
Jeff Kramer is Dean of the Faculty of Engineering at Imperial College
London, and was Head of the Department of Computing from 1999-
2004. His research interests include rigorous techniques for
requirements engineering; software specification, design and
analysis; and software architectures, particularly as applied to
distributed and adaptive software systems. Jeff is the Editor-in-Chief
of the IEEE Transactions on Software Engineering, and the co-
recipient of the 2005 ACM SIGSOFT Outstanding Research Award for
his work in Distributed Software Engineering. He is co-author of a
recent book on Concurrency, co-author of a previous book on
Distributed Systems and Computer Networks, and the author of over
200 journal and conference publications. He is a Chartered Engineer,
Fellow of the IET, Fellow of the BCS and Fellow of the ACM.

Jeff Magee is Head of the Department of Computing at Imperial
College London. His research is primarily concerned with the software
engineering of distributed systems, including requirements, design
methods, analysis techniques, operating systems, languages and
program support environments for these systems. He is co-author of
a recent book on concurrent programming entitled "Concurrency -
State models and Java programs" and the author of too many journal
and conference publications. He was co-editor of the IEE
Proceedings on Software Engineering and is currently a TOSEM
Associate Editor. He is the co-recipient of the 2005 ACM SIGSOFT
Outstanding Research Award for his work in Distributed Software
Engineering. He is a Chartered Engineer, Member of the IET and
Fellow of the BCS.

Self-Managed Systems: an Architectural Challenge
Jeff Kramer and Jeff Magee

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Self-Managed Systems: an Architectural Challenge

Jeff Kramer and Jeff Magee
Department of Computing
Imperial College London

SW7 2AZ, UK

{j.kramer, j.magee}@ ic.ac.uk

Abstract

Self-management is put forward as one of the

means by which we could provide systems that are
scalable, support dynamic composition and rigorous
analysis, and are flexible and robust in the presence of
change. In this paper, we focus on architectural
approaches to self-management, not because the
language-level or network-level approaches are
uninteresting or less promising, but because we believe
that the architectural level seems to provide the
required level of abstraction and generality to deal
with the challenges posed. A self-managed software
architecture is one in which components automatically
configure their interaction in a way that is compatible
with an overall architectural specification and
achieves the goals of the system. The objective is to
minimise the degree of explicit management necessary
for construction and subsequent evolution whilst
preserving the architectural properties implied by its
specification. This paper discusses some of the current
promising work and presents an outline three-layer
reference model as a context in which to articulate
some of the main outstanding research challenges.

1 Introduction
As the size, complexity and adaptability required by
applications increases, so does the need for software
systems which are scalable, support dynamic
composition and rigorous analysis, and are flexible and
robust in the presence of change. Self-management is
the rallying vision. What exactly are self-managed
systems? The vision is of systems which are capable of
self-configuration, self-adaptation and self-healing,
self-monitoring and self-tuning, and so on, often under
the flag of self-* or autonomic systems.

For instance, consider that you have a specification of
the goals, properties and constraints that you expect

your system to achieve and preserve. Consider further
that you have a set of software components which
implement the required functionality. The aim of self-
configuration is that the components should either
configure themselves such that they satisfy the
specification or be capable of reporting that they
cannot.

What if the system suffers from changes in its
requirements specification [14] or operational
environment such as changes in use, changes in
resource availability or faults in the environment or in
parts of the system itself? The aim of self-adaptation
and self-healing is that the system should reconfigure
itself so as to again either satisfy the changed
specification and/or environment, or possibly degrade
gracefully or report an exception. Change as evolution
of the system tends to imply an off-line process in
which the system evolves through a number of
releases, where each release could employ self-
configuration. However, dynamic change, which
occurs while the system is operational, is far more
demanding and requires that the system evolves
dynamically, and that the adaptation occurs at run-
time.

Finally, we should note that our required specifications
include not only functional behaviour, but also those
non-functional properties such as response time,
performance, reliability, efficiency and security, and
that satisfaction of a specification may well include
optimisation.

Clearly this is a challenging vision, which includes
almost every one of the research challenges identified
in the first FOSE: Software Engineering: A Roadmap
at ICSE 2000 [19], namely compositionality, change,
NF properties, service-view, perspectives, architecture,
configurability, and domain specificity.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

How can we approach this dream?

