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Faculty of Automation and Computers

Department of Computer and Software Engineering
2009

Reverse Engineering
Object-Oriented Distributed Systems

Ph.D. Thesis

Author:
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”When we think we know something, that’s precisely the moment
when we should look deeper into the thing.”

Frank Herbert

Foreword
The software industry is increasingly facing the issues of understanding and

maintaining software systems, and the research community is continuously con-
cerned with designing and developing tools and techniques to address them.

A significant number of the modern, large-scale software systems are designed
as distributed applications. There are different types of distributed systems, and
while they are usually implemented in an object-oriented fashion, their inherent
nature implies particularities that raise very specific, technology-dependent, un-
derstandability and quality assessment challenges. Distributed systems are differ-
ent from their ’locally-concerned’ counterparts, and the differences have a dual
nature: on one hand, they represent obstacles that limit the applicability of ’clas-
sic’ understanding approaches, and on the other they constitute valuable sources of
information for an approach built specifically for this class of systems. My doc-
toral thesis, which I present in this book, describes the methodology I developed
for understanding object-oriented distributed systems through a reverse engineer-
ing process driven by the technological and domain-specific particularities of such
systems. The approach starts with the source code of the application, and makes
both system-wide and class-level characterizations, capturing an overview of the
system’s distributed architecture, providing detailed understanding of the system
traits, and supporting its restructuring.

There are many people I’d like to thank for the help they gave me during the
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I can start enumerating their names and the things I’m grateful for, so that they
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apologize to those whose names I forgot to include.
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dedication and involvement in supervising the Informatics Lab (Cercul de Infor-
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Chapter 1

Introduction

The continuous development of the society, along with the emergence of new tech-
nologies and communication infrastructures have paved the way for the wide adop-
tion of a class of software systems that became more and more important in the
everyday life: the distributed applications. From programs that provide direct,
person-to-person communication via the Internet to complex systems that manage
the numerous resources of large organizations dispersed over the world, distributed
software has become essential for the functioning and growth of the civilization.

1.1 Background

Distributed applications are basically systems that consist of several, sometimes
many, software components, each running at a different geographic location, col-
laborating to each other to fulfill a common goal. The components are involved
in complex interactions, and are interested in both the communication with their
remote counterparts, and in providing functionalities that are specific to the local
environment they run on. Consequently, they are inherently complex, and their
development and maintenance are tasks that imply thorough preparation and elab-
orate approaches in all the phases related to the systems’ life cycle. Moreover,
they work in inherently dynamic environments, as they serve communities that
evolve themselves. Therefore, to a higher degree than in the case of classic soft-
ware applications, the requirements they must address change at a fast pace. For
example, it is frequent the case when a distributed software system must scale up
significantly to serve a suddenly larger or more demanding client base, or when the
resources it processes have grown significantly in size or number. Another usual
change scenario is when the system must cope with the evolution of the organiza-
tion it supports, by providing the new features it needs, or by adapting its existing
functionality to better fit the new characteristics of the environment.

In an ideal world, these challenges are addressed and overcome by designing
the systems so that they easily cope with change, and by ensuring that their archi-
tecture is flexible enough to allow for both the easy integration of new function-
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CHAPTER 1. INTRODUCTION

alities and the modification of the existing ones. While the software engineering
community continually develops new techniques to approach this goal, their ex-
perience shows that such a system is hard to develop, and it does not exist in the
real world. The reason is that the requirement changes are so diverse, and depend
on so many factors – some of them unexpected –, that their prediction is simply
not possible to make, at least not in a sufficient degree. This opens the way for
software engineers to adopt a more pragmatic, and at the same time cost-effective
perspective, that of working on the existing applications, analyze them, and de-
velop strategies to change and improve their design and functionalities. Besides
circumventing the quixotic nature of a ‘perfect’ design, the insight on the existing
applications presents several important advantages. First, adapting the old applica-
tions to fit new requirements will provide the users with a familiar environment that
supports their needs in a way they were accustomed to, rather than forcing them to
change their habits to follow the particularities of a new system. Next, a change
in an already established application may be sometimes easier and faster to make
than developing from scratch a new solution. Moreover, such an enterprise is often
cheaper than investing in the initiation of a separate software system, which may
add a lot of new and unexpected issues that were not encountered with the original
application. Finally, the continuous restructuring and change of operational soft-
ware applications is a natural part of their life cycle, determined by the correlation
of feedback and refinement that is characteristic to all the dynamic and productive
long-term enterprises.

The most important part in approaching existing software systems is the ex-
ploration that provides knowledge about their properties. This knowledge is not
always available per se, even when the software is maintained by the same orga-
nization that developed it. Teams of programmers change or move on to different
projects, and the information about a system that was developed not so long time
ago can be lost to a significant degree. Moreover, a frequent case is when the soft-
ware must be approached by parties that had nothing to do with its development,
as the maintainers are often not working for the same company or department that
developed the system. While they may be provided with documentation and initial
data about the system, there are numerous instances when this information proves
inaccurate or incomplete, as it describes an outdated version or it simply failed to
capture all its relevant attributes. Consequently, in order to be able to restructure or
transform the application, the main thing engineers need is to understand the sys-
tem in depth, to extract its characteristics through a dedicated process of analysis.

1.2 Goals

This dissertation presents our approach in analyzing distributed object-oriented
software systems through a process of reverse engineering that starts with the ap-
plication’s source code. We define and develop a comprehensive methodology that
involves a series of automatic tasks that assess the application’s characteristics by
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exploring its structural and architectural traits. At the same time, the experience
of the engineer is held in high regard, by allowing the user interaction at all the
critical steps of the pursuit. The procedure is driven by the goal of understanding
the main characteristic that provides for the system’s distinctiveness, that of being
a distributed application. The impact of the distribution-specific functional traits
on the system entities is analyzed, so that an in-depth comprehension of the system
is achieved. Moreover, the approach integrates support for the basic restructuring
of the application by consistently using the same concepts and techniques that pro-
duced the system understanding. This way, the task of restructuring comes as a
natural continuation of the analysis enterprise, rather than necessitating additional
preparation and effort in its undertaking.

The methodology aims to inspect the software system in an efficient way, fo-
cused on the important parts of the application, and to minimize the computa-
tional power needed for exploring large systems. Therefore, one of the traits of
the approach is that, at a core step in the analysis, it selects only a core set of
entities that are representative for the system’s distribution-related functionality
[CM08]. The value of this technique is that it helps the efficiency when apply-
ing computationally-intensive algorithms, and it allows the engineer to focus on
a small set of highly relevant objects in order to inspect them closer, even with a
manual approach if necessary.

The approach strives to understand in depth the distributed functionality of a
software system without detecting the distributed components in their entirety, and
without using deployment information, as this information is usually scarce. This
enables the analysis to obtain essential and sufficient knowledge of the system by
only looking at the source code of the application.

1.3 Approach

The technology of the software communication infrastructure the application relies
on is used by the process of understanding as a very important source of informa-
tion about the system. As we need to assess the system’s distribution-related func-
tionality, the points where the application communicates over the network are the
parts of the system that provide the first relevant knowledge. Considering the com-
munication technology helps the identification of these parts of the application, as
they are directly influenced by the constraints the technology usually imposes. As
we will show during this work, the constraints are often detectable as source code
patterns, and can provide us with methods of isolating the relevant entities. While
built to be extensible to other types of technologies, our approach is applied on
Java RMI applications.

One of the main concepts we define in this dissertation deal with the impact
of the distribution-related features on the structure of the system. Our previous
experience with distributed systems [CVM03, CS00, SSCJ98] made us interested
in the importance of the features provided by a distributed system for shaping the
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CHAPTER 1. INTRODUCTION

application’s characteristics. In the early stages of our research, we have explored
the way the features (as a concept) can be used as basic blocks for building the
software [Cos04], and how they can be employed to design complex behaviors
(as code migration). The author of this dissertation has also supervised a diploma
project that developed a prototype framework as a proof of concept [BC04]. In
the research we present in this thesis, we have approached the importance of the
distributed features from an entirely new perspective: they are the elements that
provide essential knowledge about a distributed system. The way the system en-
tities participate in providing distributed features is indicative of the fundamental
nature of the system.

The feature participation assessments, as well as the other types of system
evaluations are done using a set of measurements based on software metrics we
developed specifically for this purpose [CM08]. The numerical representations are
based on calculating the strength of dependencies between the application classes,
and the relations these dependencies reveal when considering the distributed fea-
tures.

The restructuring support included in our approach is based on a technique that
allows the engineer to experiment with scenarios of structural modification on the
different parts of the system. The scenarios can be performed and their impact
measured and evaluated, in an iterative and repetitive process that provides a basis
for the selection of the best projected restructuring solution.

The outcome of the analysis approach is the understanding of the main system
properties, to a degree that provides the engineer with extensive control on the
analyzed system. It includes assessments related to the distributed architecture, the
structure of the distribution-aware functionalities in the system, and the relation
between the system entities and the distributed and local features.

To support the understanding and facilitate the identification of the various
patterns that provide knowledge about the application, the entire analysis approach
(including the restructuring support) is enriched with a set of software visualization
techniques [CM07]. They present the attributes of the system entities so that the
important patterns to be identified visually, as a method for driving the process of
selecting their relevant traits.

The methodology is supported in all its phases by a complete tool support
[Cos08], that we developed and used when evaluating the approach. The tool in-
frastructure provides all the automatic tasks implied by the various activities re-
lated to the analysis, while always allowing the user to evaluate and validate the
intermediary results, as well as to control the parameters of the algorithms that are
employed during the assessment of the distributed application’s characteristics.

1.4 Main Steps

The methodology we describe in the following chapters consists of several parts,
driven by a set of specific goals:

12



1.5. THE STRUCTURE OF THE THESIS

• Define a model for distributed object-oriented software applications tailored
for the goal of software understanding;

• Extract the core distribution-related functionality of the system and isolate
the distinct distributed features in the application;

• Provide a view on the system’s distributed architecture;

• Assess the impact of the distribution aspect on the system’s overall design;

• Understand the patterns of collaboration between the system entities (classes)
in respect to the distributed and local functionality;

• Provide support for restructuring the application.

1.5 The Structure of the Thesis

The next chapters in this thesis are organized as follows: Chapter 2 presents the
main concepts involved in reverse engineering distributed software, and Chapter
3 analyzes the state of the art in the field.

As a prerequisite for our methodology, in Chapter 4 we introduce a represen-
tation for object oriented distributed systems that we have built to support the
system understanding, as well as the considerations that stay at its base.

The actual methodology, its evaluation through case studies, and the tool
infrastructure we have developed are described in the next five chapters. They
should be regarded as a whole, as they are steps that describe a single, unitary
approach. Chapter 5 describes the details involved in the core system analysis,
including the isolation of the system’s distributed features, and the architecture-
related assessments. Chapter 6 presents the approach that evaluates the impact of
distribution on the system’s features, and the extraction of the relevant patterns of
collaboration, while Chapter 7 presents the restructuring support provided by the
methodology. Chapter 8 describes the methodology evaluation we have conducted
through case studies, and Chapter 9 presents the tool support we have developed.

The presentation ends in Chapter 10 with a set of conclusions and the list of
contributions of our work to the field of reverse engineering distributed software
applications. The same chapter analyzes the potential future developments that
will enrich and continue our work.
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Chapter 2

Distributed Software Engineering

As presented in the Introduction, this dissertation describes our approach in ana-
lyzing distributed object-oriented software systems. For this purpose, we define a
methodology of reverse engineering tailored to this particularly important class of
systems, by emphasizing the fact that they present particularities strongly influenc-
ing any analysis that targets system understanding.

This chapter presents the basic concepts related to the field of reverse engi-
neering software systems, then analyzes several aspects that are specific to the
distributed applications. The distribution-related characteristics, highly dependent
on the communication technology, can be used by the analysis to extract the rele-
vant knowledge that drives the process of understanding by providing helpful hints
on the parts of the system directly responsible for the distributed functionality.
Moreover, a synthesis of the different types of architectures specific to this field is
important when interpreting the architectural information recovered by the reverse
engineering process, by placing it in the correct context that describes the system’s
distribution awareness.

2.1 Reverse Engineering

2.1.1 Definition

The Merriam-Webster Collegiate Dictionary [MW03] defines the verb “reverse en-
gineer” as “to disassemble and examine or analyze in detail (as a product or de-
vice) to discover the concepts involved in manufacture usually in order to produce
something similar”.

The definition has definite origins in hardware, and relates to the more ‘tra-
ditional’ industries such as manufacturing or electronics. Reverse engineering is
used since the beginnings of technology, both to improve the products of the same
company, or to understand the inner workings of those made by an external, even
competing party.

Software reverse engineering is a relatively newer concern, and it basically
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CHAPTER 2. DISTRIBUTED SOFTWARE ENGINEERING

refers to two types of enterprises:

1. Disassembling the binary form of a software application to understand how
it works, what features does it provide, and so on. One of the most famous
cases of reverse engineering binary code was the disassembly of the IBM
PC BIOS (about 1983) to develop hardware clones of the machines that
basically started the era of personal computers. The knowledge gathered
through reverse engineering was employed in building a detailed specifica-
tion of software features and behavior. The specification was then used in
an independent development process that produced a BIOS program from
scratch, making it legal to include in the IBM PC compatible machines.

2. Analyzing the source code of a software system in order to understand it. It
may imply activities such as the recovery of its architecture, the application
redocumentation, and so on, and it is strongly related to the fields of software
maintenance and reengineering [CI90].

We consider the above distinction to point out the different emphases used by
the two approaches. The first one is arguably closer in concept to the original
meaning of the term, as its main concern is to disassemble a finished product and
to understand its internals in order to replicate or improve. It inherently implies
that the target object belongs to a different party, and the emphasis is placed on the
process that transforms the machine-specific executable format to a representation
(such as a program) that is analyzable by a human engineer. On the other hand, the
second approach considers that the program itself is already available, thus placing
the context of reverse engineering closer to the aspects related to the maintenance
and evolution of software.

For the purpose of this dissertation, we are using the latter interpretation when
we address the issue of reverse engineering. We are interested in the techniques,
processes and methodologies that aim to extract as much information as possible
about a software system by analyzing its source code, which is considered to be
available in its entirety to the analysts.

Regarding the terminology related to the field of reverse engineering, we ad-
here to the widely-accepted taxonomy introduced by Chikofski and Cross II in
[CI90]. They define the main terms involved, as follows (Figure 2.1):

1. Forward engineering. ”The traditional process of moving from high-level
abstractions and logical, implementation-independent designs to the physical
implementation of a system.”

2. Reverse engineering. ”The process that analyzes a subject system to

• identify the system’s components and their interrelationships, and

• create representations of the system in another form or at a higher level
of abstraction”
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Requirements Design Implementation

Forward 
Engineering

Forward 
Engineering

Reverse 
Engineering

Reverse 
Engineering

Reengineering Reengineering

Restructuring Redocumentation,
Restructuring

Restructuring

Figure 2.1: Reverse engineering and the related terms (adapted from Chikofski and
Cross II [CI90])

3. Restructuring. ”The transformation from one representation form to an-
other at the same relative abstraction level, while preserving the subject sys-
tem’s external behavior.”

4. Reengineering. ”The examination and alteration of a subject system to re-
constitute it in a new form and the subsequent implementation of the new
form.”

2.1.2 Application

The various approaches to reverse engineering use different types of techniques in
order to extract information about the system. Some may be purely static, by only
analyzing the software in its inactive form, while others may make extensive use
of dynamic information, by analyzing the runtime interactions between the system
components, or by approaching the running software as a black box in order to
detect its functional traits.

In our case, we adopted a static approach, and the entire methodology we
present is based on analyzing the system as it is, without the need to run it in
the process. This has a few advantages. First, it does not have to rely on particu-
lar tools or environments that capture and trace events at runtime, thus making it
platform-independent. Moreover, it can be applied to systems that cannot be started
in execution for various reasons such as the unavailability of the needed libraries or
runtime environments, the lack of the necessary processing power to dynamically
analyze complex systems, or even because the system itself is missing auxiliary
items needed when running (such as configuration data, deployment information
or appropriate production environments).
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Scenarios for reverse engineering are very frequently encountered in modern
software development -related contexts. The need to understand a system whose
source code is readily available is justified by various reasons, related to the devel-
opment process or to the inherently complex nature of modern software applica-
tions. It may be useful both to external parties, and to the original developers of
the respective software system, and may be caused by several issues, such as the
following:

• Legacy software. This is the case when a software system is inherited, is
received from a different company, or the team that originally developed it is
no longer available. The system needs to be understood so that modifications
that improve its performance or add new features are performed, or in order
to build new systems with the same specifications.

• Outdated documentation. While the team of developers may be (largely) the
same as when the software was first built, the development process failed to
document the software so as to describe it accurately and to date. There are
frequent cases when the documentation is heavily outdated, and the many
changes make the software too complex for the developers to track its status.

• Inaccurate documentation. This is a variation of the above case, when the
documentation of the software proves inadvertently ambiguous or inaccu-
rate, and may present misleading facts about the system’s architecture, be-
havior or purpose. A reverse engineering process is in this case necessary to
correct the mistakes, and to synchronize the documentation with the actual
state of the software.

• Insufficient documentation. This is the case when the documentation, while
accurate and to date, is insufficient to understand particular aspects of the
system. The respective aspects may have been outside of the original docu-
mentation’s focus for various reasons, but became nevertheless important at
an ulterior stage in the software evolution. A reverse engineering process is
needed to build new or different views on the software’s characteristics, so
that the unaddressed issues are covered.

• Design changes. This case is directly related to the issue of software ag-
ing [Par94], where the current design of the application no longer meets the
initial system goals. A reverse engineering approach would help the devel-
opers or maintainers to identify the problems that made the system change in
time and the places where the modifications occurred, so that the necessary
corrections are made.

The outcome of the reverse engineering process varies with the approaches, and
depends on the reasons that made it needed in the first place. The most frequent
result is a representation that describes, at a certain degree of detail, the architec-
ture of the application. The process may also generate new views on the system’s
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high-level structure, and can provide insights into the lower-level details of the in-
terdependencies between the system entities. The roles of the different entities can
also be assessed by an analysis, and the features provided by the application can be
discovered. Other types of results include updates to the existing documentation,
system specifications that can be used in a new development, and so on.

The process of reverse engineering can be conducted by different parties, de-
pending on its purpose: the original developers, the engineers that must maintain
the system, various types of auditors, or programmers that must continue develop-
ing the system without being involved from the start. During the presentation in
this thesis, we will use the term engineer to describe any human actor that may be
involved at a stage or another in the process.

2.2 Distributed Software Systems

2.2.1 Definition

Referring to a larger context that includes both hardware and software, A.S. Tanen-
baum defines a distributed system as ”a collection of independent computers that
appears to its users as a single, coherent system”[TS01]. The various components
of the system are dispersed at different geographical locations, and act together to
fulfill the same goals. The inter-comunicating hardware nodes are connected to
each other by a large variety of communication infrastructures, and many of the
architectures implied are heterogenous in nature.

The continuous evolution of the society lewd to the current state of human
activities, where organizations, companies or even communities depend on dis-
tributed infrastructures to communicate, collaborate and work. The wide variety of
interdependencies between the components of our civilization, and their impact in
creating and maintaining highly integrated networks of inter-related activities need
to be supported by equally complex and developed technological solutions. There-
fore, modern distributed systems could not serve their purpose without advanced
and elaborate software applications to provide the diverse functionalities specific
to each of the different types of problems addressed by the distributed contexts.
The distributed software systems are not simple conduits for the casual commu-
nication between parties, they must be designed to address the complex issues of
intermediating and coordinating the distributed interaction.

A distributed software system can be defined and represented as a set of an
arbitrary number of processing elements running at different locations, intercon-
nected by a communication system [Wu99]. The processing elements are rela-
tively independent software components that run on different hardware nodes and
communicate to each other so that the design requirements are met. The com-
munication is done via an infrastructure, implemented itself in software, that pro-
vides services for transporting data between the remote locations, coordinating
asynchronous events, managing the concurrent interactions between the system
components, and so on. The infrastructure can be represented by various layers
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of software, some being distributed systems themselves: services implemented
in the operating systems, specialized middleware such as object request brokers
[Sie96, RR02, Gra06], message-centered communication providers [MH00], ap-
plication servers that provide distribution services ([MH99]), etc.

The different software nodes usually act as independent entities. That is, an
important part of their activity is concerned with providing local features, such
as interacting with the user or performing tasks that process local resources. The
communication with the other components over the network is done only at the
moments it is needed to maintain the overall system functionality, and many dis-
tributed components tend to minimize the communication as it usually implies sig-
nificant costs.

Nevertheless, there are systems that consist of components that heavily com-
municate to each other during the entire running order of the application. They
are either deployed on infrastructures able to provide high bandwidth and low la-
tency for the data transfer, or the communication is done in short bursts that do not
overload the network.

The aspects related to the communication and the system-wide inter-dependencies
between the application entities are specific to its distributed architecture. The dis-
tributed architecture of the system is a view on a system’s structural characteristics
that present the relations that are established over the communication infrastruc-
ture. It specifies the communication channels, the roles of the components that
communicate remotely, and it usually ignores the other architectural traits that were
defined at the design time.

Consequently, extracting the distributed architecture of a system is not always
the same as the general architecture recovery enterprises that treat the application
without considering its distributed nature. Indeed, applying such a process to a
distributed software system ends by providing architectural views on the system, by
analyzing the various types of dependencies between the system entities. However,
as the process did not analyze the nature of these dependencies in relation to the
distribution-aware function of the application, it may miss the most significant trait
of the application, the fact that it is distributed and the way the distribution impacts
its design.

For example, if we were to analyze a simple chat system from a point of view
that is not interested in its distributed aspect, the analysis will find that the applica-
tion is one heavily concerned with providing a way for the user to enter text data
via an interactive window, storing the text content when the user chooses to, check-
ing the spelling of the phrases as they are typed, and managing the user/password
information for authentication purposes. Dependencies on other instances of the
chat component may be detected, however, they will not tell us anything about the
fact that the communication is done remotely and the main concern of the applica-
tion is the sending and receiving the messages, rather than storing them locally. In
this respect, the application wouldn’t seem that different from a rather simple text
editor.

Understanding the importance of the application’s nature – as distributed, in
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our case – leads to the analysis of two core aspects of this class of systems: their
type of distributed architecture, and the technology that is used for communication.

We will analyze these characteristics in the following subsections , emphasiz-
ing the main issues that are involved, and the most common realizations of the
architectural and technological traits.

2.2.2 Distributed Architectures

There are several types (patterns) of distributed architectures that are adopted by
most applications that are made of components communicating over the network.
A single application can be designed as following exactly one of these ‘classic’
architectures, or – most frequently – it employs a combination of the basic types,
components having different architectural roles according to the purposes of the
system.

2.2.2.1 Client-Server

The most common, widely-used distributed architecture is the client-server one
(Figure 2.2). It implies the existence of two types of components:

• Server. Usually large, this component is designed to provide a set of soft-
ware services that are available to the remote parties. The services are de-
scribed in a manner dependent on the particular communication technology,
and may be more or less related (functionally) to each other. This type of
component implies a significant amount of centralization in the system, as it
is the single place that implements complex functionality.

• Client. This component is traditionally designed as lightweight, and its main
purpose is to use the services provided by a server. By doing so, it employs a
usually limited functionality that processes the data received from its coun-
terpart, and in most cases it presents it to the user.

In a client-server architecture, the usual deployment scenario implies a single
server (or few ones) and a comparatively higher number of clients. The centraliza-
tion specific to this architecture can create several problems at the runtime, such as
the following:

• The communication to the single server can become too intense, especially
when the number of clients is large. This may cause high traffic to the
server’s network node, which in turn may create service availability prob-
lems.

• The server may act as a bottleneck in the system that limits the system’s
performance and usability. Depending on the server’s efficiency in providing
the services, and on the computational power provided by the hardware and
software environment it relies on, this may become a significant problem,
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Figure 2.2: Client - Server

especially when the system must be scaled up to serve large numbers of
clients

• The limited number of servers (usually only one) may present problems for
the system availability. As the entire application functionality depends on
the functioning of the server, a software or hardware issue that stops it from
working effectively renders the entire application inoperable.

• The maintenance of a centralized server can be difficult, especially when
it provides many, loosely-related functionalities. Servers can become too
big and too complex, and the restructuring or reengineering needs that may
arise at a point in the system’s lifetime can imply significant engineering
problems.

Modern distributed application developments tend to overcome these problems
by adopting other architectures, by distributing the services to several independent
servers, or by designing the servers to be easily scaled or split into several entities
if necessary.

2.2.2.2 Peer-to-Peer

In this architecture (Figure 2.3), the components of the distributed system have
equally important roles. Each component (a peer) can provide services for others
to use, and, at the same time can use the services provided by the others. In a way,
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Figure 2.3: Peer-to-peer

a peer acts successively as server and client, according to the system needs at a
stage or the other in its functioning.

The fundamental trait of this architecture is that the components are balanced,
and there usually is no centralized point in the system. This effectively counteracts
the disadvantages of the server-client architecture, by providing a way of designing
highly scalable and flexible distributed software applications.

However, the architecture has an important problem, and it is related to its very
basic principle of balancing the components. The fact that there is no central point,
may create difficulties in the process of the component discovery at the runtime.
That is, the system must implement strategies that make the already running com-
ponents of the application reachable by the newer ones. This is done by including
the component deployment information in each node of the application, or – more
frequently – by using a server-based functionality to register and locate the running
components. The latter method affects in a degree the balanced nature of the sys-
tem, but as it is involved only on a single, very specific point in the component’s
lifetime, it is usually accepted as a minor compromise.

2.2.2.3 Three-Tier

This architecture (Figure 2.4) describes the application as consisting of three logically-
distinct sets of functionalities. Each tier consists of system entities with a very
specific role, and the architecture is an extension of the server-client architecture,

23



CHAPTER 2. DISTRIBUTED SOFTWARE ENGINEERING

as the dependencies between the tiers are unidirectional. That is, the third tier acts
as server for the second one, while the second provides services to the entities in
the first tier.

Presentation Business Data

Database

User

Figure 2.4: Three-tier Architecture

The architecture defines three tiers. In the software-specific context, they can
also be referred as functionally-distinct software layers:

1. Presentation. The entities in this layer are responsible for the functionality
that interacts with the user. They are lightweight software components that
present data to the user (via an interface) and allow the user control and data
validation.

2. Logic or Business. This layer is responsible for the implementation of the
main functionality of the application, such as the algorithms that process
data, and provide the features requested by the user.

3. Data. The entities in this layer are responsible for managing the persistent
data objects manipulated by the business layer. It usually implies a database
that stores the information, and consists of the software entities that model
the stored data (as object-oriented data abstractions, for instance).

2.2.2.4 Multiple Tiers

This is an extension of the three-tier architecture, and refers to the case where
several layers are involved in providing the software functionality, as more that
three logical functionalities are considered necessary for the design.

The most frequent implementation is when the user services are provided by
more than one application. For example, this is the case when a web application
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forwards the user requests to a three-tiered enterprise application, specialized to
provide the requested feature.

2.2.2.5 Other architectures

The design of distributed software applications is not limited to the above types
of architectures. The designers may use a combination of the ”mainstream” ap-
proaches, and can also consider the specific issues required by the system’s func-
tionality. For example, if a system must consist of several equally important peers,
at a point in its functioning, there may occur the need of electing a component as
temporary leader. For this purpose, the requirements of the chosen leader election
algorithm have to be taken into consideration, and the components can be – for
instance – designed as connected in a synchronous ring, to fulfill the respective
algorithm’s constraints [Lyn97].

Moreover, components can be connected to each other in more complex ways,
such as trees or even generalized graphs of inter-communicating entities that act as
clients and servers to each other at the same time.

2.2.3 Communication Technologies

In order to communicate remotely, distributed applications depend on specialized
infrastructures that provide the lower-level functionality of sending or receiving
data over the network, in a synchronous or asynchronous manner, depending to the
system requirements.

