

 else if (count > 0)

 processBuffer(buf, count);

 }

 } catch (IOException e) { /* Allow thread to exit */ }

 }

} source: Java Concurrency in Practice

245

A.7 Cancellation and Shutdown - 7.4 Non-intreruptible Blocking

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Suggestions for a good
design

To correctly design the cancellation policies,
several aspects must be addressed:  
1. Use the concept of thread ownership  
 -> each thread is own by a single entity
(application, class, etc.) 
 -> example: a thread pool owns its threads  
2. Only the owner can manipulate the thread 
 -> never interrupt a thread you do not own  
3. Provide lifecycle methods (stop, suspend,
cancel, etc.) in thread-owning services that
can run for a longer time than their clients

246

A.7 Cancellation and Shutdown - 7.5 Suggestions for a Good Design

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Abnormal thread
termination

247

A.7 Cancellation and Shutdown - 7.6 Abnormal Thread Termination

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The problem

A thread can terminate abruptly, by
throwing an unchecked exception (e.g.
NullPointerException)

The default behavior in Java is to print the
stack trace on the console, and end the
thread

248

A.7 Cancellation and Shutdown - 7.6 Abnormal Thread Termination

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The problem

Not handling the unchecked exceptions (e.g.
RuntimeException) can create problems in the
application:  
- the console may be invisible for the user,
and the exception is not noticed  
- a thread that ends abruptly may damage
the state of the application -- other threads
may depend on it

249

A.7 Cancellation and Shutdown - 7.6 Abnormal Thread Termination

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Running foreign code

There are many cases when an application
(or a class) runs foreign code (e.g. plugins,
event handlers, etc.):  
- the code is provided through abstractions
such as Runnable, Callable  
- the code may throw unchecked exceptions  
- the unchecked exceptions in the foreign
code must NOT make the application fail

The application must handle the unchecked
exceptions

250

A.7 Cancellation and Shutdown - 7.6 Abnormal Thread Termination

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

An implementation of a worker
thread in a thread pool

The worker catches the
Throwable, and informs the
thread pool that the task
ended in error

The pool may decide to end
the thread or reuse it

...

public void run() {

 Throwable thrown = null;

 try {

 while (!isInterrupted())

 runTask(getTaskFromWorkQueue());

 } catch (Throwable e) {

 thrown = e;

 } finally {

 threadExited(this, thrown);

 }

}

...

source: Java Concurrency in Practice251

A.7 Cancellation and Shutdown - 7.6 Abnormal Thread Termination

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Uncaught exception
handlers

A mechanism complementary to the explicit
handling of Throwable

Applications can implement the interface
UncaughtExceptionHandler and register the
implementation to the JVM

The registration can be done at the thread
level (since JDK 1.5), up to the System level

252

A.7 Cancellation and Shutdown - 7.6 Abnormal Thread Termination

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The interface

The uncaughtException() method is invoked
when the thread t terminates because of
the uncaught exception e

public interface Thread.UncaughtExceptionHandler {

 void uncaughtException(Thread t, Throwable e);

}

253

A.7 Cancellation and Shutdown - 7.6 Abnormal Thread Termination

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Registering the handler
There are three ways of registering an
uncaught exception handler:

- Per-thread handler:

Thread.setUncaughtExceptionHandler(java.lang.Thread.UncaughtExceptionHandler),

!
- Per-thread-group handler:

ThreadGroup.uncaughtException(java.lang.Thread, java.lang.Throwable)

!
- The default handler:

Thread.setDefaultUncaughtExceptionHandler(java.lang.Thread.UncaughtExceptionHandler),

-> An uncaught exception is delegated to the per-thread
handler; if it does not exist it is delegated upwards; if not
even a default handler exists, the stack trace is printed to
the console 254

A.7 Cancellation and Shutdown - 7.6 Abnormal Thread Termination

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Java Virtual Machine
shutdown

255

A.7 Cancellation and Shutdown - 7.7 Java Virtual Machine Shutdown

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

JVM Shutdown

The JVM can be shut down in two ways:  
- orderly (all threads end, System.exit(),
SIGINT)  
- abruptly (Runtime.halt(), SIGKILL)

256

A.7 Cancellation and Shutdown - 7.7 Java Virtual Machine Shutdown

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Shutdown hooks
For an orderly shutdown, application can
register shutdown hooks

A shutdown hook is an unstarted thread that
is registered through Runtime.addShutdownHook().

The registered threads will be started by
the JVM when the orderly shutdown is
performed

Shutdown hooks must be thread-safe, as
they can be started concurrently

257

A.7 Cancellation and Shutdown - 7.7 Java Virtual Machine Shutdown

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Daemon threads
Threads that run in background, but their execution
does not influence the decision of doing an orderly
shutdown

If all other threads end, the JVM will initiate a
shutdown and forcibly stop the daemon threads

Any thread can be: normal/daemon. A thread inherits
the status of the thread that created it

All JVM internal threads are daemon threads,
application threads are normal by default

Related methods in Thread: setDaemon(boolean), isDaemon().
258

A.7 Cancellation and Shutdown - 7.7 Java Virtual Machine Shutdown

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Finalizers

When disposing objects, the garbage
collector offers the option of calling a
special method of the object: finalize()

An object that implements this method will
be able to do additional cleanup

However, this technique should be avoided --
the preferred way of doing cleanup is
through try...finally blocks

259

A.7 Cancellation and Shutdown - 7.7 Java Virtual Machine Shutdown

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Avoiding Deadlock

260

A.8 Avoiding Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A case of deadlock...

Some solutions to the Dining Philosophers
problem can deadlock, as previously seen

261

A.8 Avoiding Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Lock ordering deadlock

A case that can be identified within the code

Threads try to acquire the same locks in a
different order

Can be avoided by ordering the locking

262

A.8 Avoiding Deadlock - 8.1 Lock Ordering Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

The methods are
called in distinct
threads

The locking is done
on the same
objects, but the
order of locking in
different

// Warning: deadlock-prone!

public class ADeadlock {

 private final Object left = new Object();

 private final Object right = new Object();

!
 public void method1() {

 synchronized (left) {

 synchronized (right) {

 doSomething();

 }

 }

 }

!
 public void method2() {

 synchronized (right) {

 synchronized (left) {

 doSomethingElse();

 }

 }

 }

}

source: Java Concurrency in Practice263

A.8 Avoiding Deadlock - 8.1 Lock Ordering Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

When it goes wrong...

The above picture shows a case when the
previous example deadlocks

source: Java Concurrency in Practice264

A.8 Avoiding Deadlock - 8.1 Lock Ordering Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

...we need a solution

Acquire the locks in the same order, in the
entire program

Issues:

The locks used in similar sequences must
be identified throughout the program

The order must be maintained even when
the program evolves

source: Java Concurrency in Practice265

A.8 Avoiding Deadlock - 8.1 Lock Ordering Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Dynamic lock ordering

There are cases when the identification of
the lock ordering problems is not easy

// Warning: deadlock-prone!

public void transferMoney(Account fromAccount,

 Account toAccount,

 DollarAmount amount)

 throws InsufficientFundsException {

 synchronized (fromAccount) {

 synchronized (toAccount) {

 if (fromAccount.getBalance().compareTo(amount) < 0)

 throw new InsufficientFundsException();

 else {

 fromAccount.debit(amount);

 toAccount.credit(amount);

 }

 }

 }

}

A: transferMoney(myAccount, yourAccount, 10);

B: transferMoney(yourAccount, myAccount, 20);

source: Java Concurrency in Practice266

A.8 Avoiding Deadlock - 8.1 Lock Ordering Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A solution

The system-generated (Object) hash code is used as an ad-hoc ordering for the
locks

Plan B: if the hash code doesn’t help, the locking sequence is protected by a
third lock (the last else statement, makes the compound acquiring atomic)

private static final Object tieLock = new Object();

!
public void transferMoney(final Account fromAcct,

 final Account toAcct,

 final DollarAmount amount)

 throws InsufficientFundsException {

 class Helper {

 public void transfer() throws InsufficientFundsException {

 if (fromAcct.getBalance().compareTo(amount) < 0)

 throw new InsufficientFundsException();

 else {

 fromAcct.debit(amount);

 toAcct.credit(amount);

 }

 }

 }

int fromHash = System.identityHashCode(fromAcct);

 int toHash = System.identityHashCode(toAcct);

!
 if (fromHash < toHash) {

 synchronized (fromAcct) {

 synchronized (toAcct) {

 new Helper().transfer();

 }

 }

 } else if (fromHash > toHash) {

 synchronized (toAcct) {

 synchronized (fromAcct) {

 new Helper().transfer();

 }

 }

 } else {

 synchronized (tieLock) {

 synchronized (fromAcct) {

 synchronized (toAcct) {

 new Helper().transfer();

 }

 }

 }

 }}

source: Java Concurrency in Practice267

A.8 Avoiding Deadlock - 8.1 Lock Ordering Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Deadlock Between
Cooperating Objects

268

!
class Dispatcher {

 @GuardedBy("this") private final Set<Taxi> taxis;

 @GuardedBy("this") private final Set<Taxi> availableTaxis;

!
 public Dispatcher() {

 taxis = new HashSet<Taxi>();

 availableTaxis = new HashSet<Taxi>();

 }

!
 public synchronized void notifyAvailable(Taxi taxi) {

 availableTaxis.add(taxi);