Different research communities are already engaged in
relevant research, investigating and proposing
approaches to various aspects of self-management for
particular domains. For instance, in the networking,
distributed systems and services community, there has
been the Autonomic Computing conferences [2] and
more recently, the SelfMan Workshop 2006 [1] to
discuss and analyse the potential of self-* systems for
managing and controlling networked systems and
services. A special issue associated with SelfMan 2005
on Self-Managed Systems and Services [31] covers a
diverse range of descriptions of work on aspects such
as self-healing by dynamic fault awareness and self-
adaptation/tuning for dealing with transient web
overloads. Dobson et al. [17] provide a recent survey
on autonomic communications, covering research
work on context awareness, autonomic algorithms,
trust and security and appropriate adaptation
techniques. They propose an autonomic control loop (a
phased approach) of actions collect (monitoring),
analyse, decide and act, a cycle which naturally
appears in many proposed approaches. In addition to
those mentioned above, there is also the International
Conference on Self-Organization and Autonomous
Systems in Computing and Communications
(SOAS’2006) [3], and the International Conference on
Autonomic and Autonomous Systems ICAS 2006 [6].

The proliferation of conferences and workshops
mentioned above reflects the interest in the topic; and
this is only from the networking, systems and services
communities. Other research communities also
interested and appropriate include the intelligent agent,
machine learning and planning communities, and many
others, adopting underlying models as diverse as those
derived from biology and social interaction.

In the software engineering community there has been
a series of workshops which started in the distributed
systems community with the CDS (Configurable
Distributed Systems) conferences [4, 9, 5] and more
recently with WOSS (Workshop on Self-Healing and
Self-Managed Systems) [8, 7] and SEAMS (Software
Engineering for Adaptive and Self-Managing Systems)
[3]. These conferences and workshops have provided
excellent forums for discussing the software issues
involved. However, although the work discussed over
the years has provided much that is useful in
contributing towards self-management, it has not yet
resolved some of the general and fundamental issues in
order to provide a comprehensive and integrated
approach.

Why an architectural approach?

In this paper we focus on the use of an architecture-
based approach, as we believe that it offers the
following potential benefits:

• Generality – the underlying concepts and
principles should be applicable to a wide range of
application domains, each associated with
appropriate software architectures.

• Level of abstraction – software architecture can
provide an appropriate level of abstraction to
describe dynamic change in a system, such as the
use of components, bindings and composition,
rather than at the algorithmic level.

• Potential for scalability – architectures generally
support both hierarchical composition and other
composition and hiding techniques which are
useful for varying the level of description and the
ability to build systems of systems, thereby
facilitating their use in large-scale complex
applications.

• Builds on existing work – there is a wealth of
architecture description languages and notations
which include some support for dynamic
architectures and for formal architecture-based
analysis and reasoning [12]. These provide a good
basis for a rigorous approach which could support
evaluation and reasoning, constraints and run-time
checks.

• Potential for an integrated approach - many
ADLs and approaches support software
configuration, deployment and reconfiguration. In
fact, as mentioned in an accompanying FOSE
paper in this proceedings on Software Design and
Architecture [37], “software architecture
encompasses work in modelling and
representation, design methods, analysis,
visualization, supporting the realization of designs
into code, experience capture and reuse, product
lines, deployment and mobility, security,
adaptation, and so on.”

We are not alone in favouring a component-based
architectural approach. Many others also advocate use
of architectural principles in their work. For instance,
Oreizy et al [34] provide a general outline of an
architectural approach which includes adaptation and
evolution management; Garlan and Schmerl [21]
describe the use of architecture models to support self-
healing; Dashofy, van der Hoek and Taylor propose
the use of an architecture evolution manager to provide
the infrastructure for run-time adaptation and self-

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

healing in ArchStudio [16]; Gomaa and Hussein [24]
describe the use of dynamic software reconfiguration
and reconfiguration patterns for software product
families; Medvidovic, Rosenblum and Taylor present a
language and associated environment for architecture-
based development and component evolution [33];
Wang et al [39] describe an experiment to support
component-based dynamic software evolution; Baresi
et al. [11] suggest the use of contracts expressed as
assertions to monitor and check dynamic service
compositions in service-oriented systems; and Castaldi
et al. [13] extend the concepts of network management
to component-based, distributed software systems to
propose an infrastructure for both component- and
application-level reconfiguration using a hierarchy of
managers. Our own work has concentrated on the use
of ADLs for software design and implementation from
components [29], including limited language support
for dynamic change [30], a general model for dynamic
change and evolution [28], associated analysis
techniques [27] and initial steps towards self-
management [23].