The infrastructures distributed software systems use for communicating are
important in that they directly influence the way the distributed architecture is im-
plemented. Some technologies imply a specific architecture, while others allow
several or even unlimited architectural choices. More importantly, the communica-
tion technology usually imposes a set of specific constrains on the development of
the application, that are frequently in the form of specific constructs in the applica-
tions source code. This makes the technology-related information highly relevant
in an analysis, for detecting the distribution-related concerns within a software sys-
tem.

We describe briefly the most frequently used communication technologies, and
their main characteristics.

2.2.3.1 Protocol stacks

The protocol stacks [Tan02] describe facilities included in the modern operating
systems that provide support for network communication to the application level.

The design of a protocol stack is dependent on a chosen reference model that
represents the software architecture of the parts of the operating system providing
the network services. A stack describes several layers of abstraction, each intro-
ducing protocols that deal with a particular problem related to the data transmission
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and reception. The most frequent case of such a design is the ubiquitous TCP/IP
stack, present in virtually all current operating systems capable of providing net-
work connectivity.

Application

Transport

Internet

Network Access

Figure 2.5: The TCP/IP stack

The TCP/IP stack (Figure 2.5) is based on a respective TCP/IP layered model.
It consists on four layers, with the following roles:

• The Network Access Layer deals with all the details concerning the trans-
mission of the data provided by the superior layer, its encoding and the trans-
mission of datagrams to a remote host.

• The Internet Layer represents the network as a set of interconnected sub-
networks, and deals with the routing of data from a host to another. This
layer defines the IP address that identifies the network interfaces and is used
when routing the information.

• The Transport Layer defines protocols that deal with the higher-level con-
cerns in transmitting data, such as maintaining the communication channels,
error control, fragmentation and sequence of data arrival. There are two spe-
cific protocols at this layer, one being connection-oriented (TCP), and one
connectionless (UDP).

• The Application Layer describes protocols used by the applications, such
as FTP (File Transfer Protocol), HTTP (Hypertext Transfer Protocol), SMTP
(Simple Mail Transfer Protocol), and so on.

The TCP/IP stack is accessible from the application through primitives specific
to the operating system and to the programming language. Such a primitive is the
one known as the socket, with is widely used implementation as a BSD Socket. In
UNIX, sockets are implemented (from the application’s perspective) as descriptors
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that can be created and used by the programs. The language-specific libraries pro-
vide specific functions that create and manipulate these primitives, which in turn
call the correspondent operating system services.

As the functions or methods that are called by programs when creating and con-
figuring the sockets are very specific, an analysis can easily detect the lines of code
that access the sockets. This way, an approach is provided with a valuable mean for
isolating the code fragments that are responsible with the network communication,
thus being directly related to the distributed aspect in the application.

2.2.3.2 Remote procedures or methods

This technology places itself at a higher level of abstraction than the direct usage of
sockets. The purpose is to provide the programmers with communication-related
services that are used in programs in the a natural way, specific to the programming
language.

The chosen strategy is to allow the program to call procedures remotely, that
is procedures that reside on a program running at a different location. The most
representative case is the Remote Procedure Calls technology [Ste99] specific to
the UNIX [SR05, Rob05, Cos01] environments. Similar mechanisms are employed
by more complex middleware systems, such as CORBA [Pop98, Gra06].

Client

Stub

Java Virtual Machine

Network

Server

Skeleton

Java Virtual Machine

Naming 
Service 

(RMI Registry)
registration

lookup

Figure 2.6: Remote Method Invocation

In the object-oriented context, this technology translates in invoking methods
of objects instantiated at a remote location. One of the most representatives tech-
nologies is the Remote Method Invocation (RMI), specific to the Java environment
[RR02, Gra06, CVM03]. In RMI (Figure 2.6), an application that wants to com-
municate via the network must follow a set of specific requirements related to the
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implementation:

• The methods that need to be made available remotely must be gathered in
special Java interfaces called remote interfaces. Each remote interface must
extend the java.rmi.Remote interface provided by the standard Java
packages, as a marker for the methods’ network-aware functionality.

• The actual implementations of the methods are done in server classes that im-
plement the remote interfaces, either directly, or via a hierarchy of interface
extensions. The server classes must either inherit a RMI-specific provided
class (called UnicastRemoteObject), or explicitly call a static method
in that class that exports its functionality to the network.

• The client classes use the server functionality by referring the remote inter-
faces. They do not have direct dependencies with the server classes; instead,
the Java virtual machine-specific implementation will hide the actual com-
munication and provide the clients with remote references to the servers. In
the earlier versions of Java, this implied the automatic generation of a set
of infrastructure classes called stubs, and skeletons which represented the
actual channels of communication between the parties.

• The server classes can register themselves to a naming service, so that they
are discoverable by the clients. Both actions imply specific calls of RMI-
provided methods.

The usage of RMI in applications is detectable by an automatic analysis by
isolating the specific code constructs it implies. For instance, the server classes can
be isolated as being the classes that implement remote interfaces, which in turn are
easily identifiable as extending java.rmi.Remote. Clients are the entities that
directly refer the remote interfaces, and the network-aware actions are the calls to
the methods these interfaces describe.

2.2.3.3 Messaging systems

Services for communicating via the network can be also provided by systems that
may be implemented as applications on their own. An example of such applications
are the message-oriented service providers, which are complex systems dealing
with the creation, manipulation, and persistence of application-defined messages.
Applications can connect to the messaging systems and use them as intermediaries
that send or receive messages; components of the application can send a message,
and other components may receive them, all details of the actual sending or receiv-
ing being dealt with by the infrastructure.

An example of messaging infrastructure is Java Message Service (JMS [MHC00].
As it is, JMS is not an actual system, but a specification of messaging systems that
vendors may implement in order to provide standardized message-oriented com-
munication in the Java environment. A JMS application consists of the following
system actors (Figure 2.7) :
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Figure 2.7: Java Message Service

• Clients, that are the entities that create, receive and send messages;

• Messages, used in communication, with a content defined by the application;

• JMS Provider, the actual implementation of the messaging system.

The JMS messaging infrastructure must provide the following set of communication-
related primitives, that can be used by the applications depending on the type of
messaging they need:

• A Connection Factory, which is used to create the connection between the
client application and the messaging system

• A set of JMS Destinations, representing the resources the clients access,
and that deal with the message manipulation. JMS defines two types of
destinations, as support for the two major paradigms in message-oriented
systems:

– Point-to-Point, represented with message queues available for the clients
to enter or extract messages;

– Publish-Subscribe, represented by the so-called Topic destinations, that
can be used by clients for publishing messages or subscribing to various
message types.
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The usage of JMS is visible in the source code through the specific references
to the JMS destinations, and the method calls that send or receive, publish or sub-
scribe to messages. Again, an analysis can make use of these constructs to identify
the parts of the application that are interested in the distribution-related system
functionality.

2.2.3.4 Application Servers

A different class of technologies is represented by the Application Servers. An ap-
plication server is a software environment that manages the application by provid-
ing it with a set of specific, high-level services. The application is deployed inside
the application server, and is heavily dependent on it. The entire development of
the application must follow strict rules in both its design and implementation, and
the deployment-specific configurations.

A very popular platform that employs an application server is Java2 Enterprise
Edition (J2EE), with its Enterprise Java Beans technology [BMH06]. The appli-
cations that use this environment must be built using the three-tier architecture, and
the technology provides means for creating the different types of entities, and ser-
vices for distribution, persistence or transactions. EJB defines the following types
of application entities, called enterprise beans:

• Entity beans, placed at the data layer, representing the entities that model in
an object-oriented approach the data stored in a database;

• Session beans, places at the business layer, implement the logic functionality
in the system. They can be of two types:

– Stateful, that are able to maintain their internal state between the client
calls,

– Stateless, that do not maintain the state and are consequently lightweight
in comparison with their counterparts;

• Message-driven beans, specialized entities able to subscribe and react to
messages in a JMS environment, so that asynchronous application behavior
can be implemented.

The clients at the presentation layer are normal Java applications (classes) that
connect using specific techniques to the enterprise beans. The constraints the tech-
nology imposes on the application are very strong, and a complex analysis can be
developed to detect various characteristics related to the system, including the dis-
tributed functionalities, and the various architectural traits. As significant parts of
the structural information are available through specific, uniform descriptors, im-
portant data can be extracted automatically, thus encouraging the development of
a flexible and feasible reverse engineering process.
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2.2.4 Component Deployment

One of the important aspects that must be taken into consideration when design-
ing or analyzing a distributed software system is the information that specifies the
way the different components of the system are dispersed over the network. The
deployment information is sometimes vital to understand the core characteristics
of the system, as it is directly related with its distributed architecture. The deploy-
ment information is specified in various ways, and it is highly dependent on the
communication technology the system relies on. The information can specify one
or more of the following attributes of the distributed application:

• The network-specific address of each system component. This is a speci-
fication that shows which parts of the system (modules, packages, sets of
classes) are deployed on which hardware nodes in the network.

• The relation between the component deployed in a node and the other lo-
cal entities that may be related to the system, such as libraries, databases,
application containers and so on.

• The dependencies between a component and its other remote counterparts
that belong to the distributed application. Sometimes, configuration infor-
mation specifies which are the addresses of the remote parties, or which are
the component’s “neighbors” (nodes to communicate with) in the particular
distributed architecture of the application.

As it depends on the concepts specific to the communication technology (ad-
dresses, ports, service names, etc.), the deployment data is different from an appli-
cation to another. It can also include parts that are dependent on the application de-
sign, by containing data that refers to the particular system entities or their runtime
environment (such as component or service names, name service identification in-
formation, and so on). Moreover, the presence of the deployment information is
not mandatory for a system design, as there are many cases when the deployment is
done differently from an installation instance to another, to fit the particular needs
of the users. Consequently, the deployment information, while important to un-
derstand the system, cannot be an item to rely on when building an approach for
analyzing distributed software systems. Therefore, a reverse engineering process
must be developed so that even when the deployment data is not present, the system
understanding is achieved.

The approach we have developed and present in this dissertation addresses this
problem by implementing a technique for extracting the system’s distributed archi-
tecture characteristics without relying on the deployment information, and using
only the information that is always available, the source code of the application.
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Chapter 3

Analyzing and Understanding
Software

The issue of analyzing software systems is often being addressed by the software
engineering research community. Identifying the structure of the application is
central to many approaches, and usually involves finding the functionally-distinct
components or partitions within the code.

This chapter discusses the state of the art in the field of reverse engineering
software systems through a selection of the approaches showing the most inter-
esting traits in gathering the information that provides system understanding. The
selection is driven by assessing the core techniques applied by the different re-
searchers, and the ways the existing methodologies make use of the information
sources that provide knowledge about the system.

The main concern in any approach that aims to understand a software system
by analyzing its source code is to capture the architectural traits in the application.
Systems are usually large, and the main architectural components must be detected
in order to focus the analysis, and to isolate the different types of functionalities.
The field of software architecture reconstruction [PDP+07] is therefore highly im-
portant, and the approaches vary with the techniques used for decomposition.

3.1 Clustering-Driven Architecture Reconstruction

The vast majority of approaches that target the reconstruction of software archi-
tectures use at one stage or another in the process a specifically-built version of
clustering techniques. A comprehensive survey and classification of clustering
techniques and algorithms is presented by Wiggerts [Wig97].

Systems are usually represented as graphs, and the detection of the clusters
drives the process of separating the groups of system entities (source files, mod-
ules, classes, etc.) that are related to each other according to the specific criterion
the approach considers important for its purpose. The separation is done with the
main goal of partitioning the system so that the engineer that needs to understand
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it be able to focus only on some of the partitions when analyzing the system. Many
approaches have the clustering technique at their core, and the main focus is on
identifying the best similarity measures that are used for grouping the entities to-
gether, and on improving the performance of the clustering algorithms.

3.1.1 Structural-Based Clustering

The majority of approaches view the software system as a graph of entities linked
together by their relative structural interdependencies. For example, a system can
be modeled as a set of vertices, each vertex representing a source file, while the
edges are the usage dependencies between the functions or methods in the respec-
tive file. The system graph is built using manual or automatic techniques, then a
clustering algorithm is applied to separate the system into several groups of entities.

R. Koschke [Kos00, Kos02] proposes a unification of 23 techniques based on
clustering to produce a classification of component recovery approaches. More-
over, he presents a semi-automatic method of analysis aimed to overcome the issue
of the insufficient detection quality of such techniques. The method works incre-
mentally [Kos99], and combines improved versions of the techniques, integrated
through an intermediate representation [KGW98]. The techniques are run succes-
sively and are validated by the user. The work also includes a metric-based tech-
nique called Similarity Clustering, which is evaluated along with other techniques,
using an evaluation scheme that measures the recall and precision of the analyzed
component recovery techniques. Moreover, in [KE00] Koschke and Eisenbarth
propose a framework for experimentally evaluating clustering techniques.

Clustering is also used by Andreopoulos et. al. [AATW05] to produce de-
compositions of large software systems. They choose an approach that enriches
a previously developed clustering algorithm [AAW04] by considering both static
and dynamic information. The approach takes into consideration the multi-layered
structure of the analyzed applications, which is regarded as a very frequent case
of modern software systems. The dynamic information is used by the algorithm
which associates weights with the dependencies between the application files and
incorporates them into the clustering.

Chiricota et. al. [CJM03] propose an efficient clustering algorithm that sepa-
rates related clusters of software within an application represented as a graph. The
method is based on computing the strength of an edge in a graph by only consider-
ing the neighborhood of the two vertices.

The main assumption the approach is built on refers to the fact that software
systems are usually organized in cohesive clusters of entities that are loosely con-
nected to each other. The assumption is present in extensive research [MMR98,
MMCG99, AFL99, MM01, MMT04, LXZS06], and it captures an important prop-
erty of the software systems.

The goal of the algorithm in [CJM03] is to detect the weak edges in the graph
representing the software system.

The weak edges are, in fact, the connections that link the cohesive groups of
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entities, and their detection is of significant importance when isolating them from
one another. The algorithm defines the strength measure by considering the edges
that originate in the two vertices of a given edge. The metric is calculated using the
ratio of the number of paths (cycles) of length three or four that exist between the
two vertices, in relation to the maximal number of such paths.

The algorithm is applied to all the edges in the graph, and the ones with the
lower strength values are considered as weak, thus as possible links between dif-
ferent clusters of software entities.

This algorithm proved useful in our approach, where we adapted it to help the
detection of code-level dependencies that artificially linked groups of classes that
represented distinct functionalities in the target object-oriented distributed appli-
cations. By ’artificial’, we mean those dependencies that were not related to the
interactions relevant to our approach, being rather trivial in comparison. An exam-
ple of such a dependency is the relation two components may have with a same,
utilitarian, library: it links them together (they both need, for instance, to convert
weight units), but it does not expresses a main architectural trait.

Brian S. Mitchell [Mit03] proposes an approach to extract architectural infor-
mation from the source code via a clustering-driven process. The system is rep-
resented as a Module Dependency Graph (MDG), and a series of search-based
algorithms are applied to detect the functional clusters within the code. The ap-
proach works by randomly generating partitions of the graph and calculating fit-
ness functions for them, evaluating the quality of the respective generated cluster.
The clustering is supported by meta-heuristic search algorithms so that the quality
of the generated partitions be high. Hill-climbing and genetic algorithms are in-
volved. The result of the process is a set of clusters that represent subsystems in
the analyzed application.

3.1.2 Semantic and Dynamic Clustering

Despite the fact that many approaches consider the structural relations established
between system entities, this doesn’t always provide all the necessary data about
the system. For this reason, researchers sometimes look for alternate sources of
information, and tackle the problem of recovering the architecture from different
perspectives.

Kuhn et al. [KDG05] focus on a type of information often ignored by software
analyses, the semantics inherently present in the code artifacts such as comments
or identifiers. They use Latent Semantic Indexing [DDL+90, MM00, MM03,
MSRM04] to analyze the spread of the relevant terms through the source code,
and use clustering to group the entities that use similar terms. The approach is
complemented by structural analysis, so that the technique can be applied to appli-
cations at different levels (to classes, methods, etc.).

Bauer and Trifu [BT04] address the issue in clustering-based decomposing
of software systems where the clustering techniques are exclusively based on as-
sessing syntactic dependencies rather than considering higher-level semantic data.
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They propose a method of gathering information about the architectural traits of the
application by searching for architectural clues that in turn collaborate to suggest
architectural patterns in the system. The high-level information obtained this way
is therefore used to calculate a similarity measure which is applied in a clustering
algorithm that produces the decomposition.

Xiao and Tzerpos [XT05] approach the problem of software clustering from a
different perspective. Instead of considering statical information about the system,
they perform the clustering using as a similarity measure the dynamic dependencies
between system entities. After applying the approach on a large open source ap-
plication, they conclude at the end of the paper that the consideration of dynamic
information when performing the clustering is an interesting research topic, and
can provide useful information about the systems.

3.2 Design-Driven Approaches

Some approaches focus on analyzing the system architecture in relation to the
known traits of the system. They assume some external information about the
system does exist, and it refers to the various roles of the design elements in the
system (such as architecture requirements, functional roles of the system entities,
etc.)

Schmerl et al. [SAG+06] address the issue of determining whether an appli-
cation’s actual architecture is the same as it was originally designed. They aim to
provide an approach applicable to a large class of systems, that dynamically dis-
covers the architecture of the applications by analyzing them at the runtime. For
this purpose, they develop a framework that facilitates the mapping between the
implementation styles to the architectural styles. The mapping is used at runtime
and is able to help detecting patterns that show whether the various actions of the
system represent ”architecturally significant” activities, i.e., provide information
from which architectural knowledge can be extracted. They have developed a tool
called DiscoTect [YGS+04], that feeds on captured and filtered running events and
produces architectural information to build incrementally the recovered architec-
ture.

Deursen et al. [vDHK+04] synthesize their experience by presenting the Sym-
phony process of evaluating the actual system design (and the impact of its prospec-
tive future evolution) by reconstructing the architecture. The approach is based on
designing the viewpoints that are needed for understanding a particular system, and
extracting the corresponding views from the system itself. The process is iterative,
and involves concept analysis extracted from discussions with the interested par-
ties, mapping the hypothesized views to the system-extracted ones, and gathering
and interpreting the information from the actual system by applying established
techniques.

Christl et al. [CKS05] improve the Reflexion Model technique [MNS95] of
mapping source-level models to specified or hypothesized high-level representa-
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tions of the systems. The goal is achieved by enriching the method with automatic
clustering techniques to support the user in the mapping process. The result is a
semi-automatic process that provides better results than the original method.

Jakobac et al. [JME05, JEM05] propose a user-guided approach that analyzes
software systems by separating the architectural concerns to facilitate understand-
ing. The concerns in the system are observed from two perspectives: the purpose
view assessing the processing, data, and connection roles of the architectural el-
ements [PW92], and the usage view that describes what parts of the system are
shared and which are exclusive to individual entities. The analysis uses the avail-
able sets of clues specific to the application domain to label the different types of
entities, and propagate the labeling to the related parts of the system to support the
understanding of the application’s architecture.

3.3 Concept Location

Extensive work related with the domain of software comprehension has been done
in the field of concept location [Raj02].

Eisenbarth et al. [EKS03, BEK+04] propose an approach that aims for the
identification of selected features in the source code of a software system. They
only focus on the features that are considered relevant for the system analyst, and
start the identification by describing and performing the scenarios that make the
respective feature manifest itself. The scenarios are runtime sequences performed
by the user to invoke a particular needed feature. The approach uses concept anal-
ysis [GW99] and both static and dynamic analysis to create feature-unit maps that
describe which system entities implement a set of features considered important.

Salah et al. [SMADP06] describe an approach for comprehending large soft-
ware systems based on dynamic analysis. The process extracts different views of
the system (use case, module interaction and class interaction) to support the lo-
cation of features within the application. The analysis is done by performing on
the system a set of scenarios extracted from the use cases, and analyzing the ex-
ecution traces. The approach is different from Eisenbarth’s in that the features
are identified during the user’s interaction with the system, therefore eliminating
the need to end the program after each scenario. Moreover, the approach is capa-
ble to analyze larger software applications, and generates different types of views
[SM04, SMADP05].

Edwards et. al. [ESW06] use dynamic techniques based on causal ordering
of events to address the feature location in distributed software systems, while
Poshyvanyk et. al. [PGM+07] use a combination of Latent Semantic Indexing and
scenario-based probabilistic ranking of events to identify the features in the source
code.
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3.4 Distributed Systems Analysis

This section gathers several approaches specifically built to analyze distributed
software that we consider representative for the issues we discuss in this disser-
tation. The approaches analyze different types of systems, and combine various
reverse engineering techniques and sources of information to provide system un-
derstanding or specific architecture recovery.

Mendonça and Kramer propose in [MK98, Men01, MK01] an approach for
recovering distributed applications. They apply the work to systems built as C/C++
projects in the UNIX environment, and analyze them starting with the source code.

The approach is static, and combines several techniques for architecture recov-
ery, focusing on identifying the executable components and their potential interac-
tion at runtime.

The first technique is called component module classification and aims to find
which are the compilation modules that make each of the executable components
in the system, and classifies them as exclusive or shared, depending on the number
of executables that use them.

The next technique in the approach is called syntactic pattern matching, built
for specifying and executing queries on a syntactic representation of the source
code, in order to identify the typical interactions between the system components.
The patterns are described using a library of Prolog predicates, and are applied on
an abstract syntax tree representing a program. Usages of the queries include the
identification of basic program-specific patterns, such as assignment expressions
and subroutine calls, along with any combination that describe a more complex
code pattern. For example, the authors present the description and usage of specific
queries that provide identification for the socket creation patterns in C, at both the
client and server side, patterns for shell invocation or process creation, and so on.

The third technique, structural reachability analysis is used to determine which
components use the various runtime features encapsulated in the shared modules in
an application. For this purpose it builds an activation graph that models the activa-
tion units in the system (functions, methods, etc.) and the relations between them
(as being the function calls or method invocations), and computes the transitive
closures of the graph .

Pinzger et al. [POG03] propose an approach that extracts information from
three-tiered distributed software applications based on the COM/COM+ compo-
nent framework.

The goal of their techniques is to use the extracted data about the system so
that the understanding of the respective application is supported. They have devel-
oped a semi-automatic approach that investigates the architectural characteristics
of the analyzed system by understanding the attributed of the COM+ components.
They build a model that describes the various encountered aspects, such as the
persistence, security, transactions and error handling. Moreover, they analyze the
dependencies that are established between the components, so that they extract the
relevant information.
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The abstract model is built using several sources related to the target applica-
tion. They use the IDL definitions in the source code to understand the descriptions
of the components, and search for the particular COM+ statements that indicate ar-
chitectural characteristics, such as those that are specific to handling transactions.
The process uses the COM+ API to extract the type library information that con-
tains data about the interfaces provided by the various components, thus avoiding
the need to parse IDL files that, as the authors remark, are not always available for
analysis. Moreover they use the COM+ registry data to estimate the architectural
characteristics specific to the deployment of the components. To identify the com-
ponents in the application they start with the presentation layer, that represents the
client to the rest of the application. By analyzing its code, and searching for instan-
tiation statements, they determine all COM+ components it uses. After assessing
the interface definitions from the meta-data stored in the type library, the configu-
ration information is processed to extract data about the transaction semantics and
security settings specific to the deployment of the application.

The approach is similar to our case, especially as it is highly aware of the
technology-related constraints, by . following the major architectural patterns im-
plied by the COM+ framework, and using them to detect the information that pro-
vides the system understanding.

Li and Tahvildari [LT06] propose a service-oriented componentization frame-
work for systems written in Java. The purpose of their approach is to process an
existing Java software system, and transform it into a service-oriented one to sup-
port component reuse. The developed framework supports the identification of
the business services that exist in the application, and transforms each identified
service in a separate, independent software component. The initial application’s
architecture is thereby transformed by the approach to become service-oriented,
that can be used and deployed as such.

The process consists of several phases: the architecture recovery, the service
identification, the component generation and the actual system transformation. The
approach models the system as a graph by representing the classes and interfaces
as vertices, and labeling them with their name and package information. The edges
represent the relations between the classes or interfaces, such as inheritance, real-
ization, aggregation, association, usage, and composition.

Regarding the system’s architecture, they distinguish between the so-called
top-level services, as those that are not used internally by other services, and the
low-level services that comprise of functionalities that collaborate to form a top-
level service.

The process uses a combination of top-down and bottom-up procedures to iden-
tify the services. The top-down technique heavily relies on applying graph pro-
cessing to identify the various inter-related system components. The bottom-up
approach describes an algorithm that iteratively agglomerates the atomic services
that are highly related to each other to obtain at each iteration a higher granularity
service. The user is presented each intermediary result, and can decide the termi-
nation or the continuation of the process. The final stages encapsulate the resulting
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top-level services and their related low-level ones into self-contained components
that follow a service-oriented architecture.

As it uses graph processing, the approach resembles to some degree our method-
ology in what regards the separation of the distinct features. Nevertheless, their
purpose is different i.e., to transform the object-oriented design of the application
into a service-oriented one, and it does not focus on the distributed aspects in the
system.

Han et al. [HHN03] describe an approach that aims to reconstruct the soft-
ware architecture for J2EE web applications. They use the Siemens Four Views
approach [HNS00, CGL+02] to separate the architecture into four views: concep-
tual, module, execution and code architecture.

The approach consists of an iterative process that analyzes the views in a non-
sequential order. The first step considers the code architecture and execution views
to extract basic understanding about the structure of the system, such as the direc-
tory structure of the system files, their probable functionality, the runtime depen-
dencies and so on. The next step describes the module view by understanding the
static relationships between the entities in the application. They consider all the
classes, JSP files and other source entities, and the basic dependencies between
them. The next phases of the process focus on the conceptual view to modify the
already extracted information about the modules. Then, a second pass on the ex-
ecution and code views adds the new information regarding the mapping between
the modules and the entities in these views.

The approach focuses in particular on the dependencies between the different
entities in the application. The authors distinguish between the usage dependen-
cies (such as method invocations) and the other relations, described as ”knows”
dependencies (instantiations of classes without calling the methods of the respec-
tive class, objects that are received just to be passed to another entity, etc.). The
approach is entirely manual, though the possibilities of automating the process are
analyzed in detail.

Di Lucca et al. [LFP+02] analyze the limitations in web applications com-
prehension approaches that render the applications in visual representations. Ac-
cording to the authors, the respective techniques are incomplete, as the size of the
modern web applications is usually too big for the representation to be manageable
by the user. The proposed solution uses a set of clustering techniques, along with a
coupling-based measure to produce a hierarchy of clustering. The metric is specif-
ically built considering the target system type (web applications), and therefore it
is based on intuitive assessments on the characteristics of the respective system.
Thus, the typology and the topology aspects of the dependencies are considered,
and the manner in which they produce different types of coupling between the
components is analyzed. They weigh the importance of each type of connection in
the strength of collaborations between components, so that the metric to ensure a
proper capture of the domain-specific traits.

Like the metric, the clustering algorithm is specifically built for the web appli-
cations field. It is based on an agglomerative approach, that starts with individual
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items (such as web pages) and groups them in clusters, iteratively. Once applied,
the algorithm provides a hierarchy of clustering, each level in the hierarchy con-
taining a set of system entity clusters. The selection of the appropriate level in the
hierarchy that provides the most relevant set of clusters is based on specific qual-
ity measurements. The paper defines a quality of a clustering metric that is used
for this purpose: the clustering that exhibits the maximum value for this metric
is considered the best candidate partition of the application components. Conse-
quently, the value is used to find the cut-height in the already obtained hierarchy of
clustering for the optimum set of identified clusters.

Ricca and Tonella [RT03] propose an interesting approach aimed at identi-
fying the static Web pages in a site that are best candidates to be transformed in
dynamic versions of themselves. The approach supports the migration from en-
tirely static web sites to sites that are built using web application techniques.

The process identifies the common structure of the pages, by isolating the parts
that are variable, that change from one instance to another while the rest of the
page remains the same. The differences are cataloged and entered into a database,
and a special script generates automatically the migrated pages.