 }

!
 public synchronized Image getImage() {

 Image image = new Image();

 for (Taxi t : taxis)

 image.drawMarker(t.getLocation());

 return image;

 }

}

/ Warning: deadlock-prone!

class Taxi {

 @GuardedBy("this") private Point location, destination;

 private final Dispatcher dispatcher;

!
 public Taxi(Dispatcher dispatcher) {

 this.dispatcher = dispatcher;

 }

!
 public synchronized Point getLocation() {

 return location;

 }

!
 public synchronized void setLocation(Point location) {

 this.location = location;

 if (location.equals(destination))

 dispatcher.notifyAvailable(this);

 }

}

!

source: Java Concurrency in Practice

A.8 Avoiding Deadlock - 8.1 Lock Ordering Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Analysis

A thread calling setLocation() locks Taxi then
Dispatcher

A thread calling getImage() locks Dispatcher
then Taxi 
 
=> lock ordering deadlock

269

A.8 Avoiding Deadlock - 8.1 Lock Ordering Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

A Solution

A Call to a method without locks held = “Open Call”

Use the locking to protect only the shared resources
270

@ThreadSafe

class Taxi {

 @GuardedBy("this") private Point location, destination;

 private final Dispatcher dispatcher;

 ...

 public synchronized Point getLocation() {

 return location;

 }

!
 public void setLocation(Point location) {

 boolean reachedDestination;

 synchronized (this) {

 this.location = location;

 reachedDestination =
location.equals(destination);

 }

 if (reachedDestination)

 dispatcher.notifyAvailable(this);

 }

}

!

!
@ThreadSafe

class Dispatcher {

 @GuardedBy("this") private final Set<Taxi> taxis;

 @GuardedBy("this") private final Set<Taxi> availableTaxis;

 ...

 public synchronized void notifyAvailable(Taxi taxi) {

 availableTaxis.add(taxi);

 }

!
 public Image getImage() {

 Set<Taxi> copy;

 synchronized (this) {

 copy = new HashSet<Taxi>(taxis);

 }

 Image image = new Image();

 for (Taxi t : copy)

 image.drawMarker(t.getLocation());

 return image;

 }

}

source: Java Concurrency in Practice

A.8 Avoiding Deadlock - 8.1 Lock Ordering Deadlock

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronizers.
Explicit locks*

271

A.5 Java API Support - 5.3 Synchronizers

*This is actually a part of Chapter 5, Section 3

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

When synchronized is
not enough

Implicit locking has some limitations 
- There is no way to back off from attempting
to acquire an already held lock 
- Timeouts for acquiring cannot be specified  
- The blocking for acquiring a lock can not be
interrupted 
- The acquiring and release is limited to
structured blocks (e.g., you cannot acquire a
lock in a method and release it in another)

272

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Explicit locks

Alternatives to implicit locking

Provided by the Java API since JDK 1.5

Enable advanced features regarding locking

273

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The Lock interface

public interface Lock {

 void lock();

 void lockInterruptibly() throws InterruptedException;

 boolean tryLock();

 boolean tryLock(long timeout, TimeUnit unit)

 throws InterruptedException;

 void unlock();

 Condition newCondition();

}

274

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

ReentrantLock

Implements Lock

Provides the same mutual exclusion and
visibility traits as the implicit locking

Adds a few features: timeouts, polled
locking, interruptible locking, etc.

275

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Using ReentrantLock

The most important issue: the lock MUST be
released in a finally block! (reason:
exceptions may leave the lock held)

Lock lock = new ReentrantLock();

...

lock.lock();

try {

 // update object state

 // catch exceptions and restore invariants if necessary

} finally {

 lock.unlock();

}

276

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example: Timeout
public boolean trySendOnSharedLine(String message,

 long timeout, TimeUnit unit)

 throws InterruptedException {

 long nanosToLock = unit.toNanos(timeout)

 - estimatedNanosToSend(message);

 if (!lock.tryLock(nanosToLock, NANOSECONDS))

 return false;

 try {

 return sendOnSharedLine(message);

 } finally {

 lock.unlock();

 }

}

source: Java Concurrency in Practice277

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example: using
polling to avoid
lock-ordering
deadlock

The sleep time
has a random
component to
minimize the
probability of
livelock

public boolean transferMoney(Account fromAcct, Account toAcct, DollarAmount amount,

 long timeout, TimeUnit unit)

 throws InsufficientFundsException, InterruptedException {

 long fixedDelay = getFixedDelayComponentNanos(timeout, unit);

 long randMod = getRandomDelayModulusNanos(timeout, unit);

 long stopTime = System.nanoTime() + unit.toNanos(timeout);

!
 while (true) {

 if (fromAcct.lock.tryLock()) {

 try {

 if (toAcct.lock.tryLock()) {

 try {

 if (fromAcct.getBalance().compareTo(amount)

 < 0)

 throw new InsufficientFundsException();

 else {

 fromAcct.debit(amount);

 toAcct.credit(amount);

 return true;

 }

 } finally {

 toAcct.lock.unlock();

 }

 }

 } finally {

 fromAcct.lock.unlock();

 }

 }

 if (System.nanoTime() > stopTime)

 return false;

 NANOSECONDS.sleep(fixedDelay + rnd.nextLong() % randMod);

 }

}

source: Java Concurrency in Practice278

A.5 Java API Support  
- 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example: interruptible
lock acquisition

public boolean sendOnSharedLine(String message)

 throws InterruptedException {

 lock.lockInterruptibly();

 try {

 return cancellableSendOnSharedLine(message);

 } finally {

 lock.unlock();

 }

}

!
private boolean cancellableSendOnSharedLine(String message)

 throws InterruptedException { ... }

source: Java Concurrency in Practice279

A.5 Java API Support - 5.3 Synchronizers

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Performance and
Scalability

280

A.9 Performance and Scalability

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Two coordinates

Performance: the amount of work done with
a given set of resources

Resource: CPU, memory, bandwidth, etc.

an activity can be bound to a resource (as
the limiting factor)

Scalability: the ability to improve throughput
or capacity when new resources are added

281

A.9 Performance and Scalability - 9.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Performance vs. Scalability

Performance=how fast; Scalability=how much

The two aspects are separate, even at odds

To accomplish scalability through parallelism,
the individual tasks may have to do more
work than their single-threaded versions

Optimizations for performance may actually
be bad for scalability

282

A.9 Performance and Scalability - 9.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

How fast is my program?
Optimizations for performance must be made
with care -- ALWAYS consider their possible
side effects 
- optimizations can lead to concurrency bugs

Suggestions:  
1. Design the system properly, considering
the goals and long-term challenges 
2. Make the optimizations only afterwards  
3. Be smart when choosing the parts to be
optimized: don’t guess, measure!  
4. Don’t trade safety for performance 

283

A.9 Performance and Scalability - 9.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Amdahl’s Law

The main source of skepticism regarding the
viability of parallelism

Introduced by Gene Amdahl in 1967

Essentially states that the speedup gained
by adding parallel processing power is limited

284

A.9 Performance and Scalability - 9.2 Amdahl’s Law

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Amdahl’s Law

N = number of processors

F = fraction of the program that must be
executed sequentially

1 - F = the fraction that can be parallelized

N -> ∞, speedup -> 1/F

speedup ≤
1

F + 1 - F
N

285

A.9 Performance and Scalability - 9.2 Amdahl’s Law

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Interpretation

Examples:

F=0.5, Max. speedup = 2

F=0.1, N=10, Max. speedup = 5.3

F=0.1, N=100, Max. speedup = 9.2

286

A.9 Performance and Scalability - 9.2 Amdahl’s Law

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Limitations
The Amdahl’s law does not consider all the
realities in parallel/concurrent computing

The cumulated cache size grows with the
number of processors => higher performance

When the problem scales up, the relative
sequential fraction usually decreases

Processors are not only used for scaling a
single problem: they can execute many
independent tasks (e.g. multiple programs)

287

A.9 Performance and Scalability - 9.2 Amdahl’s Law

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Thread costs
Sources that add to the cost of multithreading:

Context switching  
- CPU time for the JVM and OS 
- Flushing cached data

Synchronization  
- uncontended: low cost, optimized by the JVM 
- contended: higher, depending on the type of
synchronization: blocking/non-blocking,
granularity of locking, memory bus traffic

288

A.9 Performance and Scalability - 9.3 Thread Costs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Reducing lock contention

The main negative impact on scalability:
exclusively locking resources

Reducing lock contention

Hold locks for a short time

Minimize the frequency of locking

When possible, use other mechanisms than
exclusive locking

289

A.9 Performance and Scalability - 9.3 Thread Costs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Narrowing Lock Scope

This is better ---->
290

@ThreadSafe

public class AttributeStore {

 @GuardedBy("this") private final Map<String, String>

 attributes = new HashMap<String, String>();

!
 public synchronized boolean
userLocationMatches(String name, String regexp) {

 String key = "users." + name + ".location";

 String location = attributes.get(key);

 if (location == null)

 return false;

 else

 return Pattern.matches(regexp, location);

 }

}

@ThreadSafe

public class BetterAttributeStore {

 @GuardedBy("this") private final Map<String, String>

 attributes = new HashMap<String, String>();

!
 public boolean userLocationMatches(String name, String regexp) {

 String key = "users." + name + ".location";

 String location;

 synchronized (this) {

 location = attributes.get(key);