In order to try to draw all these threads together, we
now propose an architectural reference model as a
means of identifying more precisely the concerns and
research issues that are needed in progressing towards
self-management.

2 Towards an Architectural Model for
Self-Management

In taking initial steps in the direction of an architecture
model for self-management, we have sought
inspiration from the large existing body of work on
autonomous systems – namely robotics. The first
architectures proposed for self–management
correspond nearly exactly with the early sense-plan-act
SPA architectures used in robots (cf. autonomic
control loop [17] mentioned earlier). For example,
Garlan’s proposed adaptation framework for self-
healing systems [21] consists of monitoring,
analysis/resolution and adaptation. The monitoring of
system operation corresponds to a robot sensing its
environment, the analysis/resolution of faults
corresponds to planning and adaptation or the
execution of changes corresponds to action in the SPA
framework. Indeed, Garlan’s framework maintains an
abstract model of a system in the same way as SPA
robots try to maintain a symbolic model of their
environment. It is not surprising that this
correspondence exists since a self-managed system is
clearly an autonomous system in exactly the same way

as a robot is. Both are intended to achieve goals
without human intervention. Since the SPA
architectures of the early eighties, robot architectures
have evolved considerably and now, since the mid-
90’s, nearly all conform to the three layer architecture
described by Gat [22]. In Gat’s paper’s, the three
layers are Control: reactive feedback control,
Sequencing: reactive plan execution and Deliberation:
planning. In the following, we attempt to interpret this
three-level robotic architectural model for self-
managed systems. Our goal is to exploit the
considerable advances that modern robotic systems
have in terms of flexibility and responsiveness over
their SPA predecessors.

2.1 Component Control
The bottom layer of Gat’s three layer architecture is
the control layer. It consists of sensors, actuators and
control loops. The bottom layer of a self-managed
system consists of the set of interconnected
components that accomplish the application function
of the system. It must of course include facilities to
report the current status of components to higher layers
and also include the capability to support component
creation, deletion and interconnection. In the same way
that the control layer of a robot includes feedback
loops to implement primitive behaviours such as wall
following and moving to a destination, the bottom
layer of a self-managed system will contain behaviours
to adjust the operating parameters of components – for
example the timeout values in a component
implementing a TCP protocol. In summary, this layer
of a self-managed system will include self-tuning
algorithms, event and status reporting to higher levels
and operations to support modification – component
addition, deletion and interconnection. An important
characteristic of this level, is that when a situation is
met that the current configuration of components is not
designed to deal with, this layer detects this failure and
reports it to higher layers.

2.2 Change Management
The middle layer of Gat’s three layer architecture is the
sequencing layer which reacts to changes in state
reported from the lower levels and executes plans that
select new control behaviours and set new operating
parameters for existing control layer behaviours. This
is reactive plan execution. Given a new situation, this
layer executes an action or sequence of actions to
handle the new situation. For example, when the robot
reaches a target location, this layer will determine what
should be done next. In a self-managed system, this
layer is responsible for effecting changes to the

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

underlying component architecture in response to new
states reported by that layer or in response to new
objectives required of the system introduced from the
layer above. This layer can introduce new components;
recreate failed components; change component
interconnections and change component operating
parameters. It consists of a set of plans which are
activated in response to changes of the operating state
of the underlying system. For example, when a
component fails, change management can effect a
repair either by changing component connections or by
creating new components. In robotic systems, this
layer has been implemented in a number of ways from
conditional sequencing systems [10] to sets of state
machines. Work in the network management area has
produced languages such as Ponder [15] which
perform a similar function to the planning languages in
the context of systems. Ponder is essentially a language
which execute actions in response to recognising
(possible complex) events. The essential characteristic
of this change management layer is that it consists of a
set of pre-specified plans which are activated in
response to state change from the system below. The
layer can respond quickly to new situations by
executing what are in essence pre-computed plans. If a
situation is reported for which a plan does not exist
then this layer must invoke the services of the higher
planning layer. In addition, new goals for a system will
involve new plans being introduced into this layer.