The main technique uses clustering to group the similar pages in the web site.
The clustering is based on a similarity metric that tries to identify pages which
share the same template, and may be candidates for transformation in a dynamic
counterpart.

The algorithm is agglomerative, and it is based on the Johnson’s algorithm de-
scribed in [Wig97]. It produces a hierarchy of clustering that is then processed by a
technique that increments the cut-height starting from the level of individual pages
(height 0), and stops when the current level contains a cluster having a number of
pages greater or equal to a specified threshold value. The respective set of clusters
(at the corresponding height in the hierarchy) is then selected as the entities to be
transformed in dynamic pages.

The actual transformation consists of several phases, such as the extraction of
the templates, and the generation of the dynamic information to be inserted in a
database. The process is semiautomated, and the user interaction is specifically
important when recognizing the templates in the pages that were clustered at the
different levels in the hierarchy, and for refining the final templates and the infor-
mation that is stored in the database.

In the same line of supporting the analysis, maintenance and development of
web sites and applications, the authors also use a visualization technique [RT00]
that presents the Web site evolution over time.

3.5 Visualization

Analyzing software systems is a complex enterprise and often implies large amounts
of data that must be processed by the analyst. The information related to the var-
ious system entities, at the several levels of abstraction the approaches focus on

41



CHAPTER 3. ANALYZING AND UNDERSTANDING SOFTWARE

is usually multifaceted, thus the assessment of the attributes is not an easy task.
To help the analyst, many methodologies make use of software visualization to
represent the critical attributes as intuitive, easy to handle, views on the system.
Research in this domain focuses on visually capturing the most significant data,
while avoiding the cluttering and allowing the user to detect the relevant patterns
that serve the analysis purpose.

3.5.1 Fisheye Views

One of the first visualization techniques in software was the fisheye views intro-
duced by Furnas [Fur86]. The idea is to assign degrees of importance or relevance
to the entities in the system (such as the line codes) and visualize them accord-
ingly. The entities that have higher importance are emphasized and shown with
higher level of detail, while the ones that are not relevant to the particular context
are represented with smaller sizes, or even ignored. This way, the structure of the
program can be assessed in an easier way, by concentrating to the main aspects,
while also seeing (with lesser detail) the rest of the system.

Storey and Muller [MADSM01] propose a visualization that uses fisheye views
to document architectural diagrams and design patterns on several abstraction lev-
els. The approach represents software systems as nested graphs and emphasizes in
a fisheye view the regions of interest. This way, the details of a certain part of the
graph can be easily viewed, while the overall structure of the system is still visible.

Turetken et al. [TSSO04] propose the application of fisheye views to the
field of software design and analysis, especially by integrating the technique in
Computer-Aided System Engineering (CASE) Tools. The different degrees of de-
tails are used in their approach to focus the attention of the engineer in both process
and data modeling.

Jakobsen and Horbæk [Jk06] analyze fisheye view visualizations applied on
single source code files in Java programs, and assess the applications to other text-
only data. The views focus on the selected portions of code, while presenting an
overview that still shows the structure of the respective file and its general out-
line. Moreover, a second view shows only the lines of code that are computed as
relevant with a degree of interest function, while the others are represented with
very small fonts that make them unreadable. For example, the function may select
only method signatures, and hide the actual implementations in order to obtain an
overview of the respective class. The authors conducted an experiment where 16
participants used the fisheye views and compared them with the normal, linear ones
in Eclipse.

3.5.2 Structural Representations

Structural patterns and relations in the systems are assessed in various ways by
the researchers. Ducasse and Lanza [DLR05] introduce a visualization of object-
oriented systems that targets to depict the characteristics of multiple methods at
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the same time. They develop the microprints, pixel-based visual representations
that show different aspects that may be of interest when assessing the methods: the
state access, the relations derived from method invocation and the control flow.

Eick et al. [ESEE92] introduce a visualization technique that depicts various
statistics about the lines of code in a format that allows quick identification of
interesting patterns. Each line in a source code is drawn as a thin segment in a
different color, according to the value of the chosen statistic, for example, the lines
most recently changed are drawn in red, and those least recently modified in blue.
The tool called Seesoft visualizes about 20 sources files at the same time, providing
the user with an useful overview at a single glance.

Other interesting structural-related views in literature are the graph-based rep-
resentations discussed in [PMR92, CM93], and the design pattern visualizations in
[LN95] or [JSK07].

3.5.3 Dynamic and Semantic Sources

The dynamic perspective on the system is also helped by visualization. Hill et
al. [HNP00a, HNP00b] introduce a method that facilitates the visualization of the
runtime object structure of object-oriented applications. They developed the own-
ership trees that extract the encapsulation structure from the runtime object graph.
A runtime object A ”owns” another object B if and only if all paths from the root
(main) object to B include A. That is, were A to be deleted, B would be unreachable
in the runtime system, and removed by the garbage collection mechanisms. The
view facilitates the understanding as it presents in a intuitive manner the inherent
relations within the running system, which also facilitates the program debugging.

Jerding et al. [JSB97] analyze and visualize the execution of object oriented
systems by capturing the runtime interactions in order to understand the dynamic
behavior of the system. The visualization tools allow the user to browse the event
traces in real time, and view the message interaction patterns that are detected. The
views are complemented by a visualization of the source code, used as reference
when assessing the system behavior. An approach that uses both static and dynamic
information when visualizing software systems is presented in [RD99].

A visualization technique for finding the interactions between the components
in a RMI application is presented in [BG03]. They use dynamic monitoring of
the RMI calls to detect the relations between the components, and the structure of
the components is not taken into consideration, as only the remote interactions are
analyzed by this technique. The visualization is depicted as a sequence diagram,
and the basing interactions between the RMI components is shown.

The data for the visualization can also be extracted from the semantics in the
analyzed system, such as in the approach proposed by Lungu et al. [LKGL05].
They present a visualization that explores in an interactive manner the clusters of
classes that share the same terms. They use the approach based on Latent Semantic
Indexing in [KDG05] for driving the clustering, and the visualization consists of
three perspectives: Exploration, Map, Detail.
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3.5.4 Metrics-Driven Visualization

Software visualization is often used in conjunction with software metrics to pro-
duce characterizations of the various attributed of the system entities at different
levels of abstraction. Termeer et al. [TLTC05] present an approach that enrich
UML diagrams with metrics visualization. The views are highly customizable, and
the metrics are applicable both at the system level and to individual entities, such
as elements or relations.

An interesting approach is presented by Wettel and Lanza [WL07], who de-
velop a visualization that represents the attributes of the system components in
tridimensional perspectives that resembles cities. Different metrics are used on
each dimension, so that entities (classes) are drawn as parallelepipeds, each one
representing a ”building” in the ”city” (the system). The different heights of the
”buildings” and the area they occupy are indicatives of the entity properties.

Lanza and Ducasse [LD03] introduce the concept of Polymetric Views, a vi-
sualization technique using software metrics. They represent up to 5 metrics on
the same node representing a single entity in the system. The measured values
are depicted in the node size (width and height), node color, and node position (in
a bidimensional coordinate system). The multi-faceted representation allows for
easy visual recognition and identification of several characteristics of the entities
at the same time.

Polymetric Views are used to capture runtime information [DLB04], to as-
sess the structure and interactions of the packages in an object-oriented system
[DLP04], or to visualize the evolution in time of the class hierarchies [GDL04,
GLD05]. The view is enriched with a third dimension in [Wys04].

In our work, we define a particular case of Polymetric Views when we represent
system properties (Chapter 5) and use an extension of the concept when we repre-
sent the class participations to the different functionalities in the system (Chapter
6).

3.6 Reverse Engineering Distributed Software

The approaches in the literature cover various cases of software systems and use
a wide set of techniques to extract knowledge about the applications. However,
we have found that there are several areas that are not fully covered by the current
state of the art, especially when considering the analysis of distributed software
applications.

First of all, the majority of approaches apply to a too large class of systems,
thus missing the benefits in considering the specificities of the various classes of
applications. This is more evident in the case of distributed systems, where the very
distributed nature is not consistently taken into consideration as a relevant source
of information.

In our opinion, when analyzing distributed software, the knowledge related to
the application domain is essential for driving the process of understanding. Specif-
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ically, we believe that the main information that should be taken into consideration
is the technology the software is built on, the one related to the communication
infrastructure used for establishing connections between the system components.
Technology should be the main concern that drives the process of extracting knowl-
edge from distributed systems, as it should also represent a main concern in the
process of their design.

The choice of technology strongly influences the architecture and the lower-
level structure of a distributed application. When architects choose a communi-
cation technology they inherently limit the possibilities of developing the applica-
tion, in that the technology constrains the development with a set of specific, well-
defined rules in designing and writing the application. The developers must use
the services provided by the communication infrastructure in a given, technology-
specific way, they must follow strict rules related to the system architecture (such
as describing and implementing the service descriptions in the way requested by
the technology), and they must closely follow the specific development steps the
technology imposes.

The various types of constrains provide the effort of understanding such sys-
tems with valuable information, because generally they impact the code in con-
structs visible as detectable patterns. Moreover, the technology-related specificities
of the architecture provide information that can be used to help the identification
of the functional units within the system. For example, in an EJB application, the
very type of the component (visible directly from the inheritance declaration of
the main class) provides information about the role it plays in the system: it is
concerned with the persistent storage of data (the entity beans), it defines the func-
tionalities that perform business processing (the session beans, that offer further in-
formation when detected as stateful or stateless), or deals with asynchronous events
(the message-driven beans). In RMI, the existence of a remote call provides infor-
mation about a direct dependency in the system, established over the network to a
service provided by the system. This is important knowledge as this particular type
of dependency is highly relevant for understanding the distributed nature of the ap-
plication; the technology-related information clearly distinguishes this dependency
from the usual class-to-class dependencies that exist in any object-oriented system
and do not provide equally important data.

The information about the type of the technology used in distributed applica-
tions is one that can be easily obtained in most of the cases. The choice of com-
munication infrastructures is not excessively wide, as most of them are based on
standardized network or application protocols. Moreover, the knowledge is usually
implicitly available in the system’s basic description. For instance, in a software
company (or any other organization qualified to start an understanding process) it
is easy to know that the application they analyze was built using CORBA or RMI,
because most probably this was one of the main traits that distinguished it from
other applications built by the same company.

Therefore, this kind of knowledge does not present a problem for the analysis,
at least it implies an effort highly rewarded by the gains.
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Another type of concern is that many generic approaches for reverse engineer-
ing software systems are computationally intensive, as they are applied on the
entire system without differentiating between the basic system entities. For ex-
ample, clustering techniques are usually based on graph partitioning algorithms,
which are known as being NP-hard problems [GJ79]. While the researchers aim
to address this problem by optimizations or application of heuristic methods, the
computational effort is still significant when applied to large applications.

Especially when assessing the structure of a well-defined class of applications
(as the distributed ones), we believe that any approach should start by consider-
ing the basic nature of the system, and defining a goal regarding the data to be
extracted. The analysis should place value on all the available information about
the technological aspects known about the application and about the nature of the
items the approach is interested in. In the case of distributed systems, knowing
their nature can focus the search in an efficient manner, and allows the process to
concentrate on extracting the very core functionalities that define the system, rather
than generically detecting functional aspects, without considering whether they are
all of the same relevance to the system understanding effort.

In short, the analysis should direct its efforts on understanding the distribution-
aware functionalities, and the entire process of understanding must be driven by
this purpose, by conceptually isolating the most relevant partitions in the code in
respect to the main system nature, that of being distributed.

Another problem is that many fully automatic approaches (such as clustering-
based techniques) do not detect the partitions that define the architecture cor-
rectly [Kos00]. Moreover, system entities cannot always be placed in clearly
delimited partitions, each representing a distinct functionality. Basic entities,
such as classes, often participate to more than one feature, therefore a clear-cut
partitioning or clustering scheme does not accurately capture the characteristics of
the application.

Consequently, the entities should be specifically analyzed so that their partici-
pation to the different functionalities is clearly assessed. Aside from the fact that
this would complement the partition techniques by pointing out the places where
they failed to capture the system traits, a detailed analysis of the participation of
system classes to the various functionalities would provide knowledge at a finer
grain in the system. Moreover, it will also address the important issue that systems
usually include significant numbers of entities that are shared between more than
one functionality, rather than being participants to a single feature.

Finally, a common characteristic of the reverse engineering techniques is that
they usually focus on a single, large goal, such as clustering the application in a
set of subsystems, and leaves the rest of the work to the engineer. That is, they do
not offer support for the other activities related to the maintenance or evolution,
at least not in a manner that is consistent with the analysis itself. As the system
understanding is usually followed by a process of changing the structure of the
system in a way or another, we believe that a comprehensive approach should be
enriched with at least basic restructuring support, which uses the same concepts and
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works with the same system-related assumptions as the process of understanding.
The next chapters of this dissertation present our approach to reverse engineer-

ing the distributed object-oriented software systems, driven by the considerations
we made above. The targets of the methodology we developed are, consequently:

1. Use the information related to the technology the system is built on to capture
the distributed nature of the application;

2. Isolate the core system entities responsible for the distributed functionality,
thus focusing the computationally-intensive tasks on a minimum amount of
relevant information, so that the detection of the distributed functionalities is
efficient;

3. Assess the participation of the system entities to the various detected distribution-
related functionalities to both complement the functionality detection and
understand the collaborations in the system;

4. Provide support for application restructuring by applying the knowledge
gained about the system and consistently working with the same concepts
and techniques that were used in the understanding process.

The methodology is designed to be supported as much as possible by automatic
tools (which we have also developed), while benefitting from the experience of the
engineer at the particular stages of the approach where it is essential for attaining
optimum results. Nevertheless, the interaction with the user is kept in reasonable
limits, to minimize the effort the analysts must make in order to understand the
characteristics of the target applications.
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Chapter 4

Representing Distributed
Software for Analysis

Approaching the goal of understanding distributed systems can be done only by
analyzing the actual issues that must be studied by the engineers. The process
has to start by defining the actual need of understanding by clearly delimiting the
goals, and must continue by expressing them in a way that enables the research to
produce a detailed description of the analysis techniques. As in any scientific field,
we need to make use of a representation of the system which, while being only a
simplification of the real world, provides all the necessary means for delimiting,
measuring, and analyzing the relevant characteristics of the system. The represen-
tation must define and describe all the structural or functional units that provide the
necessary views on the studied aspects, and enable easy and precise observations
on the attributes of interest.

In itself, a system representation is of little use without an approach that also
considers the actions that must be done to actually understand the system. There-
fore, any model must be enriched by describing a method or methodology of anal-
ysis which processes the model entities in an ordered, consistent, and repeatable
manner. For this purpose, building the model must consider these issues, and it
must support the development of the needed methodology.

This chapter is concerned with two main goals:

• finding the criteria that describe the necessity of understanding a distributed
software system, specifically the elements related to distribution and remote
interaction between components

• defining and describing a representation of distributed systems that serves
the process of understanding.
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4.1 Criteria for Understanding Distributed Software Sys-
tems

Distributed software systems are the natural outcome of the continuous and com-
plex process of evolution software applications witnessed over the time. They
represent the industry’s way of answering the very important requirement of the
modern society of integrating in an efficient yet transparent manner the diverse,
inter-related and geographically-distributed day-to-day human activities. At their
first beginnings, distributed software systems targeted specific, isolated, problems
like simple remote communication between parties or remote transfer of (limited)
digital resources, being mainly complementary pieces of software for the already
established applications, enriching them with a single main feature: the ability
to act as inter-related separate components running on different computers. Nev-
ertheless, this single characteristic represented a serious paradigm shift, and the
heterogenous, loosely-related independent applications rapidly evolved into com-
plex, specifically designed, distribution-aware systems. This evolution promoted
the distributed nature of a system to the rank of being a veritable frontier that sep-
arated this class of applications from the more ’traditional’, locally-acting ones.
Indeed, the issues implied by the distribution have large implications in designing
and maintaining these systems, and there are many cases when formerly estab-
lished techniques are insufficient for both their developing and analyzing.

On the other hand, no distributed application is purely so – that is, the pur-
poses it serves are more frequently a mix of local and distribution-aware con-
cerns, and its behavior is influenced by the both aspects. Moreover, fairly large
parts of the applications are designed without directly being interested in the dis-
tributed concerns, especially when complex frameworks or infrastructures are used,
specifically-targeted for providing communication-related services. Consequently,
the task of analyzing and understanding such an application must balance the tech-
niques it utilizes, in that it must make the most of the already established, ’tradi-
tional’, analyzes, while emphasizing the inherent value of the characteristics that
make the application distributed.

With these considerations in mind, we must asses which are the main needs
an engineer has when aiming to understand a distributed system. As a prerequisite
for this assessment, we start with a set of assumptions that outline the scope of our
concerns, and delimits the types of activities we are supporting. For the purpose of
this thesis, we make three such main assumptions about the target system:

• The software system is available to the engineer at the source code level;

• The original developers of the system are not available for questioning, or at
least they are not able to provide all the required information; the documen-
tation is also not enough for fully understanding the system;

• The system must be understood so that it can be maintained, restructured, or
further developed.
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As can be easily seen, the above assumptions describe in a fairly accurate de-
gree a pattern often occurring in the software industry: legacy or long-term devel-
oped applications that are still needed, while the original team of developers are
either not available anymore, or work on other assignments.

Further on, we must describe the nature of the system itself, and - for our
purposes - it has the following characteristics:

• it is object-oriented

• it has an important distribution-aware functionality that actually defines the
very nature/purpose of the application

As these two attributes further delimit the scope, they have two important im-
plications on the structure and focus of the techniques that must be involved in the
effort of analyzing and understanding the system:

• the approach must rely on existing object-oriented analysis techniques to
capture the general characteristics of the system

• it must focus on capturing and understanding the distribution-related con-
cerns, the characteristics that can never be fully covered by an object-oriented-
only perspective on the system.

The latter implication is one that describes the actual relevance of the approach,
by bringing into focus the aspect where ’traditional’ techniques fail to provide use-
ful information. We will enter a short divagation to look into this matter closely.

Distributed applications are built for various purposes and needs, but for most
of them the distribution-related context actually defines the application’s nature,
and makes them very different from their ’classic’, locally-acting counterparts. A
good example to consider is the case of an electronic mail delivery system. Such
applications are widely used, and their utility is beyond argument. Let’s assume
we look at a mailing system and try to understand its structure without being aware
or even considering the possibility that it has a pronounced distribution-related
functionality. We can read the source code, analyze the internal relation between
the composing entities, and isolate the main functionalities of the system, such as
the most intensive tasks it performs on the (local) resources, and the main activities
related to storing and processing data. We can do it by ignoring the nature of
the libraries or infrastructures the application uses, thus treating the providers of
remote communication (like middleware or operating system services) as any other
utility the system happen to use. From this perspective, we can arrive at a very
probable conclusion: the system is very much concerned in storing text and related
binary files in organized databases, and it has advanced features for managing the
users that can access and manipulate those files. If we continue to close the eyes to
the distributed aspect, we will definitely miss the most important functionality the
system actually provides, that of sending and receiving to/from remote locations
user e-mails.
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The main conclusion we can draw from this assessment is that the understand-
ing of the specific distribution-aware properties of the system is essential for the
accurate understanding of the system’s actual functionality. Consequently, a repre-
sentation of a distributed system will have to describe these properties by adopting
a perspective that facilitates the valid exploration of the system’s distribution and
communication-related functionality.

The distribution awareness of a system is best expressed by its interface with
the communication medium, by the actions it does by using or providing resources
over the network. When describing the functionalities a distributed component of
a system provides for remote parties, we usually refer them as services available or
published by the respective piece of software. Different components provide and/or
use services at the same time, and the correlation between the usage scenarios form
the actual distributed footprint of the larger application. The communication itself
plays a particularly significant role, as it represents the connexions between the
various remote parties. In virtually all modern applications, the communication is
not a task accomplished entirely by the application software. Instead, specialized
software infrastructures are used, that virtualize and manage in an efficient way the
data transmission, so that the application focuses on its main goals rather than on
the details regarding the remote sending or receiving information.

To capture the distributed footprint of an application in a representation usable
for detailed analysis, we believe that an approach must provide means for describ-
ing the following main aspects:

• the set of functionalities (services) the entities in the system provide as avail-
able for remote locations;

• the remote communication between parties, at a level of abstraction that al-
lows for a good delimitation between the functionalities that belong to the
studied system and those provided by external infrastructures;

• the relation between the distribution-related parts of the system, and the ones
that only address local concerns.

The latter aspect has to be understood not as a clear-cut delimitation between
”distributed” and ”local” entities, as in most systems such a straightforward ap-
proach is hardly realistic or useful for that matter. Entities in the system may have
a lower or higher degree of interest in the distributed activities, and ’pure’ func-
tionalities are rarely present, if any. Thus, the representation must provide a way
of describing the degree of involvement in one or the other types of functionality,
enabling the analysis to asses the various roles of the system entities.

Finally, a description of a distributed system must allow for the integration in
the analysis of the issues concerning the particular type of technology the appli-
cation relies on. Different technologies – mainly related to the network commu-
nication – are used when building distributed software, and the problem is that
they usually have a great impact on the application’s design and functionality. A
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representation must be as general as possible, thus cannot specifically be built for
a particular technology: in fact, it must be created at the highest level of gen-
erality available so that it is applicable regardless of the particular technological
constraints.

4.2 Building Blocks for Capturing the Distributed Nature
of Software

Distributed software systems are essentially made of an arbitrary number of pro-
cessing elements that run at different locations and are interconnected over a net-
work [Wu99]. Figure 4.1 presents a general schematic of such a system, as a basic
view on the involved entities.

Network

Figure 4.1: A general schematic of a Distributed System

In most cases, the remote transfer of information is handled by a special com-
munication system, usually external to the distributed application it supports, and
often being a fairly complex distributed system itself. Its purpose is to hide the de-
tails of transferring data between the remote locations, and to provide higher-level
primitives that describe the data formats and control the communication-related
activities. It acts as an actual infrastructure the system is built on, and it plays a
very important role in both the design of the application, and on its distributed be-
havior. The presence of the communication infrastructure influences the analysis
of a distributed system at least because of its following attributes:
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• It may consist of distributed components itself, some of them running at the
same locations as the application entities. When processing the application’s
source code, the analysis approach must differentiate between the entities
that belong to the analyzed system, and those that are part of the infrastruc-
ture

• It effectively defines the language the application uses when communicating
remotely. The infrastructure provides a set of primitives (like sockets, remote
object stubs, message queues, etc.) and a number of rules for manipulating
them. This imposes certain constraints on the application, and the analysis
can make use of the information related to their nature to better detect or
understand the interactions between the components of the application and
the communication providers. The reason is that the communication-related
interactions describe the very core of the distributed nature of the system,
which is the main focus of the analysis itself.

One important aspect here is that the communication infrastructure is not nec-
essarily an entirely independent entity. There may exist several layers of soft-
ware between the application core and the network, some of them implemented
’in house’ by the developers, some being third party products employed by the
application, and others being mainstream, widely used and general-purpose com-
munication infrastructures (e.g. middleware, language-specific or operating sys-
tem services). The important task in this respect is to draw the line that delimits
the relevant application-specific system entities from those that only address the
communication. By ’relevant’ we refer to those system parts that actually repre-
sent (and work for) the application’s goals, those that implement the design use
cases and provide the specific functionality that justified the development of the
application.

Because of these concerns, our representation of distributed systems clearly
separates the ’relevant’ application from the communication infrastructure. We
use the term Communication Mediator (or, in short, Mediator) to designate all
the entities, third party or not, that concur to the basic tasks of just sending and
receiving data (however complex these tasks may be), and are not involved in the
actual system-specific functionalities. As an important component in our model
we define the Application-Mediator Frontier, as the imaginary line that separates
the two sets of entities: on one side will reside only the code fragments belonging
to the application, and on the other the ones that implement the communication.
Drawing this line is not always easy, and it may be highly related to the task of
defining the scope of the analysis. The engineer may experiment with drawing the
frontier at different levels in the application’s layered model (if such a model exists)
to include the parts of the system that are more involved in what is considered the
application-specific functionality, rather than belonging to the part that implements
the ‘communication infrastructure’.

In most cases, though, applications use either general purpose communication
infrastructures, or rely on easily separable libraries or framework instantiations
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that deal with the communication details. They may be independent applications,
services included in the operating system, and may imply constructs specific to the
programming languages themselves. Examples of widely used infrastructures are
CORBA, Java/RMI, BSD sockets, Java JMS providers, etc. All define clear and
documented constraints on the application, and their parts (as libraries or binary
components) are easily identifiable when looking at the system. Considering their
relatively limited number and high degree of usage in the industry lead us ascertain
the fact that they allow for an easy delimitation of the relevant application entities
in most instances of analyzing systems in order to understand their distribution-
related functionalities.

Network

 Application - Mediator 
    Frontier

Figure 4.2: Application-Mediator interaction

Figure 4.2 shows the relation between the communication mediator and the ap-
plication components, as a refinement of the previous picture we have drawn. The
Mediator entities are the smaller, gray boxes. They can reside near the application
components, at their particular geographical location, to act as proxies in the com-
munication, or can be distributed over the network, interacting to provide the data
transfer services. Due to the higher level of detail, the communication channels are
becoming more visible, and the application-mediator frontier is easily identifiable.

The above diagram is, however, insufficient for describing the analyzed dis-
tributed application under the requirements we have already established in the pre-
vious section. The internal structure of the Communication Mediator is not always
of interest for the analysis, and in fact can often be an unnecessary level of detail
that only hinders the process. Specifically, we are interested in the structure of the
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application entities, rather than the details regarding the basic communication, and
the above picture does not reveal much about it. We must, consequently, further
refine the model, so that it provides a more accurately targeted information.

Moreover, when analyzing an application starting from its source code, we
have a very particular and somewhat limited view on the system, which remark-
ably excludes, in many instances, a very important aspect of the distribution: the
information describing the actual deployment of the system components over the
network. This information is usually scarce, and may reside in various places in
the system. Some independent components may have their code written in sepa-
rate compilation units (packages, for instance), but this is far from the norm, as
they may at least share utilities, common feature providers and other entities that
will easily break this rule. On some systems, the deployment information may be
specifically written down in dedicated descriptors (as is the case of Enterprise Java
Beans applications), but these cases are very particular and cannot be generalized
to become the foundations for a model suitable for a larger range of applications.
On other systems, there is effectively no deployment information per se, the task
of assigning parts of the system on the various nodes belonging exclusively to the
engineer that performs the installation.

Bottom line, the representation must be built so that it follows the realities,
rather than limit the approach to the more straightforward cases where the deploy-
ment information is readily available. For this purpose, our approach starts with
a specifically-targeted, intentional assertion in this matter: we are certain that we
can gather a deep enough knowledge about the system, and can understand it in
an accurate and sufficient degree even without using the deployment information
at all. Further more, we theorize that, while definitely useful, the deployment of
the components is far from being the main issue in understanding the functionality
of the distributed system. This assertion is meant to lead us to a methodology of
analyzing distributed software that works well using the information that is real-
istically available in the most frequent industry-specific scenarios, that is, when
the only usable artifacts are the programming fragments as encountered in a large,
undiscriminating, source code repository.

Not being able to use the deployment data, we need to assess what is the infor-
mation that we do have, in correlation with the representation depicted in Figure
4.2. Regarding the nature of the system, a relevant information at this point is that
the application is object-oriented, and it is distributed. Therefore, we have two
main items of interest:

• A set of classes, browsable at the source-code level;

• An orientation towards network communication in the system.

The latter information is highly relevant, and must be explored in detail, as
it is directly related to the main goal of understanding the distributed aspects in
the application. As noted above, distributed applications are usually built over
a communication infrastructure (the Mediator) that deals with all the details of
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sending and receiving data over the network. Because this is an important aspect
that directly influenced the design, in most of the cases the nature of the Mediator
and the technology it implies are known or can be discovered without a significant
effort. The number of ’popular’ infrastructures or communications technologies is
low enough to limit the search for this information even if it were not available.
Usually, though, the engineers just know that they analyze an application that –
for example – communicates through sockets, or one that is built using RMI or
CORBA, and so on. This is valuable information for a very simple reason: it
provides us with the tools of actually finding the frontier between the application
and the Mediator, and the relation between it and the application classes.