 }

 if (location == null)

 return false;

 else

 return Pattern.matches(regexp, location);

 }

}

source: Java Concurrency in Practice

A.9 Performance and Scalability - 9.3 Thread Costs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Lock Splitting

291

@ThreadSafe

public class ServerStatus {

 @GuardedBy("this") public final Set<String> users;

 @GuardedBy("this") public final Set<String> queries;

 ...

 public synchronized void addUser(String u) { users.add(u); }

 public synchronized void addQuery(String q) { queries.add(q); }

 public synchronized void removeUser(String u) {

 users.remove(u);

 }

 public synchronized void removeQuery(String q) {

 queries.remove(q);

 }

}

@ThreadSafe

public class ServerStatus {

 @GuardedBy("users") public final Set<String> users;

 @GuardedBy("queries") public final Set<String> queries;

 ...

 public void addUser(String u) {

 synchronized (users) {

 users.add(u);

 }

 }

!
 public void addQuery(String q) {

 synchronized (queries) {

 queries.add(q);

 }

 }

 // remove methods similarly refactored to use split locks

}

source: Java Concurrency in Practice

This is better ---->

A.9 Performance and Scalability - 9.3 Thread Costs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Lock Striping
Find partitions within the code that can be
locked with (a variable number of) different
locks (i.e., find independent partitions in the
set of guarded resources, if possible)

Example: ConcurrentHashMap: an array of 16
locks

Not all operations can be partition locked 
-> example: some need to lock the entire
collection: need to acquire all 16 locks

292 source: Java Concurrency in Practice

A.9 Performance and Scalability - 9.3 Thread Costs

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Distributed
Software Systems

293

A.10 Distributed Software Systems

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Definitions

”a collection of independent computers that
appears to its users as a single, coherent
system” [TS01]

an arbitrary number of processing elements
running at different locations, interconnected
by a communication system [Wu99]

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. “Distributed Systems:

 Principles and Paradigms.” Prentice Hall, 2001.

[Wu99] Jie Wu. “Distributed Systems Design.” CRC Press LLC, 1999.

294

A.10 Distributed Software Systems - 10.1 Introduction. Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Distributed Systems

Multiple processing units
running in nodes
situated at different
locations

Communication is done
via an infrastructure

The architecture is
heterogenous

Communication
Infrastructure

Node Node

Node

Node
Node

Node

Node

295

A.10 Distributed Software Systems - 10.1 Introduction. Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Nodes
The system components
running in nodes:

are independent
programs that have dual
functionality: 
- local 
- network-aware

can be written in various
languages / can run on
different platforms

Communication
Infrastructure

Node Node

Node

Node
Node

Node

Node

296

A.10 Distributed Software Systems - 10.1 Introduction. Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Communication
Infrastructure

Handles the data
transmission and event
notification over the
network

Is available through
libraries, language
constructs or platform-
specific services

Communication
Infrastructure

Node Node

Node

Node
Node

Node

Node

297

A.10 Distributed Software Systems - 10.1 Introduction. Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Communication
Infrastructure

Is built to hide the
communication details,
at different levels of
abstraction

Is directly related to
technological concerns

Communication
Infrastructure

Node Node

Node

Node
Node

Node

Node

298

A.10 Distributed Software Systems - 10.1 Introduction. Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Communication
Infrastructure

We call it
Communication
Mediator

Communication
Mediator

Node Node

Node

Node
Node

Node

Node

(c) 2008, Dan C. Cosma299

A.10 Distributed Software Systems - 10.1 Introduction. Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

It’s a SYSTEM

The components,
however loosely
coupled, work
together for a
common goal, and
represent parts of
the same system

Communication
Infrastructure

Node Node

Node

Node
Node

Node

Node

300

A.10 Distributed Software Systems - 10.1 Introduction. Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Technological concerns

The communication technology is central to
distributed software systems

301

A.10 Distributed Software Systems - 10.1 Introduction. Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Technology

For distributed systems, the technology
influences the design-time decisions  
-> it imposes a set of constraints regarding

system architecture

system implementation (coding rules,
patterns, conventions)

302

A.10 Distributed Software Systems - 10.1 Introduction. Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Technology constraints

Specific to the type of Communication
Mediator used

Described as a set of rules with various
degrees of importance

May imply important limitations in the
design- or implementation-related choices  
-> e.g. some technologies discourage the usage of threads

303

A.10 Distributed Software Systems - 10.1 Introduction. Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Communication
Technologies

304

A.10 Distributed Software Systems - 10.2 Communication Technologies

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Protocol Stacks

Describe facilities included in the modern
operating systems

Support network communication at the
application level

Dependent on a layered model describing the
various types of concerns addressed

Each layer defines a communication protocol

305

A.10 Distributed Software Systems - 10.2 Communication Technologies

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The TCP/IP protocol
stack

Network access layer: transmission of the data as
datagrams to a remote host

Internet layer: defines the network as interconnected
subnetworks, deals with routing. Defines the IP address

Transport layer: communication channels, error control,
sequence of data arrival, etc.

Application layer: protocols used by the application -- e.g.
FTP, HTTP, SSH, etc.

(usually) The main primitive for programs: the socket

Application

Transport

Internet

Network Access

Constraints: specific sequence of creating/using
the sockets (c) 2008, Dan C. Cosma306

A.10 Distributed Software Systems - 10.2 Communication Technologies

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Remote Method
Invocation (Java)

Uses specific language
constructs

Hides the communication by
providing natural ways of
remote communication

Client

Stub

Java Virtual Machine

Network

Server

Skeleton

Java Virtual Machine

Naming
Service

(RMI Registry)
registration

lookup

Constraints:  
- specific interfaces extending java.rmi.Remote
describing the services; servers must implement them  
- specific connection / registration API calls

(c) 2008, Dan C. Cosma307

A.10 Distributed Software Systems - 10.2 Communication Technologies

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Messaging systems
Example: Java
Message Service

An infrastructure
that mediates
communication via
messages

Provides point-to-
point and publish-
subscribe models

JMS API

JMS API

Queue

Queue

Topic Topic

Client

Client

Client

Client

JMS
API

send receive

publish

subscribe
JMS Provider

Constraints:  
- the design must model the communication via message
channels 
- specific calls for accessing the message infrastructure

(c) 2008, Dan C. Cosma
308

A.10 Distributed Software Systems - 10.2 Communication Technologies

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Application Servers
Provide an environment for
running the application

Applications run inside the
application server (hence it is
sometimes called container)

Applications are provided
complex features (transactions,
persistency, distribution, etc.)

Constraints: applications are
strictly limited to specific rules

Application Server

Application

Application

Client

(c) 2008, Dan C. Cosma309

A.10 Distributed Software Systems - 10.2 Communication Technologies

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Distributed
Architectures

310

A.10 Distributed Software Systems - 10.3 Distributed Architectures

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Client-server
The most common
architecture

Server: provides a set
of services

Client: uses the
services

The client initiates
the communication

Usually clients are
lighter than servers

Client Server

Client

Client

(c) 2008, Dan C. Cosma311

A.10 Distributed Software Systems - 10.3 Distributed Architectures

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Peer-to-peer

The components are
balanced -- all play
both client and server
roles

Peer

Peer

Peer

Peer

Peer

(c) 2008, Dan C. Cosma312

A.10 Distributed Software Systems - 10.3 Distributed Architectures

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Three Tier
Largely used in
modern enterprise
systems

Presentation: interacts
with the user

Logic (Business): the
main system
functionality (e.g.
algorithms)

Data: models the data
used by Business

Presentation Business Data

Database

User

(c) 2008, Dan C. Cosma313

A.10 Distributed Software Systems - 10.3 Distributed Architectures

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Concurrency

Distributed software systems are inherently
concurrent

This trait comes from two sources:  
- the components: multiple interacting
entities 
- service-related concurrency

314

A.10 Distributed Software Systems - 10.4 Concurrency

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Components acting
together

The components dispersed over the network
communicate to each other, share resources,
etc.

They must coordinate their actions, as much
as any multithread system would have to

The coordination and synchronization is more
difficult than in local systems  
- the reason: they don’t work in the same
environment

315

A.10 Distributed Software Systems - 10.4 Concurrency

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Does synchronized help?

NO...
Node 1

synchronized void writeResource(){...}

Resourc

synchronized void readResource(){...}

Node 2

316

A.10 Distributed Software Systems - 10.4 Concurrency

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Does synchronized help?

... and yes (sometimes)
Node 1

void writeResource(){...}

Resourc

void readResource(){...}

Node 2

synchronized void getResource(){...}

Note: this is
obviously a simplistic

example, yet it
shows an important

aspect to consider

Resource Manager, on Node 3,

responsible for exclusive access

to the resource

317

A.10 Distributed Software Systems - 10.4 Concurrency

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Service-related
concurrency

How many threads are in this program?

public MyClass {

!

...

!

public int doTheWork(Collection parameters) {

 ...

}

!
...

}

318

A.10 Distributed Software Systems - 10.4 Concurrency

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Service-related
concurrency

How many threads are in this program?
public MyServer implements MyRemoteInterface extends UnicastRemoteObject {

!

MyClass cls;

!

public MyServer(...) {

 MyClass cls = new MyClass();

}

!
public int myService(int aParameter) throws RemoteException {

 ...  
 cls.doTheWork(c);

 ...

}

!
...