2.3 Goal Management
The uppermost layer of Gat’s three layer architecture is
the deliberation layer. This layer consists of time
consuming computations such as planning which takes
the current state and a specification of a high-level
goal and attempts to produce a plan to achieve that
goal. An example in robotics would be given the
current position of a robot and a map of its
environment produce a route plan for execution by the
sequencing layer. Changes in the environment, such as
obstacles that are not in the map, will involve re-
planning. The role of the equivalent layer in a self-
managed system is Goal Management. This layer
produces change management plans in response to
requests from the layer below and in response to the
introduction of new goals. For example, if the goal in
to maintain some architectural property such as triple
redundancy for all servers, this layer could be
responsible for finding the resources on which to
create new components after failure and producing a
plan as how to create and integrate these new
components to the change management layer. It could
be responsible for deciding the optimal placement of
servers for load balancing purposes. As we will

address further in the next section there are many
research issues here as to how to represent high level
system goals, how to synthesize change management
plans from these goals and how general or domain
specific this layer should be.

Figure 1 summarises our proposed three layer model
for a self managed system following Gat’s work on
architectures for robotic systems. The principal criteria
for placing function in different layers in Gat’s
architecture is one of time scale and this would seem to
apply equally well to self managed systems. Immediate
feedback actions are at the lowest level and the longest
actions requiring deliberation are at the uppermost
level. We would emphasize that we do not consider
this an implementation architecture but rather a
conceptual or reference architecture which identifies
the necessary functionality for self management. We
will use it in the next section to organise and focus
discussion of the research challenges present by self
management.

Goal
Management

Change
Management

Component
Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”
Goal
Management

Change
Management

Component
Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”

Figure 1 – Three Layer Architecture Model for

 Self-Management.

3 Research Issues
In the previous section we outlined a three layer
architecture model which is intended as a form of
reference model rather than as a guide to how self
managed software should be implemented. In this
section, we use the model to structure the presentation
of the research issues we see presented by the
challenge of implementing self-managed systems. To
ground this discussion, we draw examples from the
work with which we are most familiar – namely our
own.

3.1 Component Control Layer
We are concerned with management at the
architectural level where we consider a system to

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

consist of a set of interconnected components which
may be co-located and/or distributed over a network of
communicating computer nodes. Our model of a
component is depicted in figure 2 below. A component
implements the set of services that it provides and it
may use another set of services, denoted the required
services, in implementing these services. In addition, a
component has an externally visible state which we
term its mode. The mode is simply an abstracted view
of the internal state of a component that is made visible
for management purposes. For example, the mode may
indicate whether the component is in an active or
standby mode. It may in addition indicate non-
functional aspects such as the current load on a server.
Mode may therefore consist of more than a simple
scalar datatype, although in our examples we use only
a simple scalar mode. We have used the Darwin [29]
format for diagrams updated with modes [25],
however, we could equally have used UML 2.0 as the
Darwin form of component can now be satisfactorily
encoded in UML2.0 [32].

Component
Provided
services
(ports)

Required
services
(ports)

mode

Component
Provided
services
(ports)

Required
services
(ports)

mode

Figure 2 – Example component model

To initially construct and subsequently change
systems, we need a set of operations on components.
These are typically:

create C: T
 – create component instance C from type T.
delete C
 – delete component instance C.
bind C1.r – C2.p
 – connect required port r of component C1 to
 provided port p of component C2.
unbind C1.r
 – disconnect required port r of component C1
set C1.m to val
 – set mode m of component C1 to val.

A system constructed in this way will have a
configuration or management state consisting precisely
of the set of components instances, the set of
connections between components and the set
component mode values – an example architecture for

an autonomous underwater vehicle [20] operating in a
mode in which the sonar is passive shown in Figure 3.