Every technology for network communication imposes a set of rules or con-
straints the applications must follow in order to use its features. In many cases,
these constraints are directly visible in the application’s source code, and can be
relatively easily detected when needed. For example, BSD sockets imply calling
specific functions available in a provided library, in a quasi-standard order when
establishing a TCP connection. Sending and receiving data is done using specific,
identifiable library calls, so that the classes that deal with these tasks are easy to
isolate. In Java RMI or in CORBA, specific interfaces must be written to describe
services (see Chapter 2), and the classes that implement them can be identified
looking at language-specific constructs in the code. Of course, there are cases
where the constraints are not fully identifiable through the source code, one ex-
ample being the applications using Java JMS-compliant message services. In the
JMS case, components use an external provider to publish or send messagas, and
a part of the interaction is described dynamically, at runtime. Nevertheless, there
still exist elements that influence the code, so the case is definitely not lost.

The constraints specific to the technology are useful when determining the re-
lation between the system classes and the Mediator. In our approach, we use these
constraints to identify the frontier classes, which we define as those classes or in-
terfaces1 in the system that either directly use Mediator services or they are built to
follow Mediator-specific rules in order to export system services or otherwise in-
terface with the Mediator facilities. For example, in RMI, we consider as frontier:

• all interfaces that extend java.rmi.Remote, because they effectively
represent the service declarations, and are built so that they follow the RMI-
specific rules for this purpose

• all the classes that call methods of such interfaces – they are the parts of the
system directly involved in remote communication.

Not all the classes in a system concern themselves in a relevant degree with
the distributed aspect of the application. Moreover, our experience and studies
have found that for each system, there is a relatively small set of classes that have a
significantly higher distribution-related role than the others. They usually represent

1For simplicity, we only use the term ’frontier classes’ although at some points we also include
Java interfaces in this category
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the kernel functionality of the provided remote services, or form the main entities
that use remote services as clients. We believe that the identification of this core of
functionality is very important to understand the distributed nature of the system,
for two main reasons:

• it is small in terms of number of classes, therefore it is easier to understand

• it concentrates the distributed functionality, being highly relevant when try-
ing to understand the distributed nature of the system

The distributed software system representation that we are building must in-
clude the core entities as elements of the model, as the main concepts the analysis
is involved with. However, we cannot consider them without relating to the goals
of the analysis, so that we have to follow them trying to understand how they de-
scribe the actual distributed functionalities of the software system. With this issue
in mind, two essential assertions can be made:

• systems usually do not provide a single distributed function or feature, there-
fore there exist, in fact, several cores of classes with important distributed
functionality, rather than a single core;

• the purpose of the core classes are directly related to the features the system
provides or uses remotely.

The second case is very important, as the aim of the approach is to understand
the distributed functionalities of the system. For this purpose, we define, through
a structural approach, an important concept of our methodology: the distributable
feature .

A distributable feature is a group of classes classes that either

• implement or contribute to a distributed functionality provided as sets of
remotely accessible services, or

• are themselves users of remote services, working together to implement the
same functionality.

These features use or depend on the communication infrastructure to comply
to their design goals, and they are either deployed at distinct locations, or are good
candidates for such deployment. An important observation here is that the feature
is not a distributed component deployed at a certain location in the network. A
component may consist of several distributable features, and moreover, the same
distributed functionality may be provided by several components. In fact, this ob-
servation is related to one of our main goals of the methodology, related to the
one we described when considering the deployment information: we aim to detect
the relevant distributed characteristics of the system without targeting a thorough
component identification. Instead, we detect distributable features, and analyze the
system in respect to them. As this dissertation will show, this approach allows us
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to make good assessments without using other information about the system than
the source code.

As noted above, we are interested in isolating the core distributed function-
ality to focus the analysis. Adding to this purpose the concept of distributable
features, we can identify within the code, a set of cores of distributable features ,
as smaller sets of highly distribution-aware classes, that represent the main parts of
each distributable feature in the system.

The rest of the classes in the system provide more or less distribution-aware
functionality, depending on their design. In our methodology, we see them as hav-
ing a measurable degree of involvement in providing the distributed functionality,
by having various degrees of acquaintance with the system distributable features.
We call these classes feature acquaintance classes , and we analyze their charac-
teristics separately.

4.3 A Representation of a Distributed Software System

Synthesizing the aspects discussed in the previous section, we can define a model
that represents distributed software systems, built from a structural-centric point
of view, intended to describe the aspects of the system that provide a good under-
standing of its distribution-related functionalities.

4.3.1 Model Concepts

To describe a distributed object-oriented software system, the model defines and
uses a set of concepts that delimit the relevant entities. They are discussed in the
following paragraphs.

System. The entity describing the entire software system.

Communication Mediator or, in short, Mediator. The infrastructure that pro-
vides the means of communicating between remote locations, providing methods
for sending, receiving, and otherwise manipulating information over the network.
It may consist of operating system services, frameworks, middleware, in-house or
third party applications or libraries, and so on. The technology it implies and the
constraints imposed by it must be identifiable and manageable, so that the relation
between the system and the Mediator can be characterized in the analysis.

System-Mediator Frontier. The imaginary line that separates the classes be-
longing to the analyzed system from the entities specific to the communication
infrastructure. It is used as a means of identifying and characterizing the particular
system classes that directly and consistently act as receivers , senders, subscribers,
publishers, etc. of information via the network.
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Figure 4.3: Main model concepts

Feature. A feature is a part of the system that provides an identifiable functional-
ity in the system. Features can be provided for other system entities to use, or may
represent aspects the systems is concerned with when working to fulfill is design
goals.

Distributable Feature. A feature to which the distribution-related functionality
is central. It may be made of one or more services provided for other features or
system entities, or may represent a client functionality for other system or external
features. It relies on communicating with remote entities to fulfill its goals, and
therefore it contains classes acting at the System-Mediator frontier.

Service. A specific, closely-related set of functions, grouped in a single, design-
specific, unit that describes a partial functionality provided remotely by a Dis-
tributable Feature. A Distributable Feature can contain one or more service de-
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scriptions, and their classes can indiscriminately participate in providing one or
more such services. Depending on the technology and the programming language,
service descriptions can sometimes be identified in the source code as interfaces
or similar language-specific constructs. In these cases, the service descriptions are
also considered Frontier Classes.

Distributable Feature Core. A minimal subset of the distributable feature classes
that concentrate enough distribution-aware functionality so that they can be used
to identify the distributable features within the system and characterize their main
interactions. All distributable feature cores form the distributable core of the sys-
tem.

Class. A class in the system.

Frontier Class. A system class that directly acts at the frontier with the Com-
munication Mediator by describing, providing or using remote services. It either
represents a definition of a service – therefore complying to technology-specific
requirements –, or is a class that uses the Mediator to send or receive data over the
network, to generate or be informed of remote events, or to otherwise manipulate
remote data during the system runtime.

Core Class. A class belonging to a Distributable Feature Core. It cannot belong
to two such features at the same time, but it may be involved in providing one or
more services that work for providing the same feature.

Acquaintance Class. A system class that does not belong to the Distributable
Feature Core. Its main attribute is the Feature Acquaintance which measures the
degree in which it participates to one or more of the distributable features in the
system. Its involvement decides whether it is actually a part of a distributable fea-
ture or is only concerned with local functionalities. Such a class may be involved
with more than one distributable features, and it can have both distribution-aware
and local concerns. This concept models the majority of the classes in a real-world
system, where the entities that exclusively provide a single, distribution-related,
functionality are relatively few.

Figure 4.3 shows the concepts discussed in this section, and highlights the rela-
tions between them. For clarity, the Service-related concern is drawn in a separate
view (Figure 4.4).

Figure 4.5 presents an overview of the model, by exemplifying how a dis-
tributed system can be represented in an analysis approach. There are several re-
marks that must be made at this point:

• The distributable feature cores are disjunct entities, having no shared classes
between them or with other model entities. While they may be connected to
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Figure 4.4: Model concepts - the service view

each other through relations of mutual dependency, these connections must
be loose enough to be safe to ignore when analyzing the characteristics of
the feature cores in isolation.

• On the other hand, the distributable features themselves can share classes,
both between them and with the local features provided by the system. In
fact, in real-world systems, the shared classes are usually numerous, and
the same class can participate in many features at the same time, regardless
of their distribution-related characteristic. Consequently, the distinction be-
tween the core and the larger feature around it becomes a significant one.
The core can represent the information that uniquely identifies a feature, and
therefore can be utilized with a higher degree of success when characterizing
the respective feature and its relations with the rest of the system.

• The local features may include classes that also participate to the distributed
aspect. However, they may contain classes entirely separated from the distribution-
related functionality. The ratio of predominance of the less involved classes
in the system is a very interesting indicator that shows the degree in which
the application was actually built for distribution, rather than being mainly
focused on local activities.
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ANALYSIS

4.3.2 Attributes and Relations

The model for understanding object-oriented distributed systems can be augmented
with a set of attributes and relations related to the concepts described above. They
cover the particular characteristics of the model entities that are considered relevant
for understanding the distributed functionality and the structural concerns that need
to be identified within the system.

We define the following relations between system entities:

• Remote Dependency. Describes the relation established between entities
that cooperate over the network. The ends of the relation can be distributable
features, services, or distributable feature cores.

• Acquaintance. Represents an internal (in-system) dependency established
between two entities that work together in a higher or lesser degree. It ap-
plies to relations between classes and distributable feature cores, classes and
generic class groups, classes and services, and to the relations between arbi-
trary groups of classes in the system.

For the purpose of characterizing different aspects of the model entities, we
define a set of generic attributes. During our approach, they will translate in nu-
merical values based on software metrics, either calculated directly, or by involving
specific algorithms. The attributes are described as follows:

• Entity size. Characterizes the relative extent of the entities, so that they can
be compared. In our methodology, it is applied to the distributable feature
cores.

• Coupling. Characterizes the strength of dependency between two arbitrary
entities of the system. When classes are involved, the attribute refers to the
different dimensions of the coupling-related measurements, and it is mainly
used to calculate the degree of acquaintance. The attribute is also applicable
to the relation between a class and groups of classes, including that between
a class and a distributable feature core.

• Degree of acquaintance. This is a calculated attributed, based on coupling,
meant to characterize the specific relation identified as acquaintance above.
It is particularly useful to characterize the relations that show the involve-
ment of the acquaintance classes in the various distributable features, or
those that show the classes’ participation in the provided services.

• Distribution awareness. This is an attribute that characterizes the impor-
tance the distributed aspect has in the design of the system. Low distribu-
tion awareness can suggest a system that wasn’t actually or properly built as
distributed, and which is is mainly a locally acting application that was aug-
mented with a few distribution-aware features that are not highly significant
in its functionality.
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Chapter 5

Core System Analysis

As the previous chapters have shown, software engineers are often confronted with
the problem of understanding software applications they have to manage without
relying on the often insufficient system documentation, and without having access
to the system developers. The process of understanding is not an easy one, espe-
cially when dealing with large and complex projects. The engineers must rely on
fairly complex tools and methodologies that are developed to support the process
of extracting meaningful information from the source code, which must be tailored
to fit the necessities occurring from the particularities of the analyzed system.

Distributed software applications are very demanding in this respect. They are
not easy to understand because of their very structural particularity, as they consist
of separate components dispersed over the network which take part in fairly com-
plex interactions in order to fulfill the design goals. Moreover, they rely on commu-
nication infrastructures that heavily influence their design, and impose patterns of
collaboration not usually encountered in ’classic’ software applications. Support-
ing the understanding of distributed software must be done with both these issues
in mind. The methodologies and tools must provide specific means for extracting
the distribution-specific particularities, while being aware of the many important
ways in which the communication technology influences the application’s design
and functionality.

This chapter presents the first part of the methodology we have developed to
address these issues, by describing the core system analysis that provides the main
items of understanding regarding the analyzed application. The next four chapters
describe the rest of the methodology, evaluate it, and introduce the tool we devel-
oped as part of the process. All five chapters should be regarded as a whole, as they
are steps that describe a single, unitary approach.

5.1 Goals

The purpose of our methodology is supporting the understanding for distributed
software applications. Synthesizing the criteria discussed in the previous chapter,
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CHAPTER 5. CORE SYSTEM ANALYSIS

the minimal characteristics the target systems must have in order to be analyzable
with our approach are:

• They are object-oriented applications;

• They are available to the engineers at the source code level;

• The information about the communication technology or platform the system
relies on is readily available.

In particular, we have applied the techniques presented in this dissertation on
distributed Java applications which use Remote Method Invocation as the means of
communicating over the network. Nevertheless, the methodology is designed to be
as general as possible so that it is adaptable to any object-oriented language and to
most of the communication infrastructures mainstream applications currently use.

The approach follows the considerations brought up by the previous chapter,
and aims to build a representation of the particular analyzed systems in the terms
of the model introduced there.

Analyzing a system with this approach focuses on the application’s distribution-
aware characteristics, and provide a set of essential items of understanding:

• Finding how important the distributed aspect is in the application;

• Identifying the parts of the system intended to be distributable, and the re-
spective distributable features;

• Revealing the main interaction patterns between the identified distributable
features;

• Assessing the impact of distribution in the entire system, by measuring it at
the class level (involving the concept of feature acquaintance classes);

• Providing support for restructuring by a structural, extraction-driven tech-
nique.

The entire process aims at minimizing the effort the engineer must employ
when tackling the system, by providing a set of techniques that are easily auto-
mated, and by supporting the necessary tool infrastructure in this respect. More-
over, the main steps of the methodology focus the engineer’s attention to minimal
sets of entities to analyze directly, so that the human intervention is limited to
only the really important aspects of the analysis approach, those that involve well-
targeted, high-level process-related decisions. The approach is structural-based,
and aims to extract all the possible information on the system by in-depth looking
at its source code.

In order to further support the understanding, the methodology is enriched with
a set of visualizations which dramatically improve the engineer’s insight on the
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Figure 5.1: Methodology for understanding distributed object-oriented systems
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CHAPTER 5. CORE SYSTEM ANALYSIS

structural characteristics of the application and on the complex interaction patterns,
while also simplifying the process of system restructuring.

The approach consists of several steps, presented in detail in this dissertation,
each step designed to address a specific concern of the understanding process (Fig-
ure 5.1).

Step 0. Start with the source code. This is not an actual step of the method-
ology, but rather an observation regarding the perspective which the process takes
when considering the system. Object-oriented applications can be represented in
various ways, but at this point, we are interested in a particular type of view on the
system: the application is made of a set of classes, which relate to one another by
calling methods, referring attributes and so on. In other words, we are interested
in a relatively simple model that represents the dependencies between the appli-
cation’s classes and interfaces. The particular nature of the dependencies we are
interested in, and the way they are used to extract the needed structural insight is
described in detail in the following sections.

Step 1. Build the dependency graph of distributable features. This step fo-
cuses on finding within the code a minimal set of classes that represent to a higher
degree the distribution-related functionality. It relies on using the established class-
to-class dependencies, and building a core graph that represents the target set.

Step 2. Separate distinct cores of distributable features. The core graph of
classes being identified and built, is consequently partitioned into a set of clus-
ters that are relatively independent on each other, in that they provide different
functionalities within the system. This step uses both technology-aware heuristics,
and cohesion-related clustering techniques to separate the groups of classes, and
present the outcome for the engineer to review.

Step 3. Capture coarse-grained architecture of distributable features. As the
main cores of distributed functionalities were identified at this point, the approach
provides the first assessments regarding the overall qualities of the system, by cre-
ating an overview of the distribution-related architecture of the system.

Step 4. Assess impact of distributable features. At this step, the focus of the
analysis moves on the rest of the classes in the system, that were not processed
by the previous phases. As the previous assessments specifically and intentionally
targeted a small number of representative classes, the entities involved at this point
are in fact the vast majority of the classes in the system. They are analyzed by look-
ing at their relation with the cores of distributable features, and their participation
to providing these features is measured. Moreover, their level of involvement in
non-distributable functionalities is taken into consideration so that the importance
of the distribution is assessed both at the system and at the class levels.
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5.2. INITIAL SYSTEM REPRESENTATION

Inheritance
Call
Attribute reference

Class

Figure 5.2: The initial dependency graph

Step 5. Support for restructuring. While definitely a very important goal in
itself, understanding a system is often a part of a larger concern, that may involve
complex redesigns of the target application. In the case of distributed systems, the
most frequent scenarios of redesign imply the restructuring of the code so that it
better meets the requirements for a balanced, decentralized deployment. Conse-
quently, very often, engineers need support for extracting parts of the system that
must be deployed at different locations, and must assess the impact of such an en-
terprise. This step in our methodology proposes an approach to restructuring that
simplifies the process of extraction, and provides direct feedback by estimating the
impact of the projected modifications in the system.

5.2 Initial System Representation

As noted in the previous section, the initial representation of the object-oriented
applications that the approach relies on describes the system mainly as a set of
classes that depend on each other. This section deals with the details regarding this
representation, and the reasons behind them.

First of all, we have to analyze what are the most basic information artifacts
that we always have when reading a source code, and, at the same time, we unmis-
takably need for extracting the relevant information.

The goal of the methodology is finding information about functionalities re-
lated to the distribution and remote communications. Functionalities imply sets of
activities performed by system entities to accomplish specific goals. While execut-
ing activities, the entities (in our case system classes) must collaborate with each
other, make use of each others’ built-in capabilities in a controlled, pre-designed
manner. Different functionalities imply different design goals, and lead to different
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types of collaborations between different sets of capabilities. Therefore, distinct
features are usually provided by distinct groups of entities (classes), that collab-
orate with each other in a higher degree than they collaborate with other classes
in the system. In other words, distinct functionalities are provided by distinct,
highly cohesive clusters of classes. This is a very important particularity of sys-
tems, and the software engineering field is often concerned with its consequences
[CJM03, MMCG99].

In our case, as we are interested in object-oriented software systems, we are
interested in the object-orientation-specific dependencies between the application
classes that define in an accurate manner the way they collaborate for achieving the
design goal. For our purpose, we take into consideration the following dependen-
cies:

• method calls,

• attribute references,

• inheritance.

Another aspect is that we are interested in knowing the strength of collaboration
between classes, rather that the direction in which they depend on each other. The
reason is that the main concern of the approach is finding which classes are related
to which when working for a common goal, rather that the details of the particular
flow of activities necessary to achieve the goal itself.

Therefore, when analyzing a dependency between a class A and a class B, we
do it by looking at both sides – that is, by looking both at the way class A depends
on class B, and the way B depends on A. This bidirectional dependency is also
assessed from a quantitative point of view, to accurately characterize the strength
of the relation.

5.2.1 Class Dependency Information

As a consequence, the first requirement of the methodology we present in this
dissertation is that the analyzed system should be represented initially in a way
that allows building an undirected graph of class dependencies (Figure 5.2), with
the following structure :

• The vertices are the classes in the system

• An edge exists between two vertices if at least one of the following depen-
dencies are established between the respective classes:

a) one class calls at least a method of the other one

b) one class refer at least one attribute of the other one

c) an inheritance relation is established between the two classes
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This does not imply that at this point the graph itself has to be effectively built
by the engineer, it rather specifies a precondition for the first steps of the approach.
The involved algorithms will use this information, and graphs will be built only
when necessary.

Because the source code of the application is available to the engineer, this
requirement is not unrealistic, instead it is one that can easily be fulfilled when
analyzing object-oriented systems. All the dependency information is inherently
present in the OO language-specific constructs, and therefore can be extracted
when necessary. Moreover, the actual process of extraction of the class depen-
dencies is a feature present in most current software engineering support infras-
tructures and tools. In our case, the Memoria model [Rat04, MMM+05] employed
by the iPlasma environment directly addresses these issues, and the infrastructure
provides methods for direct interrogation of the basic object-oriented structure of
the system.

We must note that the above requirement does not imply that the information
regarding the direction of the dependencies will be ignored for the entire approach.
Further more, this information will be used in selected parts of the analysis process,
and at the respective points it will be regarded as complementary data about the
system, besides the dependency graph(s).

Once the above requirement is fulfilled, the first steps of the methodology can
be applied.

5.3 Identifying the Frontier

The main goal of the approach is to find relevant information about the system’s
distributed functionality, while minimizing the effort the of engineer during the
analysis. The first step of the process is concerned with identifying a minimal set
of classes that concentrate most of the distribution-related functionality, in other
words, acting as representatives for the system’s distributable features.

At the initial point, there is not much information about the system. All we
have is a set of classes available as source code, from which we can extract de-
pendency information as discussed in the previous section. Therefore, the process
needs to find additional data, and this information must be closely related to the
goal of understanding the system’s distributed behavior. To be able do do this, we
must identify the best possible starting points that inherently provide data about the
system’s involvement in communication over the network. In our methodology,
these points are represented by the frontier classes, that directly act at the frontier
between the system and the Communication Mediator, as defined in Chapter 4.

We define two categories of frontier classes:

• Frontier actors. They are classes that directly send or receive informa-
tion over the network. They can either be active entities – they produce or
specifically request data – or can be passive – they are listeners for events or
asynchronous receivers of information
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• Service descriptions. This category includes all classes or interfaces that
follow the rules specific to the Communication Mediator to specify sets of
remotely-available functionalities grouped in specifically-designed services.
They are very important, as they specifically provide essential information
about the distributed functionality of the system, available to be used both
by external clients, and by the other components of the system itself.

As they directly depend on the mediator to send, receive, or otherwise remotely
manipulate data or events, the relation of the frontier classes with the distributed
functionality is beyond question. Therefore, the reason we start with the frontier
classes is valid: they are the most significant representatives of the communication-
related system functionality, the best first classes to look for when studying the
distributed nature of the system.

The interaction between these classes and the mediator is highly dependent on
the technology used in communication, because they must be directly aware of
all services provided by the mediator, and comply to all the constraints implied by
these services. As already stated, the particularities of the constraints imply specific
manners of coding the frontier classes, by applying the technology-related patterns
that allow the interaction to be completed properly. This an important aspect, as it
represents the main tool that enables us to search the source code for the specific
patterns and therefore accurately identify the frontier classes in the application.

The active frontier actors can be identified by analyzing the code, and looking
for occurrences of Mediator-specific calls that send or receive data over the net-
work. The passive actor classes can be isolated by knowing and identifying within
the code the constructs specific to the particular mechanisms provided by the Me-
diator which facilitate the registration of classes as listeners or otherwise declare
them as consumers of data or events.

In the case of Java Remote Method Invocation (RMI), to have both services
and service clients directly represented, we mark as frontier entities the following
entities in the application:

1. All Java interfaces that extend java.rmi.Remote. In this particular
technology, the respective interfaces represent the actual descriptions of the
services published by the system components for other components or sys-
tems to use over the network. The RMI terminology identifies them as re-
mote interfaces. We use them as the representatives for the system entities
that provide the services, that is entities that communicate directly over the
network at the request of the clients.

2. All the classes in the system that call methods of the remote interfaces
in the application. These are the classes that communicate directly over the
network by using the services published by other parts of the same system.
This is an important aspect, as it provides, besides frontier entities, initial in-
formation regarding the distribution-related interactions that are established
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within the components of the analyzed application, therefore can form the
base for consequent architecture-related assessments.

At this point we must make an important remark: the assumptions on which we
base our technique rely strictly on generally applicable rules (related to distributed
communication) that fit both well-structured programs, and poorly designed sys-
tems. Indeed, at any point in the approach, we avoid making assumptions regarding
the particular aspects of the system’s design, about the patterns that were used or
the architectural decisions that were made. This holds true for our entire method-
ology, and thus, the feasibility of the approach is not dependent on the quality of
the system’s design, as we limit its assumptions to elementary rules and patterns
that are enforced by technology (e.g., RMI) specificities, and which must be im-
plemented by all applications.

5.4 Building the Core

Finding the frontier classes is an essential step, but they are not enough to cap-
ture and understand the actual functionality of the system’s distributable features.
Therefore, the next step in our methodology focuses on finding a set of additional
classes in the application that add significant knowledge about the distribution-
related functionality of the system. Moreover, the cardinality of this set should be
as small as possible, so that it can be analyzed in detail by the engineer. In other
words, we try to identify the very core of the distribution-aware nature of the sys-
tem, to select from the great number of classes only those that provide the most
valuable information.

The best place to find these entities are in the immediate vicinity of the frontier
classes, as they are most likely strongly involved in the activities related to the
remote communication over the network, and therefore provide us with significant
knowledge about the distributed structure of the system.

This is the point where the considerations we made in Section 5.2 regarding the
dependencies between system classes come to value. In the system’s dependency
graph, classes are connected by edges that show their collaboration: they call each
other directly, refer each other’s attributes, or are linked by inheritance relations.
We can use the dependency graph as the framework that defines the relation of
’neighborhood’ between classes, in terms of structural dependence, in fact in terms
of their inherent collaboration for fulfilling the design goals of the system. Classes
will be ’neighbors’ to one another if they are directly linked by an edge in the
graph, and they are ’close’ if the distance between them is relatively low.

To capture this structural trait, we defined a technique that starts with the al-
ready identified frontier classes and builds around them a structure we call the
Dependency Graph of Distributable Features (DGDF). In this graph, each class is
a vertex, and the edges represent the direct dependencies between classes, as dis-
cussed in Section 5.2. As the distributed communication is usually bidirectional
we are interested only in the fact that the two classes are related with each other,
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not in the precise direction of their collaboration; therefore the DGDF will be undi-
rected. An edge will be created in the graph between any two vertices (i.e., classes)
if at least a dependency exists from one class to the other. For this purpose, we take
into account three types of structural dependencies: (i) method calls; (ii) attributes
accesses; and (iii) inheritance relations.

The DGDF is built iteratively and incrementally starting with the frontier classes
as initial vertices, through an algorithm that we describe in the following para-
graphs.

5.4.1 The Algorithm for Isolating the Distributable Core

5.4.1.1 Prerequisites.

The algorithm tries to detect the minimal dependency graph between the classes
that encapsulate the core distribution-aware functionality of the system. The algo-
rithm is described in terms of its implementation in an object-oriented language,
and it includes the considerations that are specific for analyzing applications built
using Java RMI.

Besides the concepts introduced in Chapter 4, there are a set of notions that
must be defined before describing the algorithm:

• Build strategy. Implements the approach used at each step for finding the
set of classes that will be processed at the next step. In our implementa-
tion, a build strategy consists of two utility classes, the first for the initial
step of the algorithm, the second for the rest of the steps. A build strat-
egy class provides methods that return Memoria model entities related to the
current set, one method for each type of relevant relation. For instance, the
UsersOfAllMembers class (one of our build strategies) has a method
called methodRelated() that returns all methods calling (methods of)
the current entity.

• Build Rule. A specification (realized in the form of a class) of the sequence
of build strategies that are to be applied for building the graph. The build
rule is instantiated by the concrete algorithm, i.e. by a class derived from the
class AbstractGraphBuilder. Example: RMIBuildRule adds, in
order, the following two strategies: UsersOfAllMembers, AllUsedMembers
and is instantiated by the RMISystemGraphGenerator.

The algorithm is parametrized with a specified maximum depth of search, a
user-configurable item that limits the search for relevant classes.

In our implementation, the core algorithm is encapsulated by the abstract Abstract-
GraphBuilder class. The actual, technology-aware, algorithms are implemented
in a class derived from it. For the case of Java RMI applications, the class we im-
plemented is called RMISystemGraphGenerator.
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5.4.1.2 Generating the Dependency Graph.

This step tries to build a graph that shows a set of dependencies between the system
classes. Relations as ”calls method”, ”method called by” and ”ancestor of” will be
used as representatives.

General description. The algorithm starts with a set of classes as root entities
and builds the graph. The root classes include, but are not limited to, the frontier
classes already identified.

Selecting the Root Classes. This is a technology dependent step, i.e. it is spe-
cific to a technology-related instantiation of the algorithm.