}

319

A.10 Distributed Software Systems - 10.4 Concurrency

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

How stuff runs

Multiple
clients can call
the service at
the same time

int myService(int aParameter){...}

Client

Client

Client

Client Client

320

A.10 Distributed Software Systems - 10.4 Concurrency

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The answer

It depends on the technology, BUT:

in most cases, a client call translates into
a new thread in the server

this is true in virtually all server
environments: RMI, CORBA, EJB, ...

Therefore,

the services must be designed to be
thread-safe

321

A.10 Distributed Software Systems - 10.4 Concurrency

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Message Infrastructures
(Message-Oriented Middleware)

Java Message Service

322

Intermezzo. Message Infrastructures

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Java Message Service
(JMS)

A specification that enables the
implementation of message services in the
Java environment

JMS in not a service in itself, it is only
adhered to by particular implementations

The implementations (the actual services) are
called JMS providers

323

Intermezzo. Message Infrastructures - i.1 Concepts. Messaging Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Messaging system

A peer-to-peer facility enabling clients to
send and receive messages to each other

The messages are sent to an agent that
intermediates the communication

A messaging system enables loosely coupled
communication between the components
(senders and receivers)

Note: messaging systems are NOT e-mail or chat applications! They
deal with the communication between software components

324

Intermezzo. Message Infrastructures - i.1 Concepts. Messaging Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Messages

The applications communicate by passing
messages to each other

A message is a structured data entity that
basically consists of  
- a header 
- properties (optional, JMS)  
- body

325

Intermezzo. Message Infrastructures - i.1 Concepts. Messaging Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

One architecture...

A JMS provider
provides two types
of resources
(“destinations”)

message queues

topics

JMS API

JMS API

Queue

Queue

Topic Topic

Client

Client

Client

Client

JMS
API

send receive

publish

subscribe
JMS Provider

326

Intermezzo. Message Infrastructures - i.1 Concepts. Messaging Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

... two messaging
domains

JMS supports the two main messaging
models:

Point-to-point

Publish-subscribe

327

Intermezzo. Message Infrastructures - i.1 Concepts. Messaging Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Point-to-point

Gravitates around the concept of message
queues

Senders send messages to a specific queue,
thus specifying the intended receiver

Receivers monitor their respective queues
and consume the messages

328

Intermezzo. Message Infrastructures - i.1 Concepts. Messaging Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Point-to-point
A message is
consumed only by
one receiver

The sender does not
wait for the receiver

The receiver
acknowledges the
successful processing
of the message

Queue ReceiveSender

Consumes

Acknowledges

Messages can be consumed both synchronously and
asynchronously 329

Intermezzo. Message Infrastructures - i.1 Concepts. Messaging Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Publish-subscribe
The message is sent to a topic by a
publisher client (the equivalent of a
sender)

Multiple receivers, called subscribers
may consume the message

Subscribers specify the messages they
are interested in, by describing message
selectors

The message consumption can be done
both synchronously and asynchronously

Topic

Subscribe

Subscribe

Subscribe

Publisher

330

Intermezzo. Message Infrastructures - i.1 Concepts. Messaging Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

JMS API Programming
Model

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial331

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Administered objects

Connection Factories and Destinations

Are managed administratively, rather than
programatically

The administrative details vary from vendor
to vendor (providers)

The access to the resources is done through
portable interfaces 
-> clients are easily adapted to different
providers

332

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Connection Factories

Create a connection with a JMS provider

Two types defined in J2EE: 
- QueueConnectionFactory 
- TopicConnectionFactory

333

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Creating and connecting
to the factories

Context ctx = new InitialContext(); //get the JNDI context; searches

 //the classpath for a vendor-specific jndi.properties file

!
QueueConnectionFactory queueConnectionFactory =

 (QueueConnectionFactory) ctx.lookup("QueueConnectionFactory");

!
TopicConnectionFactory topicConnectionFactory =

 (TopicConnectionFactory) ctx.lookup("TopicConnectionFactory");

$ j2eeadmin -addJmsFactory jndi_name queue

$ j2eeadmin -addJmsFactory jndi_name topic

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial334

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

JMS Destinations

A Destination specifies the target/source of
the messages: queues or topics

Destinations are created through
administration:  
j2eeadmin -addJmsDestination queue_name queue 
j2eeadmin -addJmsDestination topic_name topic

Clients can connect using the standard API:  
Queue myQueue = (Queue) ctx.lookup("MyQueue");  
Topic myTopic = (Topic) ctx.lookup("MyTopic");

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial335

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Connections
Represent the connection with the JMS
provider

Two types: QueueConnection, TopicConnection

QueueConnection queueConnection =

 queueConnectionFactory.createQueueConnection();

...

queueConnection.close();

!
!
TopicConnection topicConnection =

 topicConnectionFactory.createTopicConnection();  
...

topicConnection.close();

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial336

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Sessions

A session represents a single-threaded context
that produces or consumes messages

Provides support for transactions

Serializes the execution of message listeners

Two types: QueueSession, TopicSession  
TopicSession topicSession = topicConnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);//non-transacted, automatic  
 //message acknowledgement

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial337

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Message Producers

Produce messages that are sent to a
Destination

Two types: QueueSender, TopicPublisher

QueueSender queueSender = queueSession.createSender(myQueue);

TopicPublisher topicPublisher = topicSession.createPublisher(myTopic);  

...

queueSender.send(message);

...  
topicPublisher.publish(message);

...

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial338

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Message Consumers

An object capable of receiving messages

Two types: QueueReceiver, TopicSubscriber

The message consumption can be done:  
- synchronously 
- asynchronously

Topic subscribers can be made durable (can
receive messages that occurred when they
were inactive)

339

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronous
message consumption

Messages are not delivered until the connection
is started

QueueReceiver queueReceiver = queueSession.createReceiver(myQueue);

!
TopicSubscriber topicSubscriber = topicSession.createSubscriber(myTopic);

!
queueConnection.start();

Message m = queueReceiver.receive();

!
topicConnection.start();

Message m = topicSubscriber.receive(1000); // time out after a second

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial340

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Asynchronous
message consumption

To receive messages asynchronously, the
application can define message listeners

A listener implements the MessageListener
interface:  
public interface MessageListener { 
 public void onMessage(Message message);  
}

The listener is associated with a consumer
TopicListener topicListener = new TopicListener();

topicSubscriber.setMessageListener(topicListener);

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial341

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Message Selectors
Can be used for filtering the messages that
arrive to a consumer

The filtering is done by the JMS provider, not
by the application

The selectors are specified as statements in a
subset of SQL92 conditional expression syntax

Selectors can be passed as arguments to the
createReceiver, createSubscriber, and
createDurableSubscriber methods

342

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Messages

A message consists of: header, properties,
body

There are 5 types of messages defined by
the API:  
- TextMessage: the body is a text (e.g. XML)  
- MapMessage: a set of name/value pairs  
- BytesMessage: a stream of bytes  
- StreamMessage: a stream of primitive Java
values, filled and read sequentially 
- ObjectMessage: a Serializable object

source: Sun JMS Tutorial, http://java.sun.com/products/jms/tutorial343

Intermezzo. Message Infrastructures - i.2 JMS API Programming Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Part B. Event-Based
Programming

Introduction

344

B. Event-Based Programming

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Definition
A programming paradigm where the flow of
the program is determined by the occurrence
of events

The programs are concerned with two main
tasks:

Event detection

Event handling

There is (usually) no main() program section,
no single entry point in the program

345

B.1 Introduction - 1.1 The Context

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Architectural overview

Event selection
and dispatchingEvents

Event

handler

Event

handler

Event

handler

Event

Event

Event-based program

Event

346

B.1 Introduction - 1.2 Architectural Overview

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event sources

The events can be generated by various
types of sources:

User interfaces

Hardware sensors

External devices

Processes and threads

Operating system components
347

B.1 Introduction - 1.2 Architectural Overview

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example: Monitoring
your home

A modern home...

348

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example: Monitoring
your home

A modern home...

...that runs software

System.out.println(“Antiterrorist household”);

while(house is safe) {

 Guest[] guests = allowGuests(toEnter);

 giveFoodAndDrink(guests);

 ArrayList answers = askQuestions(guests);

 saveOutrageousAnswers(answers);

 notifyAuthorities();

 consumeReward();

}

349

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event Sources

Door
sensor

350

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event Sources

Door
sensor

Door
sensor

Door
sensorDoor

sensor
Fire

detector

351

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event Sources

Fire
detector

Door
sensor

Door
sensor

Door
sensorDoor

sensor

Fire
detectorFire

detector

Fridge
monitor

352

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event Sources

Fire
detector

Door
sensor

Door
sensor

Door
sensorDoor

sensor

Fire
detectorFire

detector

Fridge
monitor TV Guide

Reader BotTV Guide
Reader Bot

TV Guide
Reader BotTV Guide

Reader Bot

TV Guide
Reader BotOther

Sensors
Other
Sensors

Other
Sensors

Bird Watcher

353

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event Sources

The event
sources must
be identified

They usually
generate
useful,
asynchronous
events

Fire
detector

Door
sensor

Door
sensor

Door
sensorDoor

sensor

Fire
detectorFire

detector

Fridge
monitor TV Guide

Reader BotTV Guide
Reader Bot

TV Guide
Reader BotTV Guide

Reader Bot

TV Guide
Reader BotOther

Sensors
Other
Sensors

Other
Sensors

Bird Watcher

354

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Note:

We are talking about software, therefore:

The event sources are, for example, the
programs controlling/monitoring the
sensors

The events can be modeled in various
ways: messages, signals, constants used as
parameters, etc.