NAVmode Motor
-Vanes

modeControl

Task-
Exec

mode

mode

Route-
Plan

mode

Sonarmode

Comms mode

NAVmodeactive Motor
-Vanes

modeMotor
-Vanes

activeControl

Task-
Exec

active

modeactive

Route-
Plan

modeactive

Sonarmode Sonarmodepassive

Comms active

NAVmodemode Motor
-Vanes

modeMotor
-Vanes

modeControl

Task-
Exec

mode

modemode

Route-
Plan

modemode

Sonarmode Sonarmodemode

Comms mode

NAVmodeactive Motor
-Vanes

modeMotor
-Vanes

activeControl

Task-
Exec

active

modeactive

Route-
Plan

modeactive

Sonarmodemode Sonarmodepassive

Comms active

 Figure 3 – Example component architecture

The research challenges at this level of a self-managed
architecture are primarily concerned with preserving
safe application operation during change. For example,
the change of mode in a mechatronic system
controlling a vehicle [36] can involve moving from
one control algorithm to another. The implementation
at this level must ensure that the mode change required
to adapt to a change of the external operating
environment does not generate undesirable transient
behavior resulting in, for example, sharp accelerations
or decelerations. In systems where the behavior is
transactional rather than continuous, the challenge is to
ensure that state information is not lost when the
configuration is modified. The change management
algorithm outlined in [28] tries to ensure stable
conditions for change by ensuring that components are
passive or quiescent before change. For example, a
component can be safely removed from a system if it is
isolated (no bindings to or from) and passive (cannot
initiate transactions). The challenge is to find scalable
algorithms that minimize disruption to the system
during change and ensure that system safety properties
are not violated. An associated challenge is to verify
that safety properties are not violated during change
[27], a problem addressed more promisingly by Zhang
and Cheng [40].

We have looked at a system as a collection of
components; however a component itself may consist
of multiple interconnected components. To deal with
complex systems in a scalable way, we must deal with
hierarchical structure. This raises interesting issues
with the respect to the type of a component. When we
modify the internal structure of a component, we are

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

clearly creating a variant of its type. We may want to
instantiate new instances of this variant. It is likely that
self-management of system will require the online
dynamic execution of operations that we currently
consider to be offline maintenance or version control
operations.

3.2 Change Management Layer
This layer as outlined in section 2 is responsible for
executing changes in response either to changes in
state reported from the lower layer are in response to
goal changes. We think of this layer as a precompiled
set of plans or tactics that respond to a predicted class
of state change. For example, in a fault-tolerant
system, failure of a component may cause a duplicate
server to immediately switch from standby to active
mode; however, the state change observed by change
management should cause the system to create a new
standby server. In a fault tolerant system, it is clear that
server failure is a predicted state change and the
change management layer will include a procedure for
dealing with the change. Similarly, we would consider
the example repair strategy outlined by Garlan and
Schmerl [21] as a plan executed by change
management.

One of the major research challenges at this level is
dealing with distribution and decentralization. It is this
issue of distribution or decentralization that appears to
be the essential factor in distinguishing the problem of
performing self-management of complex software
systems from existing work on robotic systems.
Distribution is the most general situation raising issues
of latency, concurrency and partial failures, and is
likely to be the case (at least for parts of the system) in
large and complex applications. Coping with
distribution and arbitrary failure leads to the need for
some level of local autonomy while preserving global
consistency. In essence, distribution contributes the
problem of obtaining consistent views of system state
on which to base change decisions and decentralization
of control brings the problem of robust execution in a
situation in which partial failure can occur. Our first
attempt to deal with this resulted in a change
architecture with completely decentralized change
execution; this, however, required state change to be
serialized to ensure termination of the configuration in
a valid state [23]. This decentralized implementation
architecture is shown in Figure 4.

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Group Membership

Total Order

Reliable Broadcast

Network

Host Host Host

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Group Membership

Total Order

Reliable Broadcast

Network

Host Host Host

Figure 4 – Decentralized Change Management
Implementation architecture

The system depicted in Figure 4, was an experiment to
look at extreme distribution in which change
management layer functionality was included with
each component. Each component maintained a view
of the overall system and executed local changes
(include connection to other components) in response
to state changes in the view. The problems with this
system were 1) the view of the system has to be
complete and 2) it requires a total order broadcast bus
to keep views consistent. Consequently, this was a
fully decentralized architecture that reliably executed
change in the presence of arbitrary failure. However, it
was not a scalable architecture. What we require are
systems which can accommodate partial inconsistent
views and as a consequence relax the need for totally
ordered broadcast communication. The challenge is to
find change management algorithms that can tolerate
inconsistency and which eventually terminate in a
system that satisfies constraints. It is also required that
the system does not violate safety constraints while it
is converging on a stable state. There are of course
examples of self stabilising algorithms [18]; however,
these are for specific configurations and applications.

One of the goals