For RMI, the selection of root classes is done by the algorithm as follows:

a) selects all interfaces extending of java.rmi.Remote, as well as the classes
that refer them, and marks them as FRONTIER;

b) selects all classes that implement remote interfaces;

c) the union of these two sets is returned as the initial set.

Building the graph. This is a generic part, i.e. it does not depend on the tech-
nology. The sequence of actions that build the core graph of classes directly related
with the distributed functionality of the system is described in Algorithm 5.4.1

5.4.1.3 Implementing the Build Strategies

As hinted by the algorithm description, the build strategies are facilities that are
able to generate, for each class that was added to the core dependency graph, a
set of knowledge items that can be used to determine the next set of classes to be
considered by the algorithm. This is a very flexible approach, as it provides means
for easily adapting the algorithm to various criteria in selecting candidate classes.

In the instantiation of our algorithm that we specifically used when conducting
the test cases, the strategies we have implemented provided two types of informa-
tion:

• method-related items, such as methods that are related to the current class,
belonging to system classes

• attribute-related items, such as entities accessing attributes of the current
class
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Algorithm 5.4.1: BUILDCOREGRAPH(root class set)

main
for each class in root class set

do
{

mark as ROOT
call GENERATESUBGRAPH(class)

procedure GENERATESUBGRAPH(class)
for each build rule

do
{

for each strategy in the rule
do call BUILDDEPENDENCYGRAPH(rule, strategy, class)

procedure BUILDDEPENDENCYGRAPH(rule, strategy, class)

if specified maximum depth was reached
then return

use the current strategy to select the next set of ”interesting entities”.
The ”interesting entities” are those that provide useful information about
the next set of classes to be added to the graph, such as methods
called by the current class, methods calling methods of the current class,
or attributes referred by the current class.
The strategy class is selected depending on the current depth in
the graph: in the beginning the first class in the pair is used as information
provider, then the second. A set of entities (as methods or attributes)
is returned by the information provider’s methods.

compute the set S1 of classes resulting from the entities obtained above.
S1 contains the classes related (in terms of dependency) with the
current class: classes containing the called/caller methods and the
referred attributes. This covers the called-by/caller-of and attribute-related
dependencies.

compute the set S2 of classes that are ancestors to the current class

for each class in S1, S2
do call BUILDDEPENDENCYGRAPH(rule, strategy, class)

Different strategies generate different sets of results, depending on their pur-
pose. As previously noted, we have used two such strategies when we applied the
approach to Java RMI systems:
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• UsersOfAllMembers which generated at each step:

– all methods calling the current class;

– all methods accessing attributes of the current class.

• AllUsedMembers which generated at each step all the methods called by
the current class, except those of the class itself

To exemplify the degree of flexibility gained by this approach, we should add
that, at some point in our experiments we have also defined a strategy called
UsersOfMembersByFieldType which provided the following entities:

• all methods in other classes that accessed attributes of the current class, with
the attribute type specified as an argument;

• all methods in other classes that called methods of the current class which in
turn accessed a subset of its own attributes identified by type.

5.5 Reviewing the Results

The graph generated at this point includes only a part of the classes in the system.
This is exactly as required by the considerations we made above, as the classes
we obtain are the most important ones in what concerns the identification of dis-
tributed behavior. In our experiments on real-world applications, less than 20%
of the system classes were designated as belonging to the cores of distributable
features, which is very valuable for narrowing the focus of the analysis.

During each iteration, the algorithm identifies the new classes that are linked
by dependencies (i.e., method calls, attribute accesses, inheritance relations) with
the classes that were already added to the graph.

The process continues until a specified depth of search has been reached. While
the search depth can be set by the user, we found that a depth value of 6 to 8 is
appropriate for building a DGDF that includes only classes that are close enough
to the detected frontier. This minimizes the chances to include classes that are only
slightly involved in the distributed parts of functionality.

Besides specifying the search depth for the above algorithm, at this step in the
analysis the engineer is given an additional opportunity to improve the relevance
of the classes belonging to the DGDF. In our approach, the engineer can fine-tune
the automatic construction of the graph, by manually adding and removing classes
to the dependency graph. This way the engineer can control the core set of classes
that represent the main distributed functionality of the system.

The decision of adding new classes to the core highly depends on the engi-
neer’s experience, and can be based on various assessments made by looking at
the set generated by the Algorithm 5.4.1 and the neighboring classes in the system
dependency graph:
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• classes that are directly linked with entities already included in the core, and
are not connected with any other class in the dependency graph;

• classes that have many connections with the generated set, and significantly
fewer connections with other classes;

• classes that have names resembling or suggesting logical connections to the
names of the classes that were included in the core;

• classes that implement an interface already included in the set, and the algo-
rithm happened to miss (because of an improperly tuned search depth);

• classes that suggest (by name) that are directly related to the distributed as-
pect, but were ignored by the algorithm for various reasons.

To remove classes, the engineer can consider one or more of the following
criteria:

• classes that are loosely connected with the other classes included in the core,
while exhibiting stronger connections with other classes in the system de-
pendency graph;

• classes that have names suggesting different purposes than for the majority
of classes in the core. This criterium should be applied with care, as these
classes may actually represent different distribution-related functionalities,
rather than classes inadvertently included in the core set;

• classes that strongly suggest (by name) functionalities that are not related to
the distributed aspect;

• classes that seem to be general-purpose utilities, such as string manipula-
tors, format converters, etc. Keeping them adds no significant information
regarding the distribution-related functionality, as they are built to be neutral
entities, usable in many different circumstances.

Nevertheless, we noticed during our case studies that even without any human
intervention we usually end with a relatively small number of classes, most of them
highly relevant to our purpose, and which encapsulate sufficient knowledge about
the basic distribution-related functionality of the system. While different appli-
cations may need different levels of user intervention at this step, the algorithm
provides a reliable starting point for a successful analysis.

5.6 Identifying the Distributable Features

Once the core set of classes related to the distribution-aware functionality was iso-
lated, our methodology takes a step further in representing the system through the
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model we have introduced in Chapter 4. Its goal is the identification of the dis-
tributable features, so that the distinct aspects of the distributed functionality of the
system are extracted and analyzed separately.

The approach is based on the observation that, in general, distinct functional-
ities within a system are represented by loosely coupled units of system entities
[MMCG99], that can be isolated with properly tuned semi-automated techniques.

Considering this observation by representing the system as a dependency graph,
we can see an object-oriented application as being made of a set of loosely- con-
nected clusters of classes, each cluster representing a different feature provided by
the system. In order to extract these features, we need a technique that is able
to separate the functional units, by using all the information available about the
system to detect, separate and analyze the relevant clusters.

In our approach, we are already at the point where we separated the core dis-
tributed functionality from the rest of the system classes, We continue the analysis
by applying the above considerations to separate this core into a set of functionally-
distinct clusters of classes. To do this we apply the following method:

• We analyze the graph obtained at the previous step, and use a set of heuristic
rules to detect the edges that link separate functionalities.

• we then temporarily eliminate these edges from the graph, and

• apply a general-purpose graph algorithm to isolate the set of connected com-
ponents in the modified graph.

• Each connected component will represent a candidate for a core of distinct
functionality. As the processed graph was already the one that represented
the system’s distributed nature, the connected component will in fact repre-
sent a core of a distributable feature in the system.

• The result is presented to the engineer for review.

The essential component of the technique is the identification of the edges or
vertices that are to be eliminated so that we remain with a set of connected compo-
nents in the graph. In other words, the goal is to eliminate all entities that prevent
us from easily identifying the functional units that provide distinct features.

In our opinion, we can obtain valuable information in this respect by a care-
ful analysis of all the available data describing the inherent nature of the system.
This is especially true in the case of distributed software, where the constraints the
Communicator Mediator imposes on the application have direct and identifiable
consequences on the source code. Knowing the particularities of the system can
provide useful data about the types of dependencies established between classes,
so that we are able to find which of these dependencies can be safely ignored (re-
moved) for the purpose if isolating loosely-connected functionalities.

This approach, aware of the system’s distribution-related particularities would
be able to pave the way for applying a more general technique (applicable to other
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classes of systems as well) able to separate the loosely coupled units. Considering
this aspect, our approach uses two types of rules that are applied on the system in
order to detect and eliminate edges from the graph:

• rules derived from analyzing the specificities of the technology the applica-
tion is built on, specifically the technology of the Communication Mediator,

• graph-oriented rules, built for extracting the loosely-connected cohesive clus-
ters of classes in an object-oriented system.

5.6.1 Technology-Aware Heuristics

Knowing the constraints the Mediator-specific technology imposes on the appli-
cation’s source code enables us to create a set of rules that identify several types
of dependencies between the classes which are not central to providing a distri-
butable feature. The edges in the graph representing these dependencies can be
consequently temporarily removed so that the identification of the loosely-coupled
cohesive functionally-distinct clusters is easier.

For the case of distributed, object-oriented software applications that use Java
RMI as the communication infrastructure, we have made several observations that
enabled us create and apply a set of heuristic rules for this purpose.

5.6.1.1 Remote calls.

In Java RMI, the descriptions of services provided over the network are encapsu-
lated in remote interfaces, that is Java interfaces that extend java.rmi.Remote.
Consequently, calling a method of a remote interface usually means that the caller
class belongs to a component that is located at a different location, and thus it has
a good chance of belonging to a different functional unit.

The first heuristic we apply temporarily eliminates all edges in the graph that
represent remote calls. Note that, even if the respective call refers to an interface
in the same functional cluster, this rule does not diminish the chances of correctly
identifying it: to belong to a single functionality, the classes must be related to each
other in several additional ways, so that eliminating a single edge will not make a
big difference. Moreover, this case is very rare, as it is not feasible to use RMI to
call methods that are already available locally.

On the other hand, the case where the two classes linked by a remote call
(through an interface) belong to different, functionally-distinct, components is greatly
served by this approach, as most probably, their dependency in the graph is only
represented by such remote calls. Eliminating them will effectively decouple the
two functionalities from each other.

5.6.1.2 Stub classes.

Most of the RMI applications include with their source code the automatically gen-
erated stub classes specific for this technology. The stub classes are the entities that
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are responsible with providing the communication channels that implement the re-
mote calls, therefore can be considered a part of the communication infrastructure,
rather than components of the application. Their existence not only fails to add
useful information when trying to understand the system, but they artificially raise
the number of classes the engineer has to review when trying to analyze the system.

Our approach eliminates all the vertices corresponding to stub classes from the
dependency graph, along with the edges that connect them to the rest of the system.

5.6.1.3 Utility classes.

Virtually every application makes use of classes that are not specifically built for
the purposes of the system and are rather general-purpose utilities that can be used
in many different types of applications. This category may include classes that
perform conversions between different formats for representing information, can
provide features for the manipulation of strings, can provide means for accessing
proprietary or open format archives, etc.

Moreover, the application itself may define specific classes providing features
that are not central to the goals of the system, but are nevertheless used by several
different units of the code. When trying to separate functionalities, these classes
may artificially link different functional clusters, for the simple reason that more
than one functionality happened to need the respective features.

Our approach defines a rule that detects some of the utility classes, and removes
them along with edges that link them with the rest of the system. The heuristic that
detects the utility classes is presented in Algorithm 5.6.1.

We must note that, in this particular case, the technique makes use of the in-
formation regarding the direction of the dependency between the classes. Thus,
the source of the edge is the class that has a dependency, and the target of the edge
points to the class it depends on. Although this information is not directly available
in the undirected dependency graph, it is easily extracted from the source code.
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Algorithm 5.6.1: ISUTILITYVERTEX(current vertex)

main

entity ← the class corresponding to the current vertex
if entity is an interface

then return ( false )
if there are classes derived (inheriting) from entity

then return ( false )
for each edges connected with the vertex

do
{

if edge source vertex is the current vertex
then return ( false )

return ( true )

The heuristic basically eliminates all the classes in the system that only have
incoming edges and are neither interfaces, nor classes that other classes inherit.
The main assumption for this heuristic is that classes that never use (by calling
methods or accessing attributes) other classes are either the base for an inheritance
hierarchy, or represent utilities. This is true for most of the cases, and we found
that the rule had provided good results in helping decoupling functionally unrelated
system clusters.

5.6.2 Cohesion-Based Clustering

To eliminate further edges that connect the functionally-distinct units in the code,
we have applied a technique for graph processing based on the clustering algorithm
described in [CJM03].

The algorithm, which we adapted to our dependency graph, calculates for each
edge a measure that characterizes the “strength” with which it connects the two
vertices. The approach considers the density of the existing edges in the neighbor-
hood of the two vertices, so that an edge is considered ‘weak’ when it is likely to
connect two otherwise loosely connected clusters (see Figure 5.3).

To control the algorithm, the engineer is given the opportunity to specify and
tune a threshold value for this measure. Edges with the strength under this thresh-
old are eliminated from the graph, while the rest are left untouched.

5.7 System-Level Understanding

Applying the two categories of rules described above transforms the dependency
graph representing the core distributed functionality. At this point, we are pre-
pared to make the first valuable assessments about the analyzed application, as the
methodology is ready to provide the first items of system understanding.
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Figure 5.3: Loosely-connected cohesive clusters

For this purpose, the next step of our approach continues the processing by
applying a general-purpose graph-related algorithm that detects maximally con-
nected components. As the edges removed by the previous steps were specifically
selected aiming the separation of distinct functionalities, the set of connected com-
ponents represent, in fact, the set of separated functional units. Because the graph
contained the most representative classes for the system’s distributed nature, the
clustering provides us with the set of functional cores for the distributable features
in the application.

Consequently, the analysis so far has provided us with the following:

• a relatively small set of classes representing the core distributed functionality
of the system

• a number of partitions in the above set, each representing the a distributable
feature the system provides

To ensure the validity of these findings, the engineer can analyze the outcome
of the above processing. In both our methodology and the implemented tool in-
frastructure, the result can be modified at will by adding or removing classes to
clusters.

5.7.1 Identify the Remote Communication Channels

One of the most important aspects when doing static analysis on a software appli-
cation is analyzing the interactions established between the various entities in the
system. While some of the system attributes can be gathered looking at the enti-
ties in isolation, the actual understanding requires an in-depth assessment of the
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way the components work with each other to meet their design goal. For this pur-
pose, the analysis must necessarily focus on identifying the relevant dependencies
between the studied entities, especially the direct entity-to-entity relations.

In the context of distributed applications, the most important dependencies are
those that provide information about the distribution-aware characteristics of the
system. Consequently, this requirement translates as the need of identifying the
remote communication channels between the various parts of the system, the data
paths established via the Mediator that link them over the network. This infor-
mation is highly relevant, as it can provide the analysis with a first preview of the
system’s actual distributed architecture.

The entities that we have already identified are the distributable features in the
analyzed system. A very important observation at this point is that the distribut-
able features are not the direct expression of the various distributed components as
they are deployed when installing the application in a network. Instead, they are
functional units directly related to the distributed functionality, and they may or
may not be deployed at distinct locations at runtime. The analysis so far has not
used any information regarding the deployment, and, as we stated in Chapter 4, we
are confident that such information is not vital to actually understand the system.

The communication channels that are established over the network, however,
have everything to do with the component-to-component relations specific to the
analyzed application, because their very existence in the system points to a di-
rect need of communication between components deployed at different locations.
Therefore, identifying the remote-established channels in the context of our ap-
proach does not only provide us with just another type of dependency within the
system, it represents the next important information we need to find about the dis-
tributed architecture of the system.

Another important observation is that, as we place the core of our approach in
being aware of the relation between the system and the entity we have identified as
the Communication Mediator, we are in the position of finding the communication
channels without actually needing the information about the component deploy-
ment. This is because, as we have stated before, we can benefit from a inherent
characteristic of this relation: the Communication Mediator always defines a set
of rules that translate in a set of constraints imposed on the design of the applica-
tion. These constraints are often identifiable as technology-specific constructs in
the code, therefore we can use them directly in the static analysis we employ on
the respective system.

The direct consequence of these two observations is that the distributable fea-
tures and the communication channels represent two knowledge items that together
provide much more relevant information than studied in isolation:

• on one hand, the distributable features represent distinct functionalities di-
rectly related with the distributed aspect in the system

• on the other hand, the communication channels reflect the over-the-network
dependencies between remotely-deployed components of the system
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The natural conclusion is that while combining the two types of information does
not necessarily guarantee the extraction of deployment information, it effectively
provides us with information of a much greater value: the remotely-established
dependencies between the distribution-aware system entities, that is, effectively,
the architectural footprint of the distributed system itself.

Because the components communicate remotely to each other, finding the com-
munication channels that connect them is a highly technology-dependent step, de-
pending on the type of the communication mediator involved.

For applications using Java RMI for communicating over the network, we make
use of their specific way of describing remote services. As previously noted, this
involves creating Java interfaces that extend java.rmi.Remote. The very exis-
tence of remote interfaces in the application’s code is the expression of the need to
publish a set of services available for remote locations. Therefore, any reference to
such an interface usually indicates a communication between two entities deployed
at different locations. For each pair of distributable feature cores already identified,
the communication channel between them is consequently made of all references
to remote interfaces that link one feature with the other.

The different types of dependencies that represent communication channels can
be used to reveal different types of distributed architectures [TS01] in the analyzed
system. For instance, we can detect a client-server dependency by observing fea-
tures that call each other in a single direction. Peer-to-peer communication will be
represented by bidirectional dependencies between distributable features, and this
approach would also allow us to observe more complex interactions, as layered
communication, rings of communicating entities, and so on.

5.8 Visualization - The Distributable Features View

One of the most important aspects when understanding structures is representing
them by the means of visual elements. Architectures, plans, abstract models, and
any other conceivable arrangements of inter-related entities are better communi-
cated and understood when represented through a well-drawn picture.

This is the reason our approach in understanding a widely-used category of
systems makes an important point in providing a set of relevant software visualiza-
tion [Die02] techniques specifically built for analyzing distributed object-oriented
systems. The visualizations we have developed were first presented in [CM07],
and complement the main analysis techniques our methodology provides.

In accordance with our chosen terminology, we introduce the Distributable
Features View as a visual means to representing all the concurrent structural-related
interaction facets we find relevant for understanding distributed systems. It consists
of two perspectives, the first one is detailed below, and the other one will be intro-
duced later in our presentation.
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5.8.1 The Distributed Architecture Perspective

In this perspective, we are concerned with representing the knowledge we have
gained by identifying the distributable features and the communication channels
they are linked with each other via the Mediator infrastructure, by drawing the first
preview of the distributed architecture of the system.

Figure 5.4: Example of Distributed Architecture Perspective

In Figure 5.4 we have exemplified the perspective by drawing the distribut-
able feature cores we have identified in some of our case studies. The features
are represented as rectangles of the same width, their height being proportional to
their size in terms of number of classes. From this point of view, the Distributed
Architecture Perspective is a simple case of polymetric view [LD03].

The communication channels between distributable features (in this case the
remote calls made by the classes belonging to the different cores) are depicted in
this visualization using directed arrows.

In the context of vizualizing the system attributes to improve the understanding,
the Distributed Architecture Perspective has a double role:
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1. It enables the engineer to actually see the architectural relations between the
various distributable features, as represented by their core classes. This helps
drawing the first conclusions about the distributed architecture of the system
to identify client-server dependencies (features calling each other in a single
direction), peer-to-peer communication (bidirectional calls), and so on.

2. It visually associates each distributable feature with a color. This is an es-
sential element for the interpretation of the further visualizations (which we
discuss later), where this ‘color coding’ will be used as a key.

The tool infrastructure we provide for the understanding process automatically
generates the visualizations as soon as the necessary information was gathered
from analyzing the application’s source code.
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Chapter 6

Impact of Distribution

The steps of the methodology described in the previous chapter focused the atten-
tion of the research to a relatively small set of classes that represented the core
of the distributed functionality of the application. The process was very useful in
capturing the main system attributes related to the distribution-related concerns, by
greatly reducing the effort of the engineer and provided a first view on the system’s
distributed architecture.

Nevertheless, the vast majority of the application’s classes were not yet taken
into consideration, and an approach that aims to understand the system would never
be complete without analyzing them, too. This chapter describes the techniques
we have employed to understand the positions these classes take in respect to the
already gathered knowledge about the system. Specifically, we analyze them in
relation to the identified distributable feature cores, so that we understand in a
better degree the application’s relation with the distribution-related tasks.

For this purpose, we analyze for each class outside the previously processed
core its involvement in providing the already discovered distributable features. We
define and use a set of metrics that characterize this relation and interpret them so
that we gain a deeper understanding of the system. The approach is complemented
by visualization, which facilitates the capturing of the most interesting patterns of
collaboration that occur within the system.

6.1 Acquaintance Classes and Metrics

In order to do so, we have to measure the degree in which a particular class partic-
ipates in providing a certain distributable feature. We call this involvement affili-
ation to the distributable feature’s goals, and the class itself becomes an acquain-
tance of the distributable feature . A class is ‘better acquainted’ to a feature if
it plays a more important role in providing it, while classes ‘less acquainted‘ are
mainly involved in other activities, distributable or otherwise.

When measuring, we are interested in two main characteristics of the target
class:
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1. The degree of affiliation of the class to the general distribution-related func-
tionality in the system;

2. The level of involvement of the respective class in providing each of the
distributable features identified in the previous steps of the analysis.

The first coordinate provides information about the overall importance of distri-
bution in the application’s design, while the second focuses on capturing the details
regarding the way each of the distribution-related functionalities are provided by
the system.

6.1.1 Bidirectional Coupling Metrics

The first measurement that we need when assessing the above characteristics of the
system is directly related with the way individual classes are related to each other.
We have already used an important property in this respect when we built the core
graph of distributable features, the direct dependency between classes in terms of
coupling.

For building the set of metrics that will help us extract further attributes of
the system, we define two coupling-related measures at the class level. We cal-
culate the coupling on two coordinates: the coupling intensity, which assesses the
strength of interaction between the classes in terms of the number of collaborations
that make the dependency, and coupling dispersion which quantifies the number of
collaborators within the classes [LM06]. On the other hand, as mentioned earlier,
we are interested in both aspects of coupling (bidirectionally), namely the import
and export ones [BDW99]. We introduce two metrics:

The Bidirectional Coupling(BC) between class A and B is the pair.

BC(A, B) =
{

BCI(A, B), the coupling intensity
BCD(A, B), the coupling dispersion

The coupling intensity is defined as:

BCI(A, B) = CallsI(A, B) + AccI(A, B)
+ CallsI(B, A) + AccI(B, A)
+ Inh(A, B)

where

CallsI(X,Y ) = the total number of method invocations from methods
in class X to methods in class Y,

AccI(X, Y ) = the total number of accesses from methods
in class X to attributes in class Y, and
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Inh(A, B) is defined as

Inh(A, B) =
{

1, when A inherits from B or B inherits from A
0, otherwise

The coupling dispersion is:

BCD(A, B) = CallsD(A, B) + AccD(A, B)
+ CallsD(B, A) + AccD(B, A)
+ Inh(A, B)

where

CallsD(X, Y ) = the number of distinct method invocations from class X to meth-
ods in class Y. If a call to the same method is made several times between
the two classes, it is only counted once,

AccD(X, Y ) = the total number of distinct accesses from methods in class X to
attributes in class Y. If an access to the same attribute is made several times
between the two classes, it is only counted once , and

Inh(A, B) is the same as above.

The Total Bidirectional Coupling (TBC) of a class A is

TBC(A) =
∑

All K∈System

BC(A, K)

where K is a class in the system to which A is directly coupled. This metric
measures basically the degree in which the class directly collaborates with all the
classes in the system. As above, it can be computed on two coordinates, so that
we have TBCI(A) (the total coupling intensity), and TBCD(A) (total coupling
dispersion.

6.1.2 Acquaintance Metrics

The coupling measures can be used for assessing the collaboration between a class
and a distributable feature, for instance by adding all the BC values between a
certain class and all the classes in the cluster representing the distributable feature
core. However, in real-world applications it is not enough to calculate the simple
class-to-class dependencies, as the relation between a distributable feature and the
other classes involve more complex collaborations. Classes that do not belong to
the cores may be directly coupled with the classes that form the core of a particular
feature, but they may as well collaborate with the distributable feature core via
intermediary classes. Therefore, our measurements must take into consideration
the indirection levels between classes, so that the assessment is applicable to all
the classes in the system.
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6.1.2.1 Class-to-Feature Acquaintances

In order to measure the strength of collaboration (acquaintance) between a class C
and a core of distributable feature F , we define a metric that we call Acquaintance
with Distributable Feature (ADF). Its definition has two parts as follows:

Direct Acquaintance. If class C is directly coupled (has a direct dependency)
with at least one class K that belongs to F we consider that class a direct acquain-
tance of the distributable feature F . We calculate the ADF value for such a class
as:

ADFdirect(C, F ) =
∑

classKinF

BC(C, K)

In other words, for direct acquaintances the ADF metric is the sum of the intensity
of all bidirectional couplings (BC) between the acquaintance class and the classes
belonging to the distributable feature core. For example, in Figure 6.1 the middle
class in column labeled 0 is directly coupled with both classes of the distributable
feature core and therefore its ADF value is 9 = 3+6

Indirect Acquaintance. Classes that are not directly coupled (do not have di-
rect dependencies) with classes in the distributable feature core are called indirect
acquaintances.

We say that an indirect acquaintance class belongs to the n-th indirection level
when, in the dependency graph, there are n − 1 classes between it and the closest
class belonging to the distributable feature core. For such a class, the ADF metric
is computed relative to the ADF values of the classes belonging to the (n-1)-th
indirection level, the one that is closer to the distributable feature.

The metric is defined as follows:

ADFindirect(Cn, F ) =
∑

classKn−1

ADF (Kn−1, F ) · BC(Cn, Kn−1)
TBC(Cn)

We compute the Acquaintance with Distributable Feature between each class
K and a given distributable feature F using an iterative calculation that starts with
the classes that are directly coupled with the respective distributable feature core,
then considers the rest of the classes in the system. The procedure is presented in
Algorithm 6.1.1.
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Algorithm 6.1.1: COMPUTEADF(C, F )

main

currentSet← all classes directly coupled
with the feature core

for each class K ∈ currentSet

do ADF (K, F ) = ADFdirect(K, F )

while true

do



prevSet← currentSet
currentSet← all classes directly coupled with the

classes in prevSet

if currentSet is void
then break

for each class K ∈ currentSet

do



ADF (K, F ) = 0
for each class L ∈ prevSet

do


if L neighborOf K

then ADF (K, F ) = ADF (K, F )
+ BC(K,L)

TBC(K) ·ADF (L, F )

The values of the Acquaintance metric for the classes that are not directly cou-
pled with the given distributable feature core (F ), are calculated by taking into
consideration their dependency on the classes that were processed at the previous
steps in the algorithm.

A weight is applied to each acquaintance values taken from the neighbors,
which is a subunitary number that is calculated as the ratio between the coupling
of the class with its neighbor and the total coupling of the class with the entire sys-
tem (BC(C,Kn−1)

TBC(C) ). Thus, we ensured that the influence of the distributable feature
core is getting lower at each step farther from it. The applied factor is in fact the
degree in which the dependency on the neighboring class is important in the class’
collaboration with the entire system. A low factor means that the class is mostly
involved with other classes in the system, rather than with the neighbor that links
it with the distributable feature core; therefore, the influence of the distributable
feature core via this neighbor is not that important in the class’ purposes. Re-
versely, the more class C is involved in collaborations with classes that are closer
to a distributable feature, the more it “receives” from their ADF value.

For example, in Figure 6.1, the ADF value for the upper class in the n-th
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Figure 6.1: Computing the ADF metric

indirection level is computed as follows:

ADF = 4 · 2
8

+ 8 · 1
8

= 2

Note that we assumed that all the classes it depends on are visible in the picture
and therefore the Total Bidirectional Coupling (TBC) is 8 = 2+1+2+3.