355

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Events
Fire Detector: 
 FIRE_DETECTED  
 FIRE_EXTINGUISHED

Fridge Monitor:  
 DOOR_OPEN  
 DOOR_CLOSED  
 BEER_ALERT 
 NO_MORE_BEER

Door Sensor: 
 DOOR_OPEN  
 DOOR_CLOSED  
 DOOR_SMASHED

TV Guide Reader Bot: 
 SHOW_STARTS  
 SHOW_WILL_START_SOON  
 SHOW_ENDS 
 TV_GUIDE_SHREDDED

Bird Watcher:  
 BIRD_ON_ROOF 
 BIRD_SCARED

Other sensors 
 NIGHT_DETECTED  
 DAY_DETECTED  
 PERSON_ASKS_QUESTION  
 ...  

356

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event selection and
dispatching

An example of direct, hardcoded dispatcher
while((event=readEvent()) != null) {

 switch(event) {

 case FIRE_DETECTED, FIRE_EXTINGUISHED:

 callFireHandler(event); break;

 case BIRD_ON_ROOF:

 popUpScarecrow(scarecrowObject, event);

 case DOOR_OPEN, DOOR_CLOSED:

 if(event.source() == Sources.FRIDGE)

 callFridgeAlerter(event);

 else

 callDoorHandler(event);

 break;

 ...

 }

} 357

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event handler
registration

An example where handlers are dynamically
registered to the dispatcher, allowing for
flexibility

public interface Registration {

 void registerHandler(String eventType, Handler handler);

}

public interface Handler {

 void handleEvent(Event event);

}

public class Dispatcher implements Registration {

 ...

 private void mainLoop() {

 while((event=readEvent()) != null) {

 handlers.get(event.type()).handleEvent(event);

 }

 }

}

358

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event Handlers
The event handlers must be small, and
return quickly

public class FridgeHandler implements Handler {

 void handleEvent(Event event) {

 switch(event.getEventId()) {

 case BEER_ALERT:

 startBeerBuyerThread(); break;

 case DOOR_OPEN:

 startChimeAlarmThread(); break;

 ...

 case NO_MORE_BEER:

 startSeriousAlarmThread(); break;

 ...

 }

 }

}

public class BirdWatcherHandler implements Handler {

 void handleEvent(Event event) {

 switch(event.getEventId()) {

 case BIRD_ON_ROOF:

 startBirdAlarm();

 startScarecrowThread();

 break;

 case BIRD_SCARED:

 turnOffBirdAlarm();

 break;

 ...

 }

 }

}

359

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

End of example

X

360

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Events and notifications

Definitions (T. Faison):

Event: a detectable condition that can
trigger a notification

Notification: event-triggered signal sent to
a runtime-defined recipient

Event: the cause; Notification: the effect

source: Event-Based Programming. Taking Events to the Limit361

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The event

“A detectable condition...”

Not all conditions detectable in a program
qualify as events

The condition’s nature must be so that it
necessarily causes a notification to a
runtime recipient

The events occur mainly asynchronously,
and drive the flow of the program

362

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The notification

The notifications are the carriers of events
to the intended recipient

There are two types of notifications:

through data transfer

through transfer of execution control

363

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The notification

Data transfer:

A message created by the sender and
sent  
- directly to the receiver, or  
- to a resource that is shared with the
receiver (pipe, shared memory, network
connection, OS service, etc.)

Transfer of execution control:

Local or remote procedure/method call
364

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Chains of notifications

The notifications can trigger new events

Chains of events and notifications can form
during runtime

source: Event-Based Programming. Taking Events to the Limit365

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Programming support

Object-oriented languages and APIs support
notification through specific mechanisms

Java: typed event listeners

Notification is also supported by separate
services:  
- Message-oriented infrastructures (e.g.
JMS)  
- Operating system services (e.g. signals)

366

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Terminology

The entity that detects events: 
-> event publisher, event source, sender

The entity that receives notifications:  
-> event subscriber, event handler,
notification target, notification receiver,
receiver

The act of sending notifications  
-> sending the notification, firing the event

367

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Terminology

There are many cases where the notification
(the act of informing the recipient) is
assimilated (as a term) with the event (the
condition that occurred)

Usually, the event is part of the notification,
as its payload  
-> e.g., the event is described in the
message content, or in the method
parameters

368

B.1 Introduction - 1.3 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event subscription

369

B.2 Event Subscription

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event Subscription

The process of linking the sender of events
with the receiver

The subscriber declares  
- it needs the future notifications from the
sender 
- the types of events it is interested in

The subscription process is done at runtime

370

B.2 Event Subscription - 2.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event Subscription

A subscriber can subscribe to multiple types
of events from the same publisher

An event can have multiple subscribers

There can be events with no subscribers

371

B.2 Event Subscription - 2.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Subscription types

Direct Delivery 
-> The subscriber and publisher are linked
directly, both for the subscription process,
and for firing of events

source: Event-Based Programming. Taking Events to the Limit372

B.2 Event Subscription - 2.2 Subscription Types

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Subscription types

Indirect delivery

Useful in systems where the number of
subscriptions is large, or the process of
notification is costly

The notification task is delegated to a
middleware system

The middleware system is responsible for
filtering and routing the notifications

373

B.2 Event Subscription - 2.2 Subscription Types

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Subscription types

Indirect delivery

The subscriber interacts only with the
middleware, both for subscription, and
with the notification

source: Event-Based Programming. Taking Events to the Limit374

B.2 Event Subscription - 2.2 Subscription Types

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Binder agents
There are cases when the subscriber must
be kept uncoupled with a sender or a
middleware system

Separate binder agents can be used, with
the purpose of making the subscriptions on
behalf of the receiver

The binder is coupled with both the
publisher and subscriber

The subscriber can be decoupled from both
the publisher and the binder

375

B.2 Event Subscription - 2.3 Binder Agents

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Binder agents

Binder agents can be used for both
subscription types

source: Event-Based Programming. Taking Events to the Limit376

B.2 Event Subscription - 2.3 Binder Agents

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Subscription Models

377

B.2 Event Subscription - 2.4 Subscription Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Subscription Models

Describe the way the subscriber identifies
the events of interest

There are four basic models:  
- Channel 
- Type  
- Filter  
- Group

378

B.2 Event Subscription - 2.4 Subscription Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The Subscription Models
Hierarchy

source: Event-Based Programming. Taking Events to the Limit379

B.2 Event Subscription - 2.4 Subscription Models

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Channels

380

B.2 Event Subscription - 2.4 Subscription Models - 2.4.1. Channels

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Channels

The channel = the physical or abstract
construct through which notifications are
routed from the publisher

Direct Delivery: The publisher is responsible
for mapping the events to the various
channels

Indirect Delivery: The middleware is
responsible for mapping the events to the
various channels

381

B.2 Event Subscription - 2.4 Subscription Models - 2.4.1. Channels

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Channels

The publishers can provide one or more
channels

The channels can carry different types of
notifications, corresponding to different
types of events

382

B.2 Event Subscription - 2.4 Subscription Models - 2.4.1. Channels

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Channel types
Single channel, carrying all notifications

One channel per
notification type

Multiple channels, multiple notifications

source: Event-Based Programming. Taking Events to the Limit383

B.2 Event Subscription - 2.4 Subscription Models - 2.4.1. Channels

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

A news service

source: Event-Based Programming. Taking Events to the Limit384

B.2 Event Subscription - 2.4 Subscription Models - 2.4.1. Channels

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification channelizers

When the process of mapping channels to
events is complex, the task can be delegated
to a specialized component

source: Event-Based Programming. Taking Events to the Limit385

B.2 Event Subscription - 2.4 Subscription Models - 2.4.1. Channels

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Types

386

B.2 Event Subscription - 2.4 Subscription Models - 2.4.2. Types

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Types
The method of distinguishing events by
assigning them types

Types can be denoted by

Fields in a message header

The types of the event generators (e.g.
buttons, windows, mouse)

The type of the actions that lead to
events (e.g., resized, clicked, moved, etc.)

... 387

B.2 Event Subscription - 2.4 Subscription Models - 2.4.2. Types

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Filters

388

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Filters

A method to specify the subset of the
events of interest by specifying complex
conditions

The subscriber specifies an expression that
describes the filtering rules

The events that match the filtering rules are
accepted by the receiver

389

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Filters

The filtering can be done by the publisher, so
that only the relevant notifications are sent
to the subscriber

source: Event-Based Programming. Taking Events to the Limit390

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Filters and channels

The filters can be combined with channels, as
two parts of the subscription

source: Event-Based Programming. Taking Events to the Limit391

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Filtering responsibility

Filtering can be computationally intensive,
and can be delegated to separate
components, along with the channeling task

source: Event-Based Programming. Taking Events to the Limit392

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Types of filtering

There are several possible types of
specifying the filters

Content filtering

Attribute filtering

Sequence filtering

Translation Filtering

393

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Content filtering

Applies in the cases where the notifications
carry content related to the events

The filters are specified as conditions
regarding the content of the notification
payload (e.g., text occurrences, regular
expression matches, etc.)

Content filtering is usually computationally-
intensive

394

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Attribute filtering

Applies when the events can be identified as
having a set of attributes

Also known as topic-based or subject-based
filtering

The attributes are  
- either specified at the source and inserted
in an event header, or 
- computed by the notification service, based
on various criteria (content, history, patterns,
etc.)

395

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Examples

Source-side filtering

filtering the news by location, news
provider, and date

Computed filtering

requesting a notification when the value of
a stock exchange item raised with a
certain percentage

396

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Sequence filtering

Subscriptions that specify temporal
constraints between the events of interest

Can be used in conjunction with content and
attribute filtering or channels

397

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

A sports information system, and a
subscriber interested in

football scores for a certain team

but only if the previous 3 matches were
won by the team’s competitors

398

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Translation Filtering
Filtering rules that imply the transformation
of the event-related information:

altering the content (e.g. language
translations)

altering the notification type (e.g.
notifications of type a, b, c are considered
similar, and converted to a type d)

altering the sequence: send a notification
when a certain sequence of events has
occurred in a row

399

B.2 Event Subscription - 2.4 Subscription Models - 2.4.3 Filters

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Groups

400

B.2 Event Subscription - 2.4 Subscription Models - 2.4.4 Groups

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Groups

When subscribers are interested in the same
events, they can be grouped

Grouping simplifies the notification delivery

A group can be seen as a virtual subscriber
that replaces the several entities it contains

source: Event-Based Programming. Taking Events to the Limit401

B.2 Event Subscription - 2.4 Subscription Models - 2.4.4 Groups

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Grouping

Grouping can be done at different levels:

The publisher determines the group by
information it has about the subscriber
(type, role, etc.)

The notification infrastructure determines
the group based on its known properties
(connection speed, location, etc.)

The subscriber explicitly joins a group

402

B.2 Event Subscription - 2.4 Subscription Models - 2.4.4 Groups

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Grouping

Groups can overlap, or contain other groups

Groups can be of several types:  
- Predefined: defined by the publisher or the
notification service  
- Implicit: set up automatically when two or
more subscribers request the same events 
- Explicit: created at runtime, explicitly 
- Location groups: determined by the
subscriber’s location in a distributed system

403

B.2 Event Subscription - 2.4 Subscription Models - 2.4.4 Groups

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Subscription policies

Determine the

rights for subscribing

the (maximum) duration of subscription

the way subscriptions can be modified

the number of subscriptions for each
subscriber

...
404

B.2 Event Subscription - 2.5 Subscription Policies

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification Delivery

405

B.3 Notification Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification Delivery
The process of getting a notification from
the publisher to the subscriber

Its complexity depends on the nature of the
connection established between the parties 
- the distance between them  
- the middleware systems that may be
involved 
- the delivery protocol

Different traffic patterns -> different
notification architectures

406

B.3 Notification Delivery - 3.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Questions to answer for
choosing an architecture

Should delivery be centralized or not?

Do we need to use shared resources?

Is a messaging service needed?

Should we use complex distributed
architectures (e.g. distributed shared
memory)?

Do we need scalability? Is architecture X
scalable?

407

B.3 Notification Delivery - 3.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Layered models

In all non-trivial systems the notifications
are delivered indirectly, and usually can be
described by a layered model

source: Event-Based Programming. Taking Events to the Limit408

B.3 Notification Delivery - 3.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Delivery Protocol

The rules controlling the interaction between
the top layer and the middleware

Define how the notifications and their
payload are transmitted, from the
perspective of the clients (senders,
receivers)

409

B.3 Notification Delivery - 3.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Two techniques

There are basically two techniques for
sending notifications:

through data transfer 
-> implies shared resources

through transfer of execution control 
-> implies local or remote procedure calls

410

B.3 Notification Delivery - 3.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Protocols
Each of the two techniques can be used to
describe specialized protocols

source: Event-Based Programming. Taking Events to the Limit411

B.3 Notification Delivery - 3.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification by data
transfer

412

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification by data
transfer

A shared resource is implied

Publishers send data to the resource

Subscribers receive data from the resource

413

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification by data
transfer

The sender uses a push action to write the
data to the resource

The receiver uses a pull action to receive
the data from the resource

source: Event-Based Programming. Taking Events to the Limit414

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification by data
transfer

The sender and receiver run in different processes 
-> the delivery is usually asynchronous

The parties usually communicate through messages

A very common scenario:  
-> The sender writes, then continues its work without
blocking 
-> Later, the receiver detects the data and processes
it  
-> In some cases, a confirmation is sent to the sender 
 -> the sender receives it asynchronously, becoming
a receiver for the respective message

415

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Types of shared
resources

Depend on the hardware and software
configurations in use

They can be:  
- shared memory  
- shared files, pipes  
- IPC primitives (e.g. message queues,
semaphores) 
- Network connections  
- ...

416

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Using shared resources
Shared resources are commonly used, especially in
distributed systems

Advantages: 
- no transfer of execution control is involved  
 -> the sender does not depend on the behavior
of the receiver, even in extreme cases (e.g. the
receiver crashes) 
- have a built-in level of security: the parties do
not have access to each other’s data

- can work when the receiver is not present (it can
get the data later)

417

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Shared files

One of the simplest methods of sending
notifications

Easy to implement when the parties share a
common filesystem

May imply synchronization issues

418

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Scenario 1

A single file, for one notification

Sender: creates the file, writes the
notification, closes the file

Receiver: checks for the existence of the
file, reads, deletes the file

Drawback: only one notification at a time

419

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Scenario 1

Modification: multiple files, their name
following a pattern

Drawbacks: inefficient, can generate too many
files, awkward implementation

source: Event-Based Programming. Taking Events to the Limit420

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Scenario 2

A single shared file, notifications are
appended to it

Drawback: needs synchronization

source: Event-Based Programming. Taking Events to the Limit421

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Shared memory

Effective in  
parallel/
multiprocessor
systems, which
implement shared
memory in hardware

Shared

Memory

CP
U

CP
U

CP
U

CP
U

Local

Memory

Local

Memory

Local

Memory

Local

Memory

Bus

422

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Shared memory

Regardless the hardware architecture,
shared memory is provided by all modern
operating systems (e.g. System V IPC)

Processes can create and access shared
memory resources, and use them to send
notifications

Synchronization is necessary, at least
through mutual exclusion

423

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Distributed shared
memory

The shared memory can become a bottleneck
for the system, when the number of
processors is large

The distributed shared memory model
provides a way of decentralizing the memory
access

It applies both to parallel machines, and to
distributed systems

424

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Distributed shared
memory

Each participant system
can map a portion of its
memory into a distributed
shared memory

The distributed shared
memory works like a
virtual memory area: the
processes do not need to
know where the data
actually resides

source: Event-Based Programming. Taking Events to the Limit425

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Semaphores

Primitives provided by the operating systems,
that can be shared among processes

The semaphores can be used as notification
tools

source: Event-Based Programming. Taking Events to the Limit426

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification stealing
Using semaphores to model events can lead
to a serious delivery problem: notification
stealing

Scenario: Processes A, B as subscribers  
- Sender calls signal() twice to notify both 
- A is not yet blocked (is busy, didn’t call
wait()  
- B unblocks, and possibly calls wait() again,
before A  
- A will never receive the notification  
 
SOLUTION: use separate semaphores

427

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Another drawback

A specific drawback of using semaphores in
event-driven contexts:  
-> the notification cannot carry a payload

Consequences:

cannot be used for complex event
architectures

cannot be used for implementing
subscription filters, selectors, etc.

428

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Out-of-band channels

Term used for various types of
communication systems

Out-of-band channel = a separate delivery
channel used to complement an existing one

Example: TV broadcasting uses separate
channels for subtitles or program guides

429

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Out-of-band channels

In the event-based context, it implies  
- a channel that delivers the notification  
- a channel that delivers the notification
payload

source: Event-Based Programming. Taking Events to the Limit430

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Usage of out-of-band
channels with semaphores

The payload must be written to the
secondary resource before the notification is
sent through the semaphore

source: Event-Based Programming. Taking Events to the Limit431

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Serialized connections

Serialization: breaking down a data structure
into a sequence of bytes

Serialized connection: a connection that
transfers serialized data

Examples: pipes, sockets

source: Event-Based Programming. Taking Events to the Limit432

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Serialized connections
In the event-based context, using serialized
connections implies the following steps:

Sender:  
- create the notification as a data
structure - marshall the data 
- send it through the connection

Receiver:  
- receive the data 
- unmarshall the data  
- read the notification

433

B.3 Notification Delivery - 3.2 Notification by data transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification by
procedure calls

434

B.3 Notification Delivery - 3.3 Notification by execution transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Procedure calls

Can be used for delivering notifications by
transferring the execution control from the
sender to the receiver

The notification payload is represented by
the procedure parameters

Can be  
 - local, as direct calls 
 - remote, through specialized
infrastructures (RPC, RMI, CORBA, etc.)