6.1.2.2 System-wide acquaintance measurement

Another metric we defined so that we characterize the classes involvement in the
system’s functionalities is the Total Acquaintance with Distributable Features (TA-
DF). It is calculated as the sum of all ADF values for the respective class:

TADF (Cn) =
no.offeatures∑

i=1

ADF (Cn, Fi)

The Total Acquaintance with Distributable Features of a class is a metric that
measures the degree in which the respective class is involved in all the distributable
features. This means, effectively, that we have a way of quantifying the contribu-
tion each class has in providing the distribution-aware functionalities of the system.
Consequently, we can consider the TADF values of the classes in the entire sys-
tem to obtain information about the overall involvement of the application in the
distributed activities. For this purpose we define and use an Average TADF, as
follows:
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AverageTADF (System) =

∑
K∈System TADF (K)
NOC(System)

where NOC(System) is the number of classes in the application.
High values for the Average TADF are specific to systems that are mainly con-

cerned with distribution-related activities, while low values show that the system
is mainly involved with local tasks.

6.2 Interpretation

When analyzing the classes outside the distributable feature cores, the metrics we
introduced in the previous sections provide means for a detailed characterization
of the system’s distribution awareness.

These assessments can be described in form of detection strategies [Mar04], in
fact metrics-based rules for

• drawing conclusions regarding the properties of the system classes or of the
application itself which are relevant to the study

• describing patterns that identify design fragments with a correlated set of
quantifiable properties.

One key element in writing such detection strategies is to find the adequate
thresholds for the metrics involved in the detection strategy, and to use these thresh-
olds to classify or discriminate between the target entities. Choosing the threshold
values is a well-known metrics issue, and it is mostly done based on experimental
evidence [LK94, LM06]. For this reason, we decided to use threshold identifiers
for the detection strategies described next, rather than raw numbers, as these iden-
tifiers do better encapsulate semantics than particular threshold values, and are less
volatile. Based on experimental evidence, the threshold identifiers will be associ-
ated with actual numbers later in this dissertation when we will describe the case
studies .

In this section, we will interpret the metrics defined above and describe a set of
detection strategies that quantify this interpretation.

6.2.1 Involvement in Distribution

At the class level, the Acquaintance with Distributable Feature metric shows for
each class its involvement in providing a distributed feature. In our approach, we
measure all the possible ADF values for the classes outside the core, that is, for
all the identified distributable features. We can consequently observe the various
degrees in which a class participates to the distributable features, and find patterns
of involvement characteristic to the analyzed system.
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The Total Bidirectional Coupling metric shows the collaboration of a class with
the entire system. We can use this measure in combination with the TADF val-
ues to understand what is the proportion of the class’ involvement in distribution-
related tasks over the local-concerned ones. We can thus identify more classes that
are specifically built for distribution, besides those that we have already isolated
as belonging to the core. As a consequence, we can consider these newly detected
classes as part of the distributable features themselves. Moreover, we can find the
classes that mainly or even exclusively participate to local features, so that we can
isolate the parts of the system that are not concerned with the distribution.

6.2.1.1 System Distributed Awareness

The Average TADF is an important metric through which we can make system-
wide characterizations. Furthermore, the extent of involvement of an application
in distribution-aware activities can provide useful information regarding the way
the respective distributed system was designed.

For example, if a system claims it was specifically built to be decentralized and
distributed but its average TADF is low, we can suspect that the respective system
either doesn’t follow its claims, or it has some distribution-related design flaws.

We use the Average TADF to make assessments about the Distributed aware-
ness of the system, and our first detection strategy classifies the entire application
as:

• distribution-aware when the average TADF is high

• locally-concerned when the average TADF is low

The ‘high’ and ‘low’ identifiers are assigned values depending on the size of
the application.

6.3 Patterns of Acquaintance

Up to this point, our analysis approach has identified the main distribution-related
functionalities, by isolating their core entities. We are already able to make as-
sessments on their nature, and we can also assess the interactions between them
via the network. Further, by applying the Average TADF measure, we have gained
the capability of measuring the overall distribution awareness of the system, the
importance the distribution plays in its design goals. With these important items
of understanding in mind, we can now proceed to analyze at a finer grain the inter-
actions that the system entities are part of in respect to providing the distributable
aspect of the application.The metrics presented above were specifically built for
this purpose, and it is time to put them to good use.

Our goal is to understand how the system classes are involved in the distribution
functionality, and how separated the already identified distributable features really
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are in the system’s code. Moreover, we need to assess the relation of the distribtion-
aware parts of the system with those that are only concerned with local activities,
and thus to be able to identify the classes that do not depend on the distributed
aspect.

For this purpose, we analyze each system class in turn, apply the acquaintance
metrics we defined, and assess its collaboration with the different types of func-
tionalities in the application. The class involvement is different from case to case,
as some can be built to contribute to a single functionality, while others can be
used by more than one features in the system. In order to understand them, we
need some sort of classification of the different types of involvement, so that we
can label the classes in rapport to their utility in the system. We consequently need
to identify the most relevant patterns of collaboration within a distributed system,
and the analysis needs to find how the system classes meet these patterns.

This section presents the patterns related to the analysis of distributed soft-
ware systems that we have identified as relevant for making important assessments
about the distribution-related functionality. We define them in terms of detection
strategies made at the class level, that can be applied by the analysis in order to
discriminate between classes. In accordance to the metrics they are built on, we
call these strategies patterns of acquaintance and use them to quantify the class
involvement in providing distributable features.

The patterns of acquaintance are all metrics-based, and focus on the relative
proportions between the total acquaintance and the total coupling metric for a class.
This technique provides us with a clear view on the ration between a class’ involve-
ment in a particular aspect, and its total collaboration in providing the features of
the system, thus making possible accurate assessments on its importance for the
studied aspect.

The two main metrics we use at the class level are:

• the Total Acquaintance with Distributable Feature (TADF) and

• the Total Bidirectional Coupling (TBC), as defined in Section 6.1.

6.3.1 Significant Feature Acquaintance

One of the most important aspects when studying the classes that are outside the
core of distributable features is understanding their involvement in the distributed
functionality, specifically, identifying those classes that are strongly related to the
distributed aspect. They are highly relevant when an analysis aims to understand
where a line can be drawn that delimits the distributed part of the system from the
local one.

This provides the engineer with the information that allows for decisions re-
lated to the system’s evolution in respect to its distributed nature. For instance,
it can indicate which classes are most affected when the communication-related
technology changes, and which classes are to be restructured when the importance
of the distribution-related system activities needs to be reevaluated.
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Figure 6.2: Significant Acquaintance

The classes most involved in distribution are those that work together in a
higher degree to provide distributable features, and their activity outside this con-
cern is limited. In terms of our metrics, this translates in a high ratio between the
total acquaintance with the distributable features (TADF ) and the total bidirec-
tional coupling of the respective class (TBC). Indeed, the TBC shows how in-
volved the class is in the overall system activities (distributed or otherwise), while
TADF shows the involvement in the distribution-related features. Nevertheless,
this is not sufficient to make a correct assessment. In any application there may be
many classes that follow this pattern (have a low TADF/TBC ratio), but their ac-
tual contribution is so small that they can’t actually be considered important. This
is why our detection strategy for this case also considers the size of the distribution-
related contribution when selecting the classes. We call the classes that have a high
contribution with the distributed functionality Significant Feature Acquaintances,
and the strategy that detects them is presented in Figure 6.2.

A class that conforms to this pattern has a substantial collaboration with the
distributable feature(s), as most of its dependencies are related to the distributed
part . At this point, we can analyze the classes at a deeper level, and can distinguish
two subcategories that fit this description:

• Classes that have a high TADF because of their high acquaintance with a
single distributable feature. In other words, one ADF value for the class is
very high, while the others are minimal, or even zero. This kind of classes
are basically built for providing that single feature, therefore they are highly
relevant for understanding that distributable feature itself.

• Classes that have a high TADF because of balanced collaboration with
two or more distributable features. These classes are not exclusive to a sin-
gle functionality, they rather provide services for several distribution-related
tasks. They may link the features together, and they can be classified as a
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special category of distribution connector classes. As their TADF is high,
these classes are important in a restructuring context, qualifying as the main
candidates for redesigning when trying to completely separate the features
(e.g., in order to deploy them on different locations).

6.3.2 Local Feature Contributor

The other case of entities that must be isolated when assessing the ratio between the
distributed and local functionality is that of classes that are very little involved in
the distribution-related activities. Many distributed systems contain an important
number of such classes, and their presence can be an indication of various traits of
the application.

Locally-concerned classes and their activities can be necessary to support the
distributed functionalities, by, for instance, logging the system runtime events,
managing the authorization processes for users, archiving data or providing user
interfaces. On the other hand, there are applications where classes that act only lo-
cally represent the vast majority of classes in the system, and the distributed aspect
is the one that plays only a supporting role. Identifying these classes and assessing
their characteristics in rapport with the distributed functionalities is consequently
very important for an insightful analysis.

AND

Class is strongly coupled with the 
other classes in the system

Class has (almost) no relation   
with the distributable features

TBC ≥ HIGH

Local Feature 
Contributor

TADF

TBC
≤ LOW

Figure 6.3: Local Feature Contributor

Unlike the significant feature acquaintances, the collaboration of these classes
with the distributable features is low, while their other collaborations occupy their
entire activities. Using the metrics we defined in Section 6.1, this means the ratio
between the total acquaintance with the distributable features (TADF ) and the
total bidirectional coupling of the respective class (TBC) is very low. Moreover,
to eliminate classes that have a small overall involvement in the system (which,
as in the previous case, would make their study of little relevance), we must also
consider their absolute TBC value when selecting the relevant cases.
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We call the classes that have significant involvement in local features Local
Feature Contributors, and the strategy that detects them in the application is pre-
sented in Figure 6.3.

The classes that fit this pattern can be of two types:

• they implement one of the system’s non-distributed feature;

• they are local utility classes that the local or distributable features use.

6.3.3 Connector Class

Not all classes in a distributed software system can be placed with a high certainty
in the category of distribution-concerned entities or in the locally-acting one. More
often than not, there are classes that actually place themselves at the frontier be-
tween the local functionalities and the distribution-aware concern of the system.

There is seldom a clear separation between the two aspects, and it is natural that
the collaboration between the two parts is usually a strong one, as the overall goals
of the subsystems are the same. Consequently, the classes that link the two types
of functionality become highly relevant for understanding the system, as they can
provide indications on how the distributed and non-distributed parts work together
for achieving the design goals.

We call this type of entities connector classes, and we have built a strategy that
detects them among the classes in a distributed software system.

AND

Class has significant coupling with 
the distributable features

Class has significant coupling with 
other classes in the system

TADF ≥ AV ERAGE

LOW <
TADF

TBC
≤ AV ERAGE

Connector 
Class

Figure 6.4: Connector Class

Ideally, classes that link the local and distributed functionalities, would have an
equal involvement in both of them. In terms of the metrics we defined in Section
6.1, their total acquaintance with the distributable features (TADF ) over the total
bidirectional coupling of the respective class (TBC) would be equal or very close
to to 0.5.

However, we must analyze the class involvement in respect to the other classes
in the system, and therefore the characterizations must take into consideration the
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overall involvement of the other classes, too. Therefore, we consider that all the
classes that have a low to average TADF/TBC ratio can be candidates for inclu-
sion in the connector class category.

The next filter is based on the fact that we are interested in the linkage between
distributed features and the local ones, with a particular emphasis on the distri-
bution. Moreover, as in the previous cases, we need to avoid considering classes
with small involvement, as they cannot add relevant enough information to our
knowledge.

Therefore, we take into consideration only the classes that have an over-the-
average TADF . In combination with the other criterium, our strategy of detecting
connector classes addresses those classes that have a significant amount of collab-
oration with the distributed part of the application, while most of its collaboration
is still with the other classes in the system. The strategy is described in Figure 6.4,
and applying it helps us understand the main linkages between the two parts of the
application.

6.4 Visualization

Calculating the values implied by the metrics, and applying the detection strategies
above on the system classes provide the analysis with comprehensive data regard-
ing the collaborations within the application, and the ratio of importance of the
distributed functionality over the non-distributed one.

Nevertheless, the software understanding field often necessitates insights that
can be only obtained by relying on the engineer’s experience and direct involve-
ment. As processing large amounts of raw data is usually difficult for a human
being, an approach that aims to improve the efficiency of the understanding enter-
prise must provide means for presenting the data to the user in a way that facilitates
easy identification of the studied system traits.

In this respect, our methodology places the human at the heart of the process,
by providing a set of visual representations of the system characteristics. Similar to
the parts of the methodology described in Chapter 5, we believe that the identifica-
tion of the various patterns of collaboration is greatly facilitated by using software
visualization techniques.

Using software visualization, the approach synthesizes the large amounts of
gathered data into a set of diagrams that present the collaborations between the
system classes and the distributable features, while capturing the total bidirectional
coupling traits of the classes. The characteristics are presented simultaneously, so
that the engineer is able to see at a single glance all the cooperating aspects that
describe the system.

The specific visualization perspective we have defined enables the engineer to
easily recognize the categories of classes identified by the pattern detection strate-
gies described in the previous section. The visualization is called Feature Affili-
ation Perspective, and it it is part of the DISTRIBUTABLE FEATURES VIEW we
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introduced in Chapter 5.

6.4.1 The Feature Affiliation Perspective

This perspective (Figure 6.5) uses visual elements to show the impact the distribut-
able features have on the classes that were left outside the core graph by the first
phases of the analysis. It is designed to reveal to the engineer the level and profile
of the collaboration between the classes and the distributed features of the system,
so that the category the class belongs to is easily identified. At the same time, the
total collaboration for each class is shown, so that the collaborations can be put in
perspective.

Figure 6.5: Example of Feature Affiliation

Each of the classes that do not belong to a core of distributable features is
drawn as follows:

• Total collaboration. A light gray rectangle shows the total bidirectional cou-
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pling of the class with the other classes in the system. The height of the
rectangle is proportional with the intensity of the coupling (number of col-
laborations), while the width is proportional with the dispersion of coupling
(i.e., number of collaborators)[LM06].

• Distribution-related collaboration. Within the light gray rectangle, we dis-
play a set of colored rectangles, one for each distributable feature which the
class collaborates with. The color of the rectangles corresponds to one of the
colors from the Distributed Architecture Perspective we described in Chapter
5.

The height of each colored rectangle is proportional with the intensity of
the Acquaintance with Distributable Feature metric value calculated between
that class and a particular distributable feature. The width is proportional
with the dispersion of that same metric.

The colored bars are placed in the upper-left corner of the gray rectangle, so
that we can visually ascertain the ratio between the colored and gray areas,
actually seeing the importance the different distributable features have in the
functionality of the respective class.

From the point of view related to the software visualization field, the Feature
Affiliation Perspective effectively extends the concept of polymetric view intro-
duced by [LD03], by “embedding” within one polymetric rectangle a set of other
(correlated) polymetric rectangles. We call this Composed Polymetric View, and to
the best of our knowledge it was not used before as such.

Figure 6.5 presents an example of the Affiliation Perspective for several classes
in one of our case studies.

6.4.2 System-level Visual Assessment

In Section 6.2.1 we identified a strategy that assesses the system distributed aware-
ness by calculating the Average TADF. Systems having a high value for this metric
are strongly involved in distribution-related activities, while application with a low
Average TADF are mostly concerned with local tasks.

Using visualization, the engineer is able to assess these traits without measur-
ing the system directly, by simply looking at the diagram we build with the Feature
Affiliation Perspective. The picture contains all the classes in the system, with their
collaborations depicted as described above. The engineer only has to look for the
overall presence of color in the diagram, and can make a rapid evaluation of the
system’s distributed awareness:

• a visualized system where color is visible in many places and is relatively
dominant over the grey areas is one that has a high involvement in distribution-
related tasks;
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Figure 6.6: Example Big Color Spot class

• a diagram containing mainly areas where gray is visible is concerned with
local activities, and its distribution awareness is low.

Most application fall somewhere in between the above extremes, and the visual
evaluation is very helpful in assessing the global relation between distribution-
aware and locally-acting system entities.

6.4.3 Visual Patterns of Acquaintance

When applied to the system classes, the visualization technique provides means for
easy identification of the collaboration patterns we have introduced in the previous
section. The engineer can identify the relevant classes that belong to one category
or another by simply looking at the diagram, and by seeing the colored patterns for
each drawn class.

For each of the detection strategies related to the collaboration traits, we have
identified a visual pattern that the engineer can use as reference when looking at
the visualized system classes. The patterns represent the direct interpretation of the
visualization technique, and are presented below.

6.4.3.1 Pattern 1: Big Color Spot

This pattern corresponds to the detection strategy that identifies the Significant
Feature Acquaintance classes.

Classes with this pattern, appear in a DISTRIBUTABLE FEATURES VIEW as
having one or more dominant color spots, so that only a small gray area is visible
(Figure 6.6). This fits the definition of the detection strategy, which considered
only high values for the TADF metric (corresponding to the colored spots in the
view), and higher than average values for the TADF/TBC ratio (visible as little
gray in the image).
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Figure 6.7: A Big Gray class

As when describing the detection strategy we can identify the two types of
significant acquaintance classes:

• Classes where only one color is dominant, are the significant acquaintances
for a single distributable feature, as one ADF value is much higher that
the other ADF values for the respective class, which makes a single color
dominantly visible.

• Classes where two or more colors are visible in sufficiently large areas to be
easily spotted represent the classes participating in more than one distribut-
able feature. They have at least two relatively balanced ADF values, and
qualify for the category we previously called distribution connector classes.

6.4.3.2 Pattern 2: Big Gray

This pattern corresponds to the detection strategy that identifies the Local Feature
Contributor classes in the system.

A Big Gray class (Figure 6.7) can be observed in the visualization as one that
presents a large gray area, while the colored areas are small in comparison. The
large grey area is present because their total bidirectional coupling with system
classes (TBC) is high, therefore they have significant participation in the system’s
functionalities, yet most of these functionalities are local. The trait is confirmed
by the fact that the colored areas are comparatively small (or even non-existent),
therefore the TADF/TBC ratio is low.
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Figure 6.8: A Color Spotted Gray class

6.4.3.3 Pattern 3: Color Spotted Gray

This visual pattern corresponds to the detection strategy responsible for finding the
classes that act as connectors between the distributed and non-distributed function-
alities.

The visualized classes in this category are shown as dominantly gray rectan-
gles, yet significant color spots are also visible. Figure 6.8 shows an example of
such classes. The ratio between the colored and gray areas can be put in perspec-
tive with the other classes in the system, so that the connector functionalities are
identified in relation with the overall system traits.

The dominant gray areas fit the description in the detection strategy where the
TADF/TBC ratio is considered below average. The colored spots are the expres-
sion of classes having higher than average Total Acquaintance with Distributable
Features, which is again in accordance with the specifications of the detection strat-
egy.

The view has the advantage that the engineer can easily identify the connector
classes, and, moreover, by looking at the color spots he or she can see without fur-
ther analyzing the code which are the particular distributable features that depend
in a higher degree on the non-distributed functionalities of the system.
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Chapter 7

Restructuring Support

The previous steps of our methodology defined a process that starts with the source
code of an existing distributed application, and uses the information about the
communication technology to extract valuable information about the system. The
approach isolates the separate distribution-aware functionalities, offers an archi-
tectural overview of their remote interactions, and provides means to thoroughly
understand the involvement of every system class in providing the respective func-
tionalities. Complemented by a visualization technique and a software tool that
automates most of the tasks, the process enables engineers to significantly add to
their understanding of the analyzed systems.

Software systems understanding is a very important task for an engineer, of-
ten being a goal in itself, as the knowledge items gained through detailed analyses
represent valuable tools for long-term controlling and maintenance of the appli-
cations. Software applications are in a continuous process of evolution, therefore
their internal structure tends to degrade in time. A methodology for understanding
software can consequently be enriched by providing at set of techniques that en-
able the engineer to reason about the restructuring needs, and support the process
of redesign.

We believe that, when addressing this issue, an approach should concentrate
on finding simple yet highly relevant means of manipulating the code when trying
to change its structure. They must be relevant to the domain describing the target
systems so that the approach fits the most important issues that occur within the re-
spective application class, and they must be simple in order to keep the interaction
between the engineer and the code artifacts at an easy, manageable level.

Distributed object-oriented applications differ from their ’locally-acting’ coun-
terparts in that they are designed to fit the necessities of (usually) heterogenous
networks of human activities, systems of tasks executed at geographically distinct
locations. Organizations need to integrate their workflow in the wide dispersion of
their worksites, and this usually requires a complex distributed system consisting
of balanced, sometimes relatively autonomous, software nodes working together
for the same goal.
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Unfortunately, the real-world applications are, in many cases, far from such a
scenario. Many ’distributed’ applications consist of several or many instances of
the same (or few) lightweight client(s), connecting from different locations to a
single, oversized server, that centralizes the entire workflow. The server provides
all the features needed by the network, even though most locations may actually
need only a subset of these services, those that specifically address their local con-
cerns. Such a system is unpractical, and will not be able to function efficiently for
long, as it will not cope with the situations like the growing of the organization it
serves, or the evolution of the features it must provide. Consequently, at some point
in its future, the system will have to be restructured, particularly by extracting the
individual services and (possibly) deploying them at or near the locations that need
them most.

This chapter presents our approach to restructuring distributed object-oriented
applications by focusing on the nature of the restructuring needs that often arise
during the system’s lifetime. It uses an extraction-based technique which isolates
inter-related pieces of software, providing means to both assess the layout and the
cost of the redesign, and to enhance the understanding of the system.

Extraction of services and, generally, of groups of interrelated software entities
is the basic method we use in our approach to restructuring distributed software.
At the point the restructuring step occurs in our methodology, a lot of valuable
knowledge about the system was already gained by the engineer, therefore the
extraction itself begins with a lot more than qualified guesses about the ’what’,
’where’ and ’how’ concerns of restructuring.

7.1 Criteria for Restructuring

Regardless of the technology involved, a distributed application must be designed
so that it serves efficiently its purpose. If structured as a set of services, it must
provide them so that they both minimize the network communication, and make in-
telligent use of the geographical distribution of the components. Most commercial
distributed applications manage the resources and workflow of real-life distributed
organizations, such as companies having multiple branches, or individual sites that
need to integrate their work. We argue that, in order to be efficient, the services in
such a system must be:

• Small. Regarding the actual size of the service, we believe it should consist
of as few classes as possible, so that it is manageable both by the developer,
and the user. A smaller service will be easier to maintain, and easier to
configure in the production environment, for instance by deploying it at a
different location without affecting the overall system functionality.

• Focused. In what concerns the application’s goals, a focused service is one
that, regardless of its size, limits its functionality to a specific, accurately tar-
geted purpose, rather than combining several, loosely-related, features that
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may or may not be needed by all its clients. Keeping the purpose in sharp
focus during the entire life cycle of the services will provide the users of
the system with a great degree of flexibility in assigning (and changing) the
functional roles of the different locations the organization is involved in.

• Decentralized. By decentralized we refer to services that balance their func-
tionalities and minimize their inter-dependencies, rather than encapsulating
features needed by the entire system. A centralized feature needed through-
out the system will almost always become a communication bottleneck when
the system is deployed, and the dependance of the other components on the
centralized activities will hurt the system’s performance, flexibility and us-
ability.

Designing the services under the above three coordinates will help create a sys-
tem that is well-distributed, i.e. it has an optimum services/locations ratio. Small
and focused services deployed at the locations they are needed most will ensure
better scalability, by providing easier methods of extending the system when the
demands grow. Adding decentralization to the mix will help avoid situations when
a lot of the components connect to the same location while their actual purposes
are very different (heterogenous) and would be better served by several custom ser-
vices. Moreover, the three qualities above will provide a highly maintainable and
evolvable system, because their adoption minimizes the in-system dependencies.

Real-life systems are definitely not optimal [DDN02, Fea05], and this may
happen because of at least two reasons:

• they are poorly designed from the start – many applications are simple,
client-server, architectures that consist of a single, centralized server and one
or several clients using its services. The services themselves are gathered to-
gether at the server location for no other reason than the simplicity of doing
so. Many systems are deployed in application servers, that provide a specific
functionality needed by the system: web-based user interaction, transaction
management or persistency. While the application servers themselves do not
impose architectural constrains that prevent a flexible design, it is simply
easier to deploy all the main functionality at their precise location, avoiding
an arguably more complex approach that distributes the system features over
the network.

• they evolved in time, due to change requests arrived at different points in the
system’s life, and the current structure does not follow anymore the (other-
wise good) design principles it started with.

The need to restructure a distributed system will arise whenever the conditions
above are met, and approaching this necessity implies two important phases:

• understanding the system, by mainly identifying the distribution-aware fea-
tures and their relation to the available services;
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• manipulating parts of the code (services, features and/or other groups of
inter-related classes) so that the accurate focus and size of the remote act-
ing entities is achieved.

Our approach addresses these concerns, by providing both a methodology and
a tool to tackle the issues of understanding and restructuring distributed software
applications.

7.2 Restructuring the System

Applying a process that analyzes the software can help the engineer gain a sig-
nificant understanding of the system, detailed enough to enable complex activities
like those related to the maintenance and evolution. The next step is to provide a
flexible way of manipulating the code artifacts as a means for system restructuring.
This goal can be viewed from two perspectives:

• a characterization of the restructuring results, which should isolate suppler
(more flexible) entities, easier to maintain and/or redistribute over the net-
work,

• a characterization of the restructuring process, which should provide easy
ways to try different restructuring scenarios and to select the best one as the
outcome.

The first perspective is definitely the most important one, and our approach
follows it while also considering the issues implied by the second one. This way,
we achieve a fair, natural, degree of consistency between the process itself and its
projected outcome.

Our restructuring approach is built around a simple, yet versatile technique: the
extraction of those subsets of the system classes that may or will form the core for
a distinct, suppler system feature.

In order to find the best restructuring scenario, the engineer can apply the pro-
cess to obtain two types of work items that can be used both as intermediary results
in iterative exploration of the various possible versions of restructuring, and as the
final outcome of the approach, to characterize the future layout of the chosen sce-
nario:

1. The forecasted layout of the redesign or (as an intermediary result) the fore-
casted layout of the extraction/redesign attempt. This provides an overview
of the changes that will most probably be necessary after extracting a speci-
fied set of classes from the system.

2. The cost of the redesign or extraction attempt, a numerical score that shows
how difficult will it be to extract the respective classes from the existing code.
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7.2.1 Extraction Units

The first step in our approach is building an extraction unit, which we define as the
set of classes that represent the starting points for the extraction, the classes that
definitely need to be extracted in order to delimit an independent feature within the
system.

The reasoning which includes classes in extraction units is applicable to differ-
ent sets of system entities, as follows:

• analyze the already isolated entities (such as the distributable features) and
find classes that seem to be working together in a tighter manner than the
other ones;

• look at the system from a strictly service-oriented perspective and identify
the frontier classes that seem to provide different features than other frontier
classes in the same group;

• apply the same approach of finding functional clusters to the locally-acting
groups of classes.

In other words, we have to be able apply the same type of reasonings at any level
of detail, from looking at small sets of individual classes to approaching the entire
system – the one thing we would need in any of these cases is a way to narrow our
search for interesting cases to be selected as members of extraction units.

7.2.1.1 Choosing Classes for the Extraction Units

We support this need by focusing the extraction process to two versions of class se-
lection strategies that, in our opinion cover the most interesting cases in the context
of object-oriented distributed systems.

Strategy 1. Service identification. This strategy is based on the premise that in
distributed applications, a description of a service (made in RMI through a remote
interface) usually refers to an independent feature the system provides. As many
components that run on a location publish more than one service description, it
is very interesting to see how the extraction of each such description and the re-
lated classes influence the structure of the system. For Java/RMI, this translates to
defining an extraction unit that consists of one remote interface and the classes that
implement it. In this particular case, when a class implementing a remote interface
is in turn the base for an individual hierarchy, we include the hierarchy too, as the
classes in the hierarchy are certainly directly involved in providing the service.