435

B.3 Notification Delivery - 3.3 Notification by execution transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example: RMI

Client

Stub

Java Virtual Machine

Network

Server

Skeleton

Java Virtual Machine

Naming
Service

(RMI Registry)
registration

lookup

436

B.3 Notification Delivery - 3.3 Notification by execution transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Sender and receiver

In event-based systems, the parties involved
in communication are established at runtime

For this purpose, the architecture may use
various patterns for creating the publishers
and registering the subscribers

437

B.3 Notification Delivery - 3.3 Notification by execution transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example: the Observer
pattern

source: Design Patterns438

B.3 Notification Delivery - 3.3 Notification by execution transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronicity

Procedure calls are inherently synchronous

Through various techniques, asynchronous
delivery can also be implemented:  
-> example:  
 - the notification call returns immediately
so that the sender can continue its work  
 - the sender may register a handler for
receiving the delivery confirmation  

439

B.3 Notification Delivery - 3.3 Notification by execution transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Using direct procedure calls
Advantages: 
- simple computing model, using familiar, language-
specific constructs 
- easy way of including the payload 
- easy error handling (through exceptions)

Disadvantages:  
- usually the receiver must run at the same time as
the sender 
- the sender depends on the receiver’s behavior 
- data safety issues: passing references to local
sender objects, etc.  
- parameter passing may imply costly data marshaling

440

B.3 Notification Delivery - 3.3 Notification by execution transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Indirect procedure calls

To avoid some of the disadvantages, the sender
and receiver can be decoupled by using an
intermediary service (middleware)

The indirect delivery systems:  
- can deliver notifications even when the sender
and receiver do not run at the same time  
- makes the sender independent on the receiver 
- can avoid data safety by using copies of the
original data

441

B.3 Notification Delivery - 3.3 Notification by execution transfer

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification
Architectures

442

B.4 Notification Architectures

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification
Architectures

Describe the infrastructure used for
delivering the notifications from the sender
to the receiver

source: Event-Based Programming. Taking Events to the Limit443

B.4 Notification Architectures

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Direct Delivery

Also known as point-to-point

The architecture is simple, the publisher
directly sends the notification to the
interested receivers

Disadvantage: not scalable, the sender’s
performance is affected when many
receivers are registered

444

B.4 Notification Architectures - 4.1 Direct Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Peer-to-Peer Delivery

A special case of
direct delivery

Solves the scalability
issues by introducing
decentralization

Each node can be
both publisher and
subscriber of events

Peer

Peer

Peer

Peer

Peer

445

B.4 Notification Architectures - 4.1 Direct Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Peer-to-Peer Delivery
How does it work: 
- each node maintains a
routing table identifying its
neighbors 
- when a notification must
be sent to several peers,
the sender only sends it to
the neighbors 
- new peers can be added
through a specific discovery
process that finds neighbors
for the new node

Peer

Peer

Peer

Peer

Peer

446

B.4 Notification Architectures - 4.1 Direct Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Indirect Delivery

A middleware system is involved

Senders send messages to the middleware
system, receivers use the middleware by
registering for event notifications

The communication is usually asynchronous:
the sender does not wait for the receiver

447

B.4 Notification Architectures - 4.2 Indirect Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Centralized
Indirect Delivery

A single delivery service is used

Clients connect to the service and send or
receive messages

Two types of delivery:

Notification services

Messaging services

448

B.4 Notification Architectures - 4.2 Indirect Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification services

Use the publish/subscribe model

Receivers subscribe for events, senders send
notifications

The subscription and filtering are handled by
the service

449

B.4 Notification Architectures - 4.2 Indirect Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Messaging services

Use the point-to-point model, usually imply
message queues

In most cases, a queue represents a single
receiver

Hybrid publish/subscribe - point-to-point
scenarios can be used: the receivers can
subscribe to the service, the senders send
notifications without specifying the receivers

450

B.4 Notification Architectures - 4.2 Indirect Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example: JMS

Both notification and messaging services are
provided

JMS API

JMS API

Queue

Queue

Topic Topic

Client

Client

Client

Client

JMS
API

send receive

publish

subscribe
JMS Provider

451

B.4 Notification Architectures - 4.2 Indirect Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Distributed
Indirect Delivery

The middleware system can become a
bottleneck

Distributed delivery systems can be
developed and used to avoid this

The system is made of several components,
each capable of handling multiple senders
and receivers

452

B.4 Notification Architectures - 4.3 Distributed Indirect Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

A string of delivery components

source: Event-Based Programming. Taking Events to the Limit453

B.4 Notification Architectures - 4.3 Distributed Indirect Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Example

The delivery system as a tree of components,
or as a graph

The graph provides connection redundancy
source: Event-Based Programming. Taking Events to the Limit454

B.4 Notification Architectures - 4.3 Distributed Indirect Delivery

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Sending Notifications

455

B.5 Sending Notifications

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Delivery Synchrony

The event-based systems can use both types
of delivery:  
- synchronous 
- asynchronous

Each method has its advantages and
disadvantages

456

B.5 Sending Notifications - 5.1 Delivery Synchrony

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronous delivery

Advantages

simplicity

easy notification of event receipt

no concurrency

Disadvantages

high sender-receiver coupling

no concurrency
457

B.5 Sending Notifications - 5.1 Delivery Synchrony

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronous delivery
Easy to implement with procedure calls

With shared resources, a secondary resource
must be used to provide synchronicity:

source: Event-Based Programming. Taking Events to the Limit458

B.5 Sending Notifications - 5.1 Delivery Synchrony

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Asynchronous delivery

Two scenarios are available

the sender is not interested in the
receiver’s processing of the event

the sender needs feedback from the
receiver

459

B.5 Sending Notifications - 5.1 Delivery Synchrony

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Asynchronous delivery
The response from the receiver can be

synchronous (e.g. receiver calls a method
provided by the sender)

asynchronous (e.g. receiver notifies the
sender via a secondary shared resource -
see Figure:)

source: Event-Based Programming. Taking Events to the Limit460

B.5 Sending Notifications - 5.1 Delivery Synchrony

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Asynchronous delivery

Advantages: 
- sender and receiver are loosely coupled 
- events are processed as soon as possible

Disadvantages  
- complex architectures  
- concurrency issues

461

B.5 Sending Notifications - 5.1 Delivery Synchrony

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Delivery Fanout

462

B.5 Sending Notifications - 5.2 Delivery Fanout

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Delivery Fanout

Term borrowed from the digital logic field:
the maximum number of inputs an output
signal can be connected to

Event-based context: the number of
receivers a sender can notify

Two types:  
- unicast (only one receiver) 
- multicast (several receivers)

463

B.5 Sending Notifications - 5.2 Delivery Fanout

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Quality of Service

464

B.5 Sending Notifications - 5.3 Quality of Service

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Quality of Service

Defines a set of options a delivery system
provide in respect to issues as:  
- reliability 
- priority 
- timing  
- throughput  
- order

465

B.5 Sending Notifications - 5.3 Quality of Service

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Reliability
How hard does the system try to deliver a notification?

at most once - sometimes (e.g. if the receiver is not
online) notifications may be lost

exactly once - always attempts sending, but only
one time

at most n times

best effort - keep trying until a condition (e.g.
timeout, number of retries) occurs

certified delivery - specifies whether the delivery
failed or not 466

B.5 Sending Notifications - 5.3 Quality of Service

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Priority

Notifications are prioritized based on

the notification type

the senders

the receivers

467

B.5 Sending Notifications - 5.3 Quality of Service

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Timing

Option to specify time constraints for
delivering the notifications

If the constraints couldn’t be met, the
notification is considered undeliverable, and
discarded

468

B.5 Sending Notifications - 5.3 Quality of Service

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Throughput

How much information a receiver gets per
time

Useful as an option when the bandwidth is
limited, and the delivery service implies
different costs

469

B.5 Sending Notifications - 5.3 Quality of Service

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Order

Specifies the order in which queued
notifications are sent

Any - the order is not important

FIFO

Priority-based

Deadline - notifications that expire soon
are sent first

470

B.5 Sending Notifications - 5.3 Quality of Service

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Transactions

In some cases, a sequence of notifications
must be delivered atomically

Two types of transactions:

a single receiver must get all the
notifications in a transaction

all receivers in a set must receive the
notifications before the transaction is
committed

471

B.5 Sending Notifications - 5.3 Quality of Service

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification Payload

472

B.6 Notification Payload

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification Payload

The information carried by the notification
that  
- describes the event  
- enables the receiver to continue without
consulting with the sender

473

B.6 Notification Payload

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Concerns

The type of delivery (shared resource,
procedure call) may impose constraints on
the payload in its 
 - size  
 - transfer throughput  
 - transfer latency 
 - transfer reliability

The system must balance the  
- payload size, vs. 
- notification frequency

474

B.6 Notification Payload - 6.1 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notifications sent using
shared resources

The notifications are in fact messages

Messages: headers+body

source: Event-Based Programming. Taking Events to the Limit475

B.6 Notification Payload - 6.1 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notifications sent using
procedure calls

The payload: the arguments of the
procedure

The arguments usually specify:  
- event source  
- event type  
- event data

476

B.6 Notification Payload - 6.1 Concepts

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

String-Based Payloads

The simplest type of notification payload

It is flexible enough for many applications

Can also be used for structured data (e.g.
XML)

477 source: Event-Based Programming. Taking Events to the Limit

B.6 Notification Payload - 6.2 Types of Payloads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Record-Based Payload

The data is stored in structured records

It is easy and efficient to use

The recipient must know the offset, type,
size and meaning of each field

478 source: Event-Based Programming. Taking Events to the Limit

B.6 Notification Payload - 6.2 Types of Payloads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Object Payloads

Objects (including the sender object) can be
passed as arguments to procedure calls. This
imposes some constraints:  
- the type of the objects must be shared
between the sender and receiver 
- for remote calls the objects must be
serializable when marshaling is needed

479

B.6 Notification Payload - 6.2 Types of Payloads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Object arguments

Passing an object reference (e.g. the sender):  
- may lead to problems or complicated
approaches regarding object publication  
- objects sent as references may need to be
immutable (they MUST be for multicasting) 
- object ownership must be clearly defined
and handled 
- the usage of the object by the receiver
may imply inefficient interactions between
the object and the receiver

480

B.6 Notification Payload - 6.2 Types of Payloads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Coupling problems

When sending object references, an
important problem regards the coupling
between the entities related to the sender
and receiver

Because of the notification payload, the
system may imply unwanted, newly added
couplings

481

B.6 Notification Payload - 6.3 Coupling Problems

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Coupling problems

Example: a set of scenarios of component
coupling

Because of the type coupling, components
become coupled artificially

482

B.6 Notification Payload - 6.3 Coupling Problems

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Coupling problems
No problem here: the scenario does not add
new inter-component couplings

source: Event-Based Programming. Taking Events to the Limit483

B.6 Notification Payload - 6.3 Coupling Problems

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Coupling problems
New coupling added: receiver component (C2)
depends on sender (C1)

source: Event-Based Programming. Taking Events to the Limit484

B.6 Notification Payload - 6.3 Coupling Problems

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Coupling problems
New coupling added: sender component (C1)
must know the type MyType defined in C2

source: Event-Based Programming. Taking Events to the Limit485

B.6 Notification Payload - 6.3 Coupling Problems

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Coupling problems
New couplings added: sender and receiver
components must know the type MyType
defined in another component (C3)

source: Event-Based Programming. Taking Events to the Limit486

B.6 Notification Payload - 6.3 Coupling Problems

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification forwarding

A particular usage of objects as notification
payloads

Defines a pattern of implementing notification
multicasting using delegation

source: Event-Based Programming. Taking Events to the Limit487

B.6 Notification Payload - 6.4 Payload-Based Patterns - 6.4.1 Notification Forwarding

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Notification forwarding

The processing in the forwarding chain can
be done in two ways

source: Event-Based Programming. Taking Events to the Limit488

B.6 Notification Payload - 6.4 Payload-Based Patterns - 6.4.1 Notification Forwarding

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Envelopes

Also known as collector objects

A pattern allowing the gathering of results
from receivers, by including in the payload a
reference to an envelope object

489

B.6 Notification Payload - 6.4 Payload-Based Patterns - 6.4.2 Envelopes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Envelopes
The pattern

The Add() method is called by the receivers to add
their specific result

The envelope object is passed to all subscribers of
the respective event

The receivers cannot modify the data except by
adding their own result

490

B.6 Notification Payload - 6.4 Payload-Based Patterns - 6.4.2 Envelopes

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Composite payloads
A method of increasing the delivery
performance by carrying the data for
multiple events in a single payload

The sender stores a buffer of notifications
and sends them only when possible/needed

Two types of composite payloads  
- uniform (sequences of payloads for a single
type of notification)  
- heterogenous (sequences of payloads for
any type of notification)

491

B.6 Notification Payload - 6.5 Composite Payloads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Composite payloads

Uniform composite payloads 
- the sender analyzes the buffered
notifications and groups the payloads for the
same event type  
- drawback: notifications may be sent in
noncausal order  
 example: T1 T2 T1 T2 --> T1 T1 T2 T2

492

B.6 Notification Payload - 6.5 Composite Payloads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Composite payloads

Heterogenous composite payloads  
- the sender groups the buffered
notifications regardless of event type  
- advantage: sends the notifications in the
correct, causal order 
- drawback: expensive, each payload must be
tagged with the notification type

493

B.6 Notification Payload - 6.5 Composite Payloads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Payload coalescing

A variation of composing payloads

When the sequence of events E1 and E2 has
the same effect as the occurrence of an
event E3, only the notification for E3 is sent

Example: in a GUI, merging multiple paint
events in a single (more complex) one to
improve drawing performance and avoid
screen flickering due to frequent repainting

494

B.6 Notification Payload - 6.5 Composite Payloads

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Event-Based Interaction
Patterns

495

B.7 Event-Based Interaction Patterns

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Interaction Patterns
The interaction dynamics between the
processes in an event-based system:  
- roles of the parties: sender/receiver 
- control: who initiates/controls/terminates
the interaction? 
- timing: does the sender wait for the
response? 
- flow: is the information sent in a single
step or in a sequence of steps?

Several recurring patterns can be observed

496

B.7 Event-Based Interaction Patterns - 7.1 Introduction

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The Push-Pull Model

Classifies the interaction by focusing on
which way the information is sent between
the processes

Push: one party gives the information to
another

Pull: one party requests the information
from the other

497

B.7 Event-Based Interaction Patterns - 7.2 The Push-Pull Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Push Interactions

Context:  
- Process P1 needs to send commands to P2  
- Frequency of commands: variable, unknown  
- P2 must never miss a command

Analysis: 
- infrequent commands => P2 should not poll
for P1 for commands 
- P1 knows when commands are available =>
it should control the interaction

498

B.7 Event-Based Interaction Patterns - 7.2 The Push-Pull Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Push Interactions

Useful when

The talker controls the listener

The talker decides when to send
commands

499 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.2 The Push-Pull Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Pull Interactions

Context:  
- P1 needs to monitor the status of P2  
- P1 only needs the status at specific times  
- P2 provides information only when
requested

Analysis: 
- P1 doesn’t always need the status => it is
impractical for P2 to send it at each change 
- P1 should control the interaction

500

B.7 Event-Based Interaction Patterns - 7.2 The Push-Pull Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Pull Interactions

Useful when

The interrogator needs to control the time
when the information is retrieved

The interrogator only needs information at
specific times

501 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.2 The Push-Pull Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Pull Interactions -- the
Round-Robin Polling Pattern

Context:  
- P1 needs to monitor several Pk processes 
- Pk can return the status very fast  
- P1 can handle status changes only at
specific times

Analysis: 
- if all Pk send notifications, P1 may not be
able to handle them at the same time  
- P1 should control the interaction

502

B.7 Event-Based Interaction Patterns - 7.2 The Push-Pull Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

The interrogator polls the respondents which
in turn provide the status quickly

Pull Interactions -- the
Round-Robin Polling Pattern

503 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.2 The Push-Pull Model

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Blind Interactions

Context:  
- P1 needs to send a message to P2  
- P1 does not need feedback regarding the
progress of P2’s execution

The context applies both to push and pull
interactions

504

B.7 Event-Based Interaction Patterns - 7.3 Blind Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronous
Blind Interactions

Context:  
- P1 needs to send a command to P2  
- P1 must wait for P2 to finish the command 
- P2 is trusted to respond in a timely
manner

Implications:  
- P1 waits for P2, and progress data is not
needed

505

B.7 Event-Based Interaction Patterns - 7.3 Blind Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Synchronous
Blind Interactions

506 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.3 Blind Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Asynchronous
Blind Interactions

Context:  
- P1 needs to send a command to P2  
- P1 must do other work while P2 executes
the command

Implications:  
- P1 must be able to run while P2 executes

507

B.7 Event-Based Interaction Patterns - 7.3 Blind Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Asynchronous
Blind Interactions

Feedback may be  
- not needed by the caller (“fire and
forget”) 
- needed by the caller after or at the end
of the command execution

508

B.7 Event-Based Interaction Patterns - 7.3 Blind Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Feedback

Pushed feedback

509 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.3 Blind Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Feedback

Polled feedback  
 ~ the actual command is sent from a
secondary thread in the caller

510 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.3 Blind Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Transparent Interactions

Context:  
- P1 needs to send a command to P2  
- P1 needs to know the progress of command
execution

511

B.7 Event-Based Interaction Patterns - 7.4 Transparent Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Transparent Interactions

Pushed feedback  
- P1 needs to send a command to P2  
- P1 needs feedback as soon as it is available

512 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.4 Transparent Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Transparent Interactions

Polled feedback  
- P1 needs to send a command to P2  
- P1 needs feedback at specific times

513 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.4 Transparent Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Interruptible
Interactions

Context:  
- P1 needs to send a command to P2  
- while the command is executed, it needs to
be canceled due to various reasons

514 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.5 Interruptible Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Interruptible
Blind Interactions

Context:  
- P1 needs to send a command to P2  
- P1 does not need progress information  
- the command may need to be canceled

515 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.5 Interruptible Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Interruptible
Transparent Interactions

Context:  
- P1 needs to send a command to P2  
- P1 needs progress information  
- the command may need to be canceled

516 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.5 Interruptible Interactions

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Handshaking

Context:  
- P1 needs to transfer a large amount of
data to P2  
- The information is broken down in a
sequence of messages  
- The sending may need to be stopped
before all the data was sent  
- Both P1 and P2 should be able to decide
when the message flow must be stopped

517

B.7 Event-Based Interaction Patterns - 7.6 Handshaking

(c)
 D

an
 C

. C
osm

a

(c)
 D

an
 C

. C
osm

a

(c)

Handshaking

The handshake response informs the sender
to send more data

Any party may decide that the transmission
should be ended

518 source: Event-Based Programming. Taking Events to the Limit

B.7 Event-Based Interaction Patterns - 7.6 Handshaking