Strategy 2. Identification of functional clusters. This strategy covers a more
general case where we need to identify sets of semantically-related classes that
seem to act together more closely than the other classes in the group. By ’group’
we mean any set of classes we try to split/reconfigure at a certain point in our
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redesign, such as a distributable feature, a previously extracted service, or even the
entire system. The strategy does not focus on the semantics themselves, but uses a
coupling-related metric to identify the most interesting classes: we define for each
class C in group G the In-group adequacy metric (IGA):

IGA(C, G) =
∑

class K∈G

BC(C, K)

where BC is the bidirectional coupling between two classes: the total number
of method invocations and attribute accesses occurring between them, to which we
add 1 if the classes share an inheritance relationship (Section 6.1).

Being a coupling-based measurement, IGA provides information about the
quality of collaboration between a class and the target group. The higher the value,
the stronger the collaboration of the class with the classes in the group, i.e. the
higher chance that the class is better fitted for the respective group (hence the metric
name).

For all coupling-based metrics in our approach, we calculate both dimensions
of coupling: the intensity of the coupling (number of collaborations), and the dis-
persion of coupling (i.e., number of collaborators) [LM06].

7.2.2 Visualization as Support for Selection

To support quick and easy identification of the most interesting classes, we defined
and used a visualization of the IGA for all classes in a group (Figure 7.1). For
this purpose, we calculate two IGA values, one for the intensity, and one for the
dispersion. The visualization draws the dependency graph of the group, each vertex
being a class and edges representing bidirectional dependencies between them. If
more than one dependency between two classes exist, only one edge is drawn. The
In-group adequacy is visible in the shape and size of the classes: each node is an
ellipse, the size of the vertical axis being proportional to the coupling intensity,
and that of the horizontal one with the coupling dispersion. As intensity is always
larger or equal than dispersion, all classes will have a vertical major axis.

The IGA values can be used to analyze the classes in the group in order to
find candidates that can be included in the extraction unit. The most visible classes
are those that the visualization draws larger, as their IGA values are high. The
interpretation of the shapes we encountered in our case studies is the following:

• Large Round Shape - classes drawn as large, almost circular ellipses (Fig-
ure 7.1,a): both intensity and dispersion IGA values are high, meaning that
the respective class cooperates intensely with many entities (classes) in the
group. Classes falling in this category are tightly linked with the group, so
that probably extracting them will imply a high cost. At the same time, they
might represent a complex feature, and if several such classes are found in
different regions of the graph, it may be an indication that several distinct
features may occur in the group.
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Figure 7.1: In-group adequacy

• Large Elongated Ellipse - classes drawn with the major (vertical) axis sig-
nificantly larger than the horizontal one (Figure 7.1,b) – the IGA intensity
is high while the dispersion is low: the class collaborates intensely but only
with few classes. This may describe a localized feature, as the respective
class does not need most of the other classes in the group. Classes in this
category therefore become good candidates for extraction.

• Small Ellipse - classes drawn as small nodes in the graph (Figure 7.1,c) –
while their collaboration with the other classes is low and thus they might
be easy to extract, the small degree of collaboration also may suggest they
are not interesting representatives of features, they probably are only ’acces-
sories’ to such features (such as interfaces, utility classes, etc.)

The consequence of the above observations are that the best candidates for
including in an extraction unit are the classes in the first two categories. They
definitely represent interesting cases, and they are worth looking at in detail when
trying to isolate an independent, extractable feature within a given group of classes.

7.2.3 Extraction Process

With the extraction unit prepared, the actual process of extraction can start. Ex-
traction can be done at any step of the redesign, both as a means of quantifying the
projected final results, and as a part of a trial-and-error approach which explores
possible scenarios of separating parts of the code.

As stated above, the outcome of the extraction consists of two items of interest:
a preview of the post-extraction structure of the original group of classes, and a
number quantifying the extraction cost.

113



CHAPTER 7. RESTRUCTURING SUPPORT

7.2.3.1 Forecasted Layout of the Extraction

The first item is obtained by applying an algorithm that separates the original group
by isolating the extraction unit and the closely related classes. To this purpose, we
use a variation of the Acquaintance with Distributable Feature metric we have
introduced in Section 6.1. The Acquaintance with Class Group between a class C
and a group of classes G is therefore defined as:

a) If Class C is directly coupled with one or more classes in group G:

ACG(C, G) =
∑

class K∈G

BC(C, K)

b) If class C is indirectly coupled with the classes, and it sits at the n-th indirec-
tion level against the group (there are n−1 classes between C and the closest
class in the group), the metric is calculated iteratively, using the indirection
levels:

ACG(Cn, G) =
∑

class Kn−1

ACG(Kn−1, G) · BC(Cn, Kn−1)
TBC(Cn)

c) If class C is completely disconnected from all classes in the group:

ACG(C, G) = 0

BC is the bidirectional coupling between two classes, and TBC is the total
bidirectional coupling for a class (see Section 6.1).

The algorithm iterates through all the classes in the group (except for those
already included in the extraction unit) and calculates for each their acquain-
tance with the group of classes in the extraction unit. The user can specify
a threshold factor t which is applied to perform the actual extraction: all
classes for which

ACG(C, G) > t ∗ avg(ACG(G))

are gathered with the extraction unit classes and are separated from the rest
of the group. avg(ACG(G)) is the average value of all the calculated ac-
quaintances. We only use the intensity side of the coupling measure, as it
better expresses the strength of dependence between the entities.

7.2.3.2 Extraction cost

The extraction cost is a measure that characterizes the effort that would be needed
when performing the actual extraction. Given that the algorithm provides two sets
of classes, S1 and S2, we consider the cost is proportional with the degree these sets
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are actually linked together in the current system: the larger the number of calls
or references between the classes in the two sets, the higher the cost to actually
separate them. We define the extraction cost as follows:

EC =
∑

C1∈S1, C2∈S2

BC(C1, C2)
NOCs

where NOCs is the number of classes in the entire system.
The extraction cost is particularly useful when trying different possible sce-

narios of extraction, in an iterative, exploratory, manner. It provides the engineer
with a useful way of distinguishing between paths that may lead to cost-effective
restructuring scenarios and those that represent ’dead ends’ because the cost be-
comes too high.

The actual values for the extraction cost vary from system to system, but are
consistent (comparable) within the same application. When assessing the costs, the
engineer must first conduct a set of preliminary extractions to determine the range
of the costs throughout the system. Low values will be obtained by extracting
loosely connected individual classes, and high costs are specific to classes that
have many dependencies (i.e., they are the origin of many edges in the graph), with
medium to high IGA values.

7.3 Improving the Understanding

The extraction process described above can be used not only to support the system
redesign as a tool, but also to improve the knowledge one has about the analyzed
system. Isolating clusters of related entities by starting with a few classes (the
extraction unit) can prove an useful tool to capture functional aspects in the system
that were not obvious from the start.

The analysis can include steps that focus on interesting classes in the system,
suggested by the visualization or by other techniques, and find which are the en-
tities that are closely linked with them, and how isolated the set is from the other
classes in the system. The same group of classes can present different types of ”in-
teresting classes”, and the approach can use each of them separately as extraction
units to get various views on their impact in the group: different sets of classes will
be generated for each extraction case, and analyzing their layout will help identify
both isolated sub-functions (clusters that follow only one or few of the extraction
units) and general-purpose functionalities (the intersection between the generated
sets).

The information received this way can prove useful to identify new depen-
dencies between some ”interesting classes”. For example, two or more may ex-
hibit similar behavior when extracting: they cluster around them virtually the same
classes. They have a good chance of being related to each other functionally, so
that the next step should group them in a single extraction unit and restart the ex-
traction process. Iteratively, this approach can identify functionally-related sets of
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classes that were not identified as such by the previous steps of the analysis. The
granularity of the iterations is subject of experimentation: the threshold factor for
extraction can be tuned to determine the inclusion of less or more classes in each
extraction result.

Bottom line, once focused on relatively structured units of code (such as the
distributable features), an extraction-based exploratory analysis can help isolating
functionalities at an even finer degree of detail.
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Chapter 8

Evaluation of the Approach

The previous chapters presented the methodology we developed in order to support
the process of understanding distributed object-oriented systems. The approach
is based on a process of reverse engineering existing software applications which
starts with the source code and analyses them so that the aspects related to the main
system functionalities are extracted. The methodology provides a set of integrated
techniques for isolating the distributable features in the system and for assessing
the participation of classes in providing them. Moreover the remote dependencies
between distributable features are detected so that the interactions specific to the
distributed nature of the system can be assessed. The process uses a set of detection
strategies to identify the most relevant traits of the system and to understand the
patterns of collaboration between the classes. Moreover, the aspect of distributed
software restructuring is supported by a technique that enables the engineer to both
change the system’s layout at different levels of detail, and to better understand the
interactions within the application. The approach is metric-based and uses software
visualization techniques as support for an in-depth understanding of the system.

The goals of the methodology are to provide, by means of structural analysis
the following:

1. System-level assessments regarding

(a) The importance of the distributed aspect in the system

(b) The layout of the distributed architecture

2. Class-level assessments concerning

(a) The collaborations with the distribution-related functionalities

(b) The relation with the non-distributed part

3. Techniques for supporting system restructuring by assessing the dependen-
cies between groups of classes and facilitating the extraction of separate
functionalities
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To evaluate the methodology and the techniques it implies we have applied the
process to real-world distributed software applications provided by sources in the
industry, and to systems available as open-source projects. The applications were
designed and built using Java and RMI as the communication infrastructure, and
were of medium to large size in terms of number of classes.

This chapter presents the case studies we conducted and analyzes the results
of applying the methodology described in the previous chapters. The goals of the
evaluation were:

• To reproduce the real conditions that occur in industry when the need of
software understanding arises;

• To use only the source code as input for the analysis;

• To assess the findings by confronting them to the available information sources
about the systems.

8.1 Experimental Setup

During the development of our methodology we have analyzed a number of 5 soft-
ware projects.

All projects were available at the source code level, and were analyzed in sim-
ilar conditions, as follows:

• The source code was used as they were provided, without any kind of tam-
pering. This simulates the cases when projects need to be understood without
knowing anything about their structure;

• The analysis was made without referring to any sources with additional in-
formation on the systems (as documentation or developers). This simulates
a frequent case when the engineers that need to understand the system can-
not contact the original developers, and when the project documentation is
insufficient;

• All the steps of the methodology were followed in order;

• We have combined the detection strategies and the visualization techniques
to improve the understanding;

• After extracting each item of understanding, we have confronted the results
with the external sources (documentation, developers). This step was needed
to assess the validity of the approach.

Table 8.1 shows the size attributes for each of the analyzed projects and presents
the main system-level metric values we have calculated for each.
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Name NOC
NOC in Distr. Distr. Sum of Average

Feat. Cores Feat. TBC TADF
CAROL 155 28 4 1762 14
JOTM+CAROL 218 65 9 4437 29
SPRC 24 9 3 57 4
EHCACHE 93 16 5 717 9
FWS 362 35 2 1051 3

Table 8.1: The case-studies in numbers

CAROL (Common Architecture for RMI ObjectWeb Layer ) 1 is a library that
allows applications to use different RMI implementations, making Java server ap-
plications independent of RMI implementations. It is a medium-size project, and
it is widely used as infrastructure for developing applications. JOTM (A Java Open
Transaction Manager) 2 is a distributed transaction manager that implements a set
of standard application interfaces for Java. It is also medium-sized open-source
Java project. As JOTM was built using the CAROL library we decided to analyze
them together. The application we have called SPRC is a small student project we
included because its size allowed us to manually inspect the entire application and
thus assess our techniques with more precision.

This chapter presents in detail the findings related to two projects we consider
highly relevant for the purpose of exemplifying the our analysis approach. They
are relevant because they have distinct domains of application, and they present
significant particularities as far as the distributable features and the overall system
functionality are concerned:

FWS is a code name we have given a commercial framework for building and
executing workflow systems. It was developed by a local software company in
Timişoara, and we had access to the entire source code of the framework. More-
over, the actual source-code of FWS that we analyzed contains not only the frame-
work itself, but also some small test applications written to exercise the framework,
which provided us with a very interesting situation to analyze.

In the FWS terminology, a workflow is a sequence of local or remote activities
executed by pieces of software called agents.

The framework’s user is a developer (or a team of developers) who instantiates
it by writing a set of Java agents that meet the necessities of the particular work-
flow that is to be enacted. The workflow itself is specified as a state machine whose
description is stored in a specific XML file. The agents can be configured to run
all on the same machine, or they can be distributed over the network. The commu-
nication between agents and the engine that supervises the workflow is done via
RMI.

1http://carol.objectweb.org/
2http://jotm.objectweb.org/
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This case study brought an important advantage to our evaluation approach:
we had direct access to the developers, thus we were able to verify in detail the
validity of our findings.

The EHCACHE system is a widely used, open-source, Java distributed cache for
general purpose caching 3. Its distributed aspect is directly related to the fact that
the caching can be done by a group of separate, and distinctly deployed cache peers
which act together over the network as a distributed cache system. The communi-
cation related to the data exchanges between the peers, is done remotely through
RMI.

The documentation for the system was available, and it included design-related
data which allowed us to verify the assessments of the methodology. Moreover, the
project proved to be an interesting case of peer-to-peer technology, which both dif-
ferentiated it from the ‘mainstream’ applications and provided us with the oppor-
tunity of applying our techniques on an interesting type of distributed architecture.

8.2 System-Level Characterization

By analyzing the characteristics of the application, our methodology provides two
types of information at the system level:

• An Overview of the Distributed Architecture, by identifying the cores of
distributable features and analyzing the dependencies between them that
constitute the remote communication channels;

• A Characterization of the Distributed Awareness of the system by assessing
the importance of distribution on the system’s design. This is accomplished
by measuring the involvement of the classes in the distribution-related activ-
ities, based on the Average TADF value. As the TADF metric expresses
the strength of the relation the class has with all the distributable features,
the average TADF tells us about the overall importance of the distributed
aspect in the system.

8.2.1 Overview of the Distributed Architecture

8.2.1.1 FWS

By applying the core isolation and clustering techniques, the automated process
detected for FWS two distinct cores of distributable features. The first core is made
of 28 classes, of which 5 were identified as frontier classes. One of these 5 is a
class that calls methods in a remote interface situated in the other detected core.
The rest of the frontier entities are remote interfaces themselves, that provide a set
of functionalities to remote actors.

3http://ehcache.sourceforge.net/
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We have analyzed the dependency graph representing the first core, and looked
at the names of the classes. Doing so, we have found a set of several entities that
qualified as interesting classes because their name seemed to suggest the function-
ality of the respective distributable feature.

This set included remote interfaces (Interpreter WorkflowManager),
and classes like WorkflowContainer, ActiveWorkflow etc.. Their name
suggested that the feature dealt with the control of the workflows. We have found
that the name of the frontier class that called methods of remote interfaces in the
other core was Executer. Looking at its dependencies in the graph, we have also
noticed that it was directly linked by an edge with the Interpreter. This infor-
mation consolidated our impression that the feature was concerned with executing
workflow tasks.

We have contacted the developers of FWS, and they confirmed that the identi-
fied classes are indeed the central part of a component of the system called Work-
flow Engine. It represents the main functionality that deals with creating and exe-
cuting of the different instances of workflows configured by the users.

The second core of distributable feature consisted of only 7 classes and inter-
faces. The main entities were two remote interfaces called AgentEngine and
AgentHandler. The core also contained a class called AgentEngineImpl
which was linked by an edge in the dependency graph to another class, called
Agent. Our assumption was that the corresponding distributable feature is con-
cerned with the tasks of handling (running) the user agents that are part of the
workflow. When we referred to the developers, they confirmed again our assump-
tion. The classes we discovered were the main part of a component named Agent
Engine that creates and manages the agents running on different machines than the
one that hosted the Workflow Engine.

The next step was to analyze the communication channels between the two
feature cores. The channels were automatically detected by our tool as direct RMI
remote calls. We have identified four communication channels. Two of them con-
sisted in calls from the Executer class to the remote interfaces in the second
core, while the other two were calls made by a frontier class in the second distri-
butable feature core to remote interfaces belonging to the first one.

This bidirectional dependency strongly suggested that the distributable features
established a peer-to-peer relation, acting in turns as client and server one to the
other. This assumption was confirmed by the developers of the framework: the
Workflow Engine contacted the Agent Engine when the creation of a new agent
was needed in order to be run at a remote location. On the other hand, the Agent
Engine component communicated with the Workflow Engine each time the status
of the running agents needed to be reported back.

8.2.1.2 EHCACHE

For this system, the core detection and separation approach detected a number of 5
distinct cores of distributable features.
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We have called the largest core Cache Peer Manager because it seemed to
be built around a remote interface (CachePeer). It consisted of a total of 7
classes, from which we noticed the CacheManagerPeerListener, RMI-
CachePeer, and EhCache.

A very interesting aspect that effectively surprised us as we didn’t know any-
thing about the system beforehand was that CachePeer was the only remote
interface in the entire system. The other identified cores didn’t contain remote
interfaces, the only frontier entities in their case being classes that referred this sin-
gular interface. The other distributable feature cores consequently suggested that
they represent different functionalities related to each other.

For example, one of those cores contained class names suggesting involvement
in replicating caches over the network (CacheReplicator, RMISynchro-
nousCacheReplicator, etc.). Following the names, we called the respective
core Replicator.

Another distributable feature core, that we called Bootstrap was obviously
dealing with initializing the cache, as it contained clases called (Bootstrap-
CacheLoader, RMIBootstrapCacheLoader). A different core contained
a class called CacheManagerPeerProvider, and we assumed that it was
probably related closely to the listeners in the first core (we called this Peer-
Provider).

The fact that only one remote interface was present, complemented by the
above observations consolidated our perception that the discovered features were
not parts of distinct remote components, but functional aspects of a single struc-
tural, communication-aware, entity.

To confirm our findings we consulted the online documentation of the system
[Ehc]. It showed that the distributed caching aspect involved several different tasks,
such as peer discovery, replication, the capability of bootstrapping from remote
caches. All the tasks were executed by a set of several identical components, run-
ning on different network locations, and communicating with each other through
the CachePeer interface.

The documentation allowed us to link the functional units we have discovered
with the real design-specific functionalities in the system, We confirmed the role
Cache Peer Manager and Peer Provider distributable feature cores identified by
our approach, which proved to be features involved in the peer discovery and man-
agement, as distinct parts of code that can each communicate remotely for this
task. We successfully confirmed the accuracy of two more distributable features
cores (namely Replicator and Bootstrap) by reading the document describing the
architecture of EHCACHE.

Although we were unable to also link the fifth core our algorithms identified to
a documented feature of the application, the approach appeared to be again useful
for correctly recovering an overview of the distributed architecture of EHCACHE.
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8.2.2 Characterization of the Distributed Awareness

8.2.2.1 FWS

As our methodology specifies, in order to assess the overall importance of distri-
bution in the system’s design, we need to calculate the Average TADF metric.

For the FWS system, the Average TADF is 3, which is rather small compared
to other systems we have processed (see Table 8.1).

This suggests that there is a significant amount of functionality in FWS that is
definitely not directly related with the identified distributable features, therefore it
is not involved in providing distribution-related functionalities.

Particularily, we have looked at the classes with very low TADF values, and
identified a group of almost 80 classes that had a TADF of 0. This shown that
the respective entities were totally unrelated with any of the identified distributable
features in the system. By looking deeper at the group and considering their names,
we have seen elements that suggested a functionality related with an event-driven
user interface. By referring to the developers, our assumption was confirmed. The
classes were all part of a utility for creating and editing XML workflow specifica-
tions, which indeed heavily relies on user interaction.

When we asked about the seemingly low distribution awareness, the developers
told us that the system was initially designed for executing only local tasks, and
only later a it was adapted to run remotely-available agents. This explains the low
Average TADF , because most of the activities the system was involved in, were
still local, on the Workflow Engine side.

8.2.2.2 EHCACHE

For this system, the calculated Average TADF value was 9, significantly higher
than for FWS.

Assessing the values for individual classes, we noticed that most of them are
acquaintances of the Cache Peer Manager distributable feature. At the same time,
we noted that this feature is the largest distributable feature in the system, which did
not surprise us, as most of the functionality of EHCACHE was related to the issue
of cache management. Moreover, by reading the design documentation of this
system we found out that since version 1.2 the EHCACHE underwent a significant
redesign that transformed it from a monolithic into a modular and distributable
system, having the concept of cache peers at the core of its architecture.

The higher TADF value (i.e., high distributed awareness in the system) was
consequently verified, because a high value is typical to applications that were
specifically designed (or redesigned) with the distributed functionality in mind.

8.2.3 Visualization

The process of evaluating the methodology made extensive used of the visualiza-
tion techniques we have defined, so that we would be able to assess how they help
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the effort of system understanding.

8.2.3.1 Overview of the Distributed Architecture

Figure 8.1: Distributed Architecture Perspective of the case-studies

For the part that captured the distributed architecture overview, we found that
the visualization was useful to easily understand the dependencies between the
classes. This way, the architectural traits (as the peer-to-peer relations) were di-
rectly visible in the picture and helped us make the assessments we have discussed
above.

Figure 8.1 presents the architectural previews for the two case studies we dis-
cuss in this chapter, specifically the corresponding Distributed Architecture Per-
spective parts of the DISTRIBUTABLE FEATURES VIEW.

8.2.3.2 Characterization of the Distributed Awareness

As mentioned earlier, the DISTRIBUTABLE FEATURES VIEW is a visualization of
the entire system that captures the impact of the system’s distributable features,
the functionalities which were intended to be distributed. The dependencies on
the distribution are shown in color, while the overall collaboration of classes with
the system is shown as gray rectangles. The grey rectangles are overlapped by the
colored ones, so that for a class with a mostly distributed functionality, the grey
area is less visible.
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Therefore, the engineer can look at a DISTRIBUTABLE FEATURES VIEW and
see is the relative proportion between colored and gray visual elements. If the
colors dominate, then the entire system is strongly oriented towards providing the
distribution-related functionalities. I, on the other hand, gray is dominating the pic-
ture, the system may also be providing other types of features, that are not directly
related with the remote communication.

8.2.3.3 Analysis of FWS

A high-level look at the DISTRIBUTABLE FEATURES VIEW diagram for FWS

showed a lot of gray spots. This means that a lot of features in the system do
not directly relate to the distributed functionalities.

Moreover, we have seen that there were many classes drawn with large amount
of gray, classes having significant collaboration that was not related to the two
distributable features.

The visualization was the technique that actually helped us to rapidly identify
the almost 80 classes we have discussed above, that represented the strictly local,
user interface -based, functionality.The respective classes didn’t have color spots
at all, which showed clearly their exclusively locally oriented nature.

8.2.3.4 Analysis of EHCACHE

When looking at the DISTRIBUTABLE FEATURES VIEW for EHCACHE, we noticed
significantly more color than in the case of FWS.

Looking at the color, we have seen that most of the classes were acquaintances
of the Cache Peer Manager distributable feature, which we have also seen that was
the largest one in the system. Consequently, we were able to draw the conclusion
that the respective feature is the most important one in the system.

The visualization provided us with means for easy identification of the inher-
ent distributed nature of EHCACHE, which was also shown by the metric-based
assessment above and confirmed by the system documentation.

8.3 Patterns of Acquaintances

This step of the evaluation is responsible for assessing the validity of the collab-
oration patterns and the related detection strategies we have introduced in Section
6.3.

For this purpose, we have applied the strategies to the analyzed case studies
separately, and analyzed the classes that were filtered by them.

As discussed in Section 6.2, the detection strategies were described in terms
of threshold identifiers, rather than actual numbers. The process of associating
them with raw values is dependent on the class of the analyzed systems, and done
through experiments [LK94, LM06]. For the case of the applications we analyzed,
we have chosen, based on our repeated observations, the values in Table 8.2.
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Figure 8.2: Overview of FWS
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Figure 8.3: Overview of EHCACHE
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Metric Threshold label Threshold value

TADF
HIGH 15

AVERAGE 8
TBC HIGH 20

TADF
TBC

AVERAGE 1/2
LOW 1/8

Table 8.2: Experimental threshold values

At this point, we need to note that we are confident that the threshold values
we have chosen can be used for the analysis of similar systems, that is Java RMI
projects with 100-400 classes. They can be tuned further if the need arises, espe-
cially if analyzing systems significantly larger than the ones we analyzed, yet we
believe that the thresholds for such systems will vary only slightly. The reason is
that our class-level metrics measure coupling between classes, and class-to-class
coupling is not a relation expected to increase proportional with the number of
classes.

We present next the patterns of collaborations we identified in the two case
studies we focus on, and show the way visualization helped in isolating the most
interesting entities.

8.3.1 Significant Feature Acquaintance

This pattern is specific to the classes that have a significant participation to the
distributed functionality in the system. They are highly relevant for understanding
the distributable features, and often must be taken into consideration at the same
level with the classes that were already included by the approach in the distribut-
able feature cores.

8.3.1.1 Analysis of FWS

By applying this detection strategy in the case of FWS we have found 5 such classes,
all related to the distributable feature we have identified as the largest, the one
we named Workflow Engine. They were called - ActiveInterpreter,
PassiveInterpreter, PersistentWfContainerData, ActiveWork-
flowContainer, ProcessDefinition. At a closer analysis, we have found
that the ActiveInterpreter, and the PassiveInterpreterwere related,
and their names also linked them to several classes in the core, which confirmed
they were indeed close to the respective feature.

When asking the developers of FWS, they confirmed that the 5 classes, along
with those in the identified distributable feature core are enough to understand the
main properties of the Workflow Engine feature. The fact that we found rel-
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atively few such classes related to the distributable features showed that the func-
tionality of these features is very well located in the system.

8.3.1.2 Analysis of EHCACHE

The EHCACHE system is significantly smaller than FWS. Nevertheless, when search-
ing for significant feature acquaintances, we found more than 12 such classes. As
with FWS, they were all related to the core corresponding to the largest distributable
feature in the system (Cache Peer Manager).

Nevertheless, these feature acquaintance classes were different from those found
in FWS, as the values were smaller while the TADF/TBC was very close to 1.
This showed that these respective classes are particularly dedicated to the distribut-
able feature, and therefore serve a specific role. From this point of view, the names
of the classes were also relevant: Mutex, Sync, ConcurrencyUtil.

8.3.1.3 Local Feature Contributor

The classes in this category are classes that are mostly concerned with the local
functionality of the system. While the focus of our approach is to assess mainly
the distribution-related traits, these classes are very important in understanding the
actual characteristics of the non-distributed functions of the system, thus putting
the distribution-related parts in perspective. They can show whether the non-
distributed part of the system is only ancillary, or it actually represents the main
functionality of the application.

8.3.1.4 Analysis of FWS

As noted above, we have found in the FWS system a set of almost 80 classes im-
plementing a tool for visually editing workflow specifications. This was the most
striking case of local feature contributors, that actually had nothing to do with the
distributed functionality.

This case has also shown a very interesting side effect of our approach, highly
appropriate when trying to understand a system. The tool for editing workflow
specification was not actually a part of the framework that users extended in order
to build workflow systems. It was rather an additional tool, that helped them in the
process of specifying the activities in the workflow, a task that could also be done
without using the tool at all, by directly editing an XML file.

Our approach managed to immediately isolate and categorize the classes in
the tool as an extreme case of local contributors (thus helping us see their real
significance), without being provided any information that the respective set of
classes was not a part of the main system. Without our approach, the large number
of the respective classes could have posed real difficulties in understanding the
system, distracting the engineer from analyzing the really important classes.

In addition to the classes in the tool the detection strategy identified a set of
other 6 classes, all of them belonging to other features. For example we found the
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class WorkflowIsPersistentwhich deals with making a workflow persistent
on the file system, and the class MyWorkflowListener which belongs to one
of the test applications, thus it is not part of the FWS framework.

8.3.1.5 Analysis of EHCACHE

In the case of EHCACHE , we identified at most 5 classes that were local feature
contributors.

The most prominent case, having the highest value for the TBC metric was
Cache. This is one of the central classes in the system, modeling the very concept
of a cache, therefore it is only natural that it is heavily used through the entire
system. Nevertheless, this class is not directly connected with any of the distribut-
able features, because these distribution-related activities in this system features
mainly deal with making the caching distributed between the cache peers, they
do not need to be concerned in the actual details of implementing the cache and
storing the data locally.

Another example is the ConfigurationHelper, a class that contributes to
a local feature responsible for managing the configuration files, which has nothing
to do with the distribution-related aspect.

8.3.2 Connector Class

This strategy identifies the classes having a significant amount of collaboration
with the distributed part of the system, but most of their collaboration is with the
other classes in the system. They represent the classes that connect the distributed
and local functionalities within the application.

8.3.2.1 Analysis of FWS

Applying this strategy we have identified 5 significant connector classes in FWS.
The feedback from the developers of FWS confirmed that all of these classes do

indeed fit this category. The most interesting case was the ProcessDefinition
class. The value of the TADF metric in its case was 15, and the TADF/TBC
ratio was 0.2.

The next step was to analyze its relation with the classes directly connected
with it in the dependency graph. We have looked at the names of these classes,
and found out that the ProcessDefinition class links two significant fea-
tures in the system. The class models in fact the internal representation of the
workflow the system uses when executing the activities, in short, the specifica-
tion of states and transitions. The classes responsible for running the workflow,
(ActiveInterpreter, PassiveInterpreter), that we already identified
as being significant feature acquaintances, intensely use (and depend on) this class.
On the other side, it is used by a class (PDParser) that showed little involve-
ment in the distributable features, and represents a local functionality that parses
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the XML files that actually store the XML workflow description, and use them to
create the internal representation.

8.3.2.2 Analysis of EHCACHE

In EHCACHE we have detected 6 connector classes.
The most interesting case is that of the class Element. This class represents

the data entities that form the information cached by the system. Looking at the
ADF values for this class in respect to each of the identified distributable features,
and also considering the other similar dependencies in the system, we found that
this is the only class having a noticeable relation with the Cache Replicator distri-
butable feature. This is natural, as it is in fact the single most important item the
Replicator manipulates.

Indeed, the purpose of replication is to exchange updated cached items, in
other words instances of the Element class. It came natural that the class con-
sequently connects the Cache Replicator feature with the basic, non-distributed,
caching functionality of the system.

8.3.3 Visualization

The visualizations characteristic for the acquaintance patterns were very helpful as
they allowed us to easily and rapidly identify the classes that presented interesting
traits. In fact, the assessments presented above when discussing the application of
the strategies were effectively driven by visualization. The visual elements focused
our attention because the interesting classes were distinguishable among the others
in several ways: featuring high color content, being shown as mostly gray shapes,
or having balanced grey/colored areas.

8.3.3.1 Pattern 1: Big Color Spot

Figure 8.4: Examples of Big Color Spot pattern

In FWS (Figure 8.4) we identified the 5 classes with large color spots. They
were very visible and the color indicated their exclusive relation with the largest
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distributable feature (Workflow Engine).
For all of the EHCACHE, classes there is again a single dominant color i.e., the

one corresponding to the Cache Peer Manager distributable feature. They differed
form the classes shown in the case of FWS, by being squarish, not very large, and
almost without gray areas. This was a visual representation of the fact that the
classes were strongly related to the respective distributable feature, and served a
specific role – the same fact the detection strategies also helped us understand.

8.3.3.2 Pattern 2: Big Gray

Figure 8.5: Two Big Gray classes

In FWS, the visualization helped us see literally in an instant the strange-looking
classes that had no participation in the distribution-specific activities, and actually
implemented the above mentioned visual tool. The other 6 classes that fit this pat-
tern were also directly visible and their large gray areas showed that all of them
belonged to other features.

In EHCACHE, at most 5 classes qualified as Big Gray, as noted in the previous
section. The most prominent one was the one with the largest gray area, the Cache
class we have identified as being one of the central classes in the system, but it is
not directly related with the distributed aspect. The ConfigurationHelper
class which locally manages the XML configuration files for EHCACHE was also
easily identified.

Figure 8.5 shows an example of such classes.

8.3.3.3 Pattern 3: Color Spotted Gray

This pattern refers to the case where a feature acquaintance class is dominantly
gray, but there is also a significant color spot. The interpretation is that the class
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Figure 8.6: Two Color Spotted Gray classes

encapsulates a piece of functionality that connects an already identified distribut-
able feature with another, non-distributed, one. These classes are particularly inter-
esting, as their analysis helps in understanding the linkage between the two types
of functionalities.

In FWS there were 5 significant connector classes, matching the detection strat-
egy discussed above. In EHCACHE we visually identified 6 such classes, the most
prominent case being that of the Element class (Figure 8.6) the class that con-
nects the Cache Replicator with the basic, non-distributable, caching feature of the
system.

8.4 Restructuring Support

This section presents a case study that shows the results our extraction-based ap-
proach can provide when applied to a distributed software application. We have
chosen the FWS system as the most interesting case, because the interactions we
have discovered within the code are useful in showing how our approach is applied.
Moreover, as the extraction of inter-related classes needed confirmation from as au-
thoritative sources as possible, the fact that we had access to the developers, was in
this case vital to verify the validity of our findings.

As previously discussed, the approach identified two distributable features: the
Workflow Engine, responsible for creating and executing workflow instances, and
the Agent Engine, responsible for managing and running the agents.

To find out possible scenarios of restructuring, we started by looking at each
distributable feature and found that they both included more than one remote in-
terface, meaning that they published several remotely-available services. Conse-
quently, a first extraction scenario was created focusing on finding the distinct ser-
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Figure 8.7: The shapes of the classes in the Workflow service group

vices published by the system and the classes most involved in providing each of
them. It consisted of 6 extraction units, each of them containing a single remote in-
terface and the hierarchy of classes that implemented it. By applying an extraction
threshold factor of 1.3, we have obtained the 6 groups of classes closely related
with each unit. For identification, they were named after the remote interface of
the respective extraction unit: AgentEngine, AgentHandler, Workflow, Workflow-
Manager, MessageQueue, and ClientManager. The most prominent (in terms of
number of classes – over 40 –, and also considering its name) was Workflow (Fig-
ure 8.7).

By looking at the visualization for this particular group, we have identified five
large entities, the classes called Executer, Interpreter, ProcessDefinition, Workflow
and ActivityDefinition. To understand their dependencies, we first used each of
them as individual extraction units, performed the extractions, and evaluated the
costs. The extraction costs obtained for each operation are shown in Table 8.3.

At this point we must note that the extraction costs throughout the system var-
ied in our study from values as low as 0.1 (when extracting an individual class
connected with only one other class) to the highest numbers just below 3.0 (when
extracting prominent, highly connected classes).

The similar values for ProcessDefinition and ActivityDefinition along with their
sharing of an edge in the dependency graph, suggested that they are related to
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Executer Interpreter ProcessDefinition Workflow ActivityDefinition
Extraction

1.98 1.78 2.60 2.3 2.56
cost

Table 8.3: Extraction costs

each other. Indeed, they both proved to be parts of the internal representation
of workflows the system creates at runtime, thus were both designed for the same
purpose. When they were included in the same extraction unit and we re-performed
the extraction, the cost remained very much the same (2.58) which means they are
still relatively hard to separate from the system. We managed to reduce the cost
to 1.71 by including the Interpreter in their extraction unit, because we noticed
that it was included in the set of classes around the two after the extraction. The
conclusion is that the three classes (and the ones that clustered around them at the
last extraction) may represent a distinct feature, but the cost of extracting it from
the group is not very low.

Making similar explorations regarding the other entities we found that the Pro-
cessDefinition and ActivityDefinition couple is related in a similar degree with the
Executer entity – they can be extracted together, but the cost is high. This suggested
that they represent an important common feature used by both the Executer and
the Interpeter. Design-related data from the company that developed the system
confirmed that the two classes (ProcessDefinition, ActivityDefinition) implement a
distinct functionality that stores the internal definition of a workflow. The Inter-
preter controls the transitions between states, and the Executer starts the activities
corresponding to each state. As the Executer and Interpreter entities had different
functions, the developers agreed that they could be theoretically extracted as inde-
pendent features, and confirmed that the high dependency on the ProcessDefinition
and ActivityDefinition (and related) classes would make the extraction expensive,
but possible.

Applying successive extractions proved to be a versatile tool for understanding
the details of the system, and to propose restructuring scenarios. The identification
of relevant classes to be included in the extraction units was quick, and the costs
consistently characterized the redesign effort. The engineer’s experience proved to
be a significant factor, and it made a difference when selecting scenarios that lead
to a better system understanding. Nevertheless, the visualization greatly assisted
this effort, both by drawing the IGA characteristics, and by presenting the graphs
of the different class groups before and after the extraction.
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Chapter 9

Tool Support

Any process of software analysis must be supported by a tools infrastructure that
enables engineers to efficiently measure and interpret the system’s characteristics.
Tools must automate all the tasks involved by the analysis and provide the user
with instruments that allows for the tuning and controlling the entire process.

This chapter presents the tool we have developed to support the methodology
we have described in the previous chapters. The tool follows all the steps in the
methodology, and implements all the implied mechanisms that support the under-
standing and restructuring of object-oriented distributed software systems.

The tool is called niSiDe [Cos08], a loose interpretation of its name being non
invasive Structural insight on Distributed environments. It consists of an extensible
platform that integrates all the algorithms and automated tasks involved at the var-
ious steps of the analysis approach. It provides a user interface for interacting with
the engineer when necessary, and implements all the visualizations that are part
of the process. As our approach aimed to extend the mainstream object-oriented
analysis to distributed applications, niSiDe was integrated in the iPlasma software
analysis environment [MMM+05], developed by our group.

9.1 Tool Architecture

The architecture of the tool environment is presented in Figure 9.1. The system
consists of the following functional modules:

• The General Processing Unit is responsible for the core processes related to
the analysis approach. It reads a Memoria [MMM+05] model of the target
application provided by the iPlasma environment which is created by pars-
ing the source code of the system. The module implements all the generic
(i.e., technology-independent) parts of the algorithms involved in the discov-
ery of the core distributed functionality and the identification of the system
distributable features. It is also the place where all the metric-related com-
putations and algorithms are implemented, and the detection strategies are
applied.
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Figure 9.1: The architecture of niSiDe

• The Technology-Specific Processing Unit is the part that is built specifically
for a particular type of technology of the Communication Mediator. It con-
tains the implementation of the algorithms that detect the frontier classes,
the heuristics related to the separation of the distinct cores of distributable
features and all the other technology-specific processes. The architecture
of niSiDe facilitates the integration of as many technology-specific units as
necessary, in order to provide easy extensibility. In the context of this disser-
tation, we have fully implemented the module that deals with applications
that use Java RMI as the communication infrastructure.

• The User Interface module implements and controls the graphical user in-
terface that interacts with the engineer. It presents the option for tuning
the various algorithms and for reviewing and modifying their outcome, and
shows the results of the different phases of the approach.

• The Visualization Module is responsible for generating and providing all the
visualizations that are part of the methodology, both as direct representations
presented to the user via the user interface, or as diagrams exported in a
standard format that can be later processed by visualization-specific third
party tools.

To use the tool, the engineers have to open the Insider program part of the
iPlasma environment, load the project they are interested in analyzing, and start
niSiDe at the system level. Once the parameters for the tool were specified, it starts
analyzing the system by considering it an RMI distributed application.
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The tool follows the steps of the methodology in order, and stops at each point
that necessitates user interaction. The results are presented to the user, and after
the engineer reviews and possibly modifies the involved parameters, the automatic
process continues.

9.2 System Representation

To support the analyses, niSiDe creates and uses the internal representation of the
system, consisting on the dependency graph of the classes we have discussed in
Section 5.2. Vertices represent classes, and edges model class-to-class dependen-
cies.

The graph-related functionality is built using JGraphT [JGrb], a comprehensive
graph manipulation Java library. The representation of the system as a graph is built
in parallel with the Memoria model loaded in the memory, with graph vertices
referring extensively annotated classes in the iPlasma-specific model. To adapt the
Memoria model to our approach, we have extended it as follows:

• we have defined a new system-level entity that models the concept of distri-
butable feature;

• we have annotated the classes with information regarding the distribution-
related and analysis-specific aspects. This includes:

– marking the frontier entities,

– specifying the root (start) entities for the various algorithms,

– marking the service representatives for the extraction-driven restructur-
ing,

– marking the special relationships in the graph, such as particular inher-
itance relations,

– storing for each class the measurements related to the various types of
acquaintance, including their acquaintance with the discovered distri-
butable feature cores.

9.3 Core Distributable Features Discovery

The first phase of the analysis is concerned with identifying the distributable feature
cores, i.e. the main units representing the distribution-aware functionality.

To achieve this goal, the tool creates the initial internal representation as a
partial dependency graph. It starts by using the technology-specific rules to detect
the classes acting at the frontier with the Communication Mediator, then applies the
steps in the methodology that create the entire core dependency graph, consisting
of the classes that are most related to the distribution-aware functionality. The next
step uses both generic algorithms and technology-specific heuristics to separate
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Figure 9.2: Reviewing core content

the distinct cores of distributable features, which will be used by the rest of the
approach.

The detected clusters of classes are presented to the user by a graphical in-
terface. The engineer can, at this point, modify the structure of the distributable
feature cores by moving classes from one core to another, in order to improve the
outcome of the automated processing (Figure 9.2). As noted when we presented
the details of the methodology, the algorithm proved to separate fairly well the dis-
tinct functionalities; nevertheless, the user interaction is essential at this step, at
least as a mean to validate the results.

After the user confirms the results, the system is further analyzed by enact-
ing the algorithms responsible with the detection of the remote communication
channels between the distributable feature cores, so that the first system-level char-
acterizations can be made.
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Figure 9.3: System overview

9.4 System-Level Visualization

The results of the first steps of the analysis are visualized as described in the pre-
vious chapters, by drawing two types of diagrams:

• a diagram of the dependencies established between the distributable features,
and their relative size in the system (see Figure 9.3);

• a set of pictures showing each feature core’s structure, depicting the con-
tained classes, and their inter-dependencies (Figure 9.4).

The visualizations are generated by niSiDe in two ways:

• they are exported as .dot files, a widely-used graph description text format
usable by the popular GraphViz visualization project [GN00]

• the parts that involve runtime user interaction or reviewing are drawn using
the JGraph graph visualization library, along with its JGraphLayout counter-
part [JGra].

9.5 The Distributable Features View

After identifying the distributable feature cores, niSiDe follows the next steps of
the methodology, and assesses the relation between each distributable feature and
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Figure 9.4: The structure of feature cores
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Figure 9.5: A DISTRIBUTABLE FEATURES VIEW

the rest of the classes in the system. For this purpose, the tool builds the full depen-
dency graph of the system, containing all the classes as nodes and their dependen-
cies as edges. It then employs the algorithm described in Section 6.1 and calculates
the feature acquaintance for each class in respect to each identified distributable
feature in the system.

The class-distributable feature acquaintance values are attached to the internal
representation (through a specific entity annotation mechanism), and are used to
build the Feature Affiliation Perspective visualization defined in Section 6.4 as a
diagram showing the degree in which each class is involved with each distributable
feature (Figure 9.5). The DISTRIBUTABLE FEATURES VIEW is useful when trying
to find the most interesting occurring patterns of involvement, and stays at the base
of the conclusions we have drawn for the test cases we conducted.

9.6 Support for Restructuring

As presented in Chapter 7 the methodology we have developed addresses the aspect
of system maintenance and evolution by providing support for restructuring the
system when such a need arises. The approach uses an extraction-driven technique
that focuses on identifying and manipulating the code units so that the engineer is
able to assess which parts could be extracted as individually-separable functional-
ities. To implement the technique at the tool level, niSiDe makes extensive use of
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the JGraph library, which is used for drawing the interactive diagrams that show
the various parts of the system, each represented as a dependency subgraph of a
certain group of classes.

The tool gives the user the opportunity of analyzing the respective group and
selecting the classes of interest to create an extraction unit. The tool then employs
the algorithms that identifies which classes will be automatically extracted with the
extraction unit and calculates the costs. The result is presented in a new window
containing two class dependency graph diagrams, one for the classes that were
extracted along with the extraction unit, and one for the rest of the classes. The
extraction cost is shown, to inform the user about the estimated effort that will be
necessary when actually restructuring the respective group by actually performing
the separation. The resulting groups are shown in windows with the same charac-
teristics and interaction features as the original group of classes, so that the user
can perform subsequent extractions, as long as they are necessary.

As presented in Chapter 7, the user is assisted in the process of selecting the
classes that are to be included in an extraction unit, by visualization. niSiDe applies
for each class the coupling-based metric that calculates its degree of collaboration
with the other classes in the group, and presents the results visually drawing the
vertices with different shapes and sizes. Any set of classes can be selected by the
user as parts of the extraction unit, and the user can consequently analyze various
scenarios of extraction.

When the restructuring user interface starts, niSiDe provides the engineer with
a default set of initial class groups:

• the entire system, as a comprehensive dependency graph;

• the set of all distributable feature cores detected in the system, each presented
in a separate, manipulable diagram;

• all services detected in the system.

All the above groups are presented by the tool as starting configurations for
performing extraction scenarios, and the engineer can analyze their structure and
perform as many subsequent extractions as needed.

Figure 9.6 shows an extraction result (in the foreground window), and a part of
the initial group, visible in the left side of the background window.

The functionality of providing restructuring support specific to niSiDe proved
to be a versatile and useful tool both for evaluating different extraction scenarios,
and for understanding the isolated functionalities within the code at a finer grain
than with the previous steps of the approach.

9.7 Extensibility

As pointed out throughout the description of the methodology and the tool, the
current version of niSiDe is built for analyzing Java RMI systems. Nevertheless, it
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Figure 9.6: Extraction example
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was designed to be easily extended for the purpose of analyzing applications based
on other communication technologies.

All aspects that are dependent on a particular communication mediator are
designed so that other types of technology-dependent aspects can be plugged in
when necessary. Moreover, the vast majority of tasks representing the main me-
thodology-related system functionality (graph processing, the abstract algorithms,
the visualizations) are designed as independent from the technologically-specific
details.
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Conclusions

This dissertation presented our approach in analyzing distributed object-oriented
systems, using a process of reverse engineering that inspects an existing appli-
cation. The analysis starts by inspecting the source code, and builds an internal
representation of the software as a dependency graph of classes. The represen-
tation is used by the subsequent steps to extract the most important application
characteristics that provide essential system understanding.

10.1 The Methodology

The methodology builds, step by step, a representation of the distributed system
that presents it from the perspective that describes its distributed nature. The main
concept in this model is the distributable feature, and the main relations describe
the participation of the system entities in providing the features, in the form of
feature acquaintances.

The distributable features are discovered through a process that focuses the
analysis to a small part of the code, that contains the core distribution-related func-
tionality. The core is detected by using the important clues provided by the tech-
nology of the Communication Mediator (the communication infrastructure), and
starts with assessing the interactions specific to the System-Mediator frontier.

Applying a set of rules, partially extracted as heuristics dependent on the par-
ticular technology, the core of distributed functionality is separated in a set of cores
of distributable features that are used as representatives for the main distribution-
related distinct functionalities provided by the software system. This provides the
approach with the first important result, in the form of a characterization of the sys-
tem’s distributed architecture that describes the distribution-related functionalities
and the relations established remotely between them.

The distribution-aware features are identified without relying on the existence
of deployment information regarding the application. This way, a wider selection
of distributed applications can be analyzed in order to extract the significant items
of understanding the methodology provides. Moreover, the entire process is ap-
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plied without making assumptions on the quality of the system’s design or on the
structural or architectural patterns that were used, to make the approach applicable
to both well-designed and poorly-designed software applications.

The next step switches the focus on the rest of classes in the system (that form
the majority of the system entities), and evaluates their relation to the already iden-
tified features. A set of coupling-based software measurements are employed, and
the numerical values that result are interpreted in the context of the classes’ partic-
ipation in providing the features.

The approach centers its attention on describing and identifying the main rele-
vant patterns of collaboration that can occur in an application, and which describe
the actual impact of the several distribution-aware features in the design of the
system. The impact is evaluated both at the system level, thus characterizing the
system distribution awareness, and at the finer grain of the class level, by assessing
each entity’s acquaintance with distributable features.

The final step of the approach provides support for system restructuring by
facilitating the experimentation with different restructuring scenarios, through a
process driven by the extraction of inter-related clusters of classes. The engineer
can conduct extraction scenarios in any part of the system, and the methodology
provides means for evaluating the projected outcome of the structural modifica-
tion, and the costs the change implies. In order to maintain consistency with the
rest of the approach, the restructuring support uses the same concepts and similar
techniques with the parts that focused on system understanding. Moreover, exper-
imentation with extraction scenarios can provide the engineer with an additional
way of adding to the knowledge about the system, through assessing the classes’
inter-dependencies from a different perspective.

10.2 Conference Publication

The main aspects covered by this thesis were recently published as conference
papers, both for communicating the results of our research, and to receive valuable
feedback from the software engineering community.

The methodology for understanding object-oriented distributed systems was
described in the 2008 paper [CM08] published at one of the major conferences in
our field, 12th European Conference on Software Maintenance and Reengineering
(CSMR 2008), Athens, Greece.

The visualization techniques we introduced, as well as the visual patterns and
their interpretation were presented in a paper [CM07] at one of the main confer-
ences focusing on software visualization: the 4th International Workshop on Vi-
sualizing Software for Understanding and Analysis (VISSOFT 2007), in Alberta,
Canada.

The tool infrastructure and its applicability was described in the paper [Cos08]
we published at 10th International Symposium on Symbolic and Numeric Algo-
rithms for Scientic Computing (SYNASC 2008) Timisoara, Romania.
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The first two papers are ISI-quoted, and also indexed by other major databases
(Inspec, IEEExplore, etc.), while the latter was published in the SYNASC post-
proceedings volume (IEEE Proceedings), and, according to the conference orga-
nizers, may also be indexed by ISI.

We have also published several other conference papers and two books that are
related with our field of research, as referenced throughout this thesis.

10.3 Contributions

The major contributions of this thesis to the field of reverse engineering software
systems are presented as follows.

A methodology for understanding object-oriented distributed systems. The
overall contribution of the thesis is a methodology that is novel and comprehen-
sive, built to provide consistent and sustained support for each and all the needed
steps in an analysis that understands a distributed system through reverse engineer-
ing, up to, and including the point in which it provides means for system restruc-
turing. While it sometimes makes use of some existing techniques, such as the
algorithm that eliminates ‘weak edges’ as a secondary step in separating the fea-
tures, the major processes we have presented are entirely developed by us, and are
new.

As a confirmation of this claim, when we have presented the core of our ap-
proach [CM08] at one of the major software reengineering conferences in our
field1, we have received very positive reviews, and the fact that we introduced
our work as novel was unchallenged by the reviewers. Moreover, one of the three
reviewers characterized the technique as ”quite original and useful to the soft-
ware practitioner”, while another reviewer summarized the paper as ”a different
than usual approach in understanding distributed object-oriented systems by iso-
lating the ‘purely distributed features’ and examining their impacts on the overall
system.”. The latter also characterized the approach as ”technically solid” and
remarked that the content we presented was actually ”too long for a conference
paper”.

A model for object-oriented distributed systems. The representation of an
object-oriented distributed system is specifically built for the goal of understand-
ing and for the context of this methodology. It captures all the system character-
istics that provide valuable knowledge about the target class of applications, while
using a small yet representative set of specific concepts.

112th European Conference on Software Maintenance and Reengineering (CSMR 2008), Athens,
Greece
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The concept of Distributable Feature. This is one of the main concepts in the
thesis, and it is designed as a means of characterizing the system’s distributed func-
tionality, without depending on isolating actual distributed components or deploy-
ment units. The overlapping nature of the various distributable features in a system
allows for a more flexible approach, which is able to better fit the real-life appli-
cations, where the concerns related to the various functionalities are not always
clearly delimited.

The concept of Class Acquaintance and the Patterns of Acquaintance. This
concept characterizes the classes’ collaboration with selected features or even with
groups of entities. By analyzing each class’ relation with the distributable features,
and identifying the pattern it conforms to, the assessments can provide valuable
insights on the importance of the distributed aspect in the application.

The concept of System-Mediator Frontier. In the context of assessing the core
interactions, this concept is introduced and used as a highly relevant starting point
for capturing the distributed aspects of the application. This way, it provides es-
sential information about the system, and ensures an accurate focus for the reverse
engineering process.

The Distributable Features View. The novel visualization technique we devel-
oped is designed as a key tool for both capturing the interesting patterns of collab-
oration, and for detecting the particular classes that follow these patterns. The two
visual perspectives it consists of, the Distributed Architecture Perspective, and the
Feature Affiliation Perspective facilitate both system-wide characterizations, and
class-level collaboration-related assessments. The latter introduces a Composed
Polymetric View as an extension of ’classic’ polymetric views, to better capture the
visual clues describing the system.

A set of reverse engineering techniques. The techniques we have developed ex-
tract the knowledge providing system understanding. We use a technology-driven
focal point in the analysis that values the clues given by the technology in order to
extract complex information, such as the system features. We achieve the isolation
of a core, representative set of classes to focus the techniques that isolate features,
rather than analyzing the entire application, so that efficiency and accurate focus
on the relevant aspects is obtained. Further, we use of a combination of technology-
related and generally-applicable heuristics for separating the functional partitions
within the core.

An architectural overview on the application is extracted without depending
on the (usually missing) deployment information, while avoiding to complicate the
approach with an aim on detecting the exact shape of the distributed components.
The concept of distributable features was sufficient to provide significant knowl-
edge.
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Focusing on the concept of system Distributed Awareness, extracted from the
measured aspects in the application, we accept the fact that system entities cannot
always be placed in clearly delimited functional partitions, and develop a collab-
oration-centric approach that allows for the observation of the overlapping con-
cerns, such as the participation of a class to multiple features.

We assess two aspects of the collaboration of the system classes that provide
the understanding related to the system:

• the one that captures the overall importance of the distributed aspect in the
class’ design goals, and

• the one that characterizes the participation of the class in each features of
the system that are distribution-related.

A set of metrics assessing system characteristics. The metrics we have devel-
oped (such as the various acquaintance metrics or the In-Group Adequacy), capture
the aspects that provide system understanding. They are used both when applying
of the detection strategies, and for driving the visualization techniques.

Restructuring support as a natural extension to the understanding techniques.
The specifically-targeted restructuring support is a part of the methodology,
and provides in a manner consistent with the other steps the means for:

• assessing the change scenarios, and

• achieving additional insight on the system’s functionality.

Comprehensive tool support. The tool infrastructure we have developed ad-
dresses all the steps in the methodology, including the evaluation of the system
restructuring scenarios. It automates all the tasks implied by our reverse engineer-
ing process, while allowing for user interaction.

A targeted literature survey. The survey in Chapter 3 captures the state of the
art, driven by the goal of characterizing the techniques that are relevant for the
field of reverse engineering software applications, while considering the needs of
a comprehensive analysis approach for distributed systems.

10.4 Future Work

While our research described in this dissertation proved to provide a solid approach
in reverse engineering object oriented distributed systems, there are still as set of
concerns a future development of the methodology can address. The main direc-
tions that we can follow in our future work are described below.
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• Extend the approach to other distributed technologies. While our methodol-
ogy was designed from the start to be extensible, it would be interesting to
apply the gathered experience to other types of distributed technologies than
Java RMI.

At the time of this writing, the author is already supervising a student diploma
project that aims to extend our main techniques to distributed applications
built using Web Services;

• The process of identifying the core distributed functionality and the separa-
tion of features can be enriched by defining additional heuristic rules, and by
possibly improving the existing ones. A larger experimental base would also
provide data for building new heuristics;

• The measurements that provide information used for assessing the class-
feature participations can be applied for automatically adding in the set rep-
resenting the core of distributable features the classes with strong involve-
ment on the distributed aspect;

• The support for restructuring can be extended by assessing additional as-
pects in the projected change scenario, such as automatically calculating the
scenarios with minimal cost by identifying and evaluating a set of candidate
scenarios;

• The visualization techniques can be extended to capture the characteristics
of the projected restructuring scenarios to facilitate their comparison.
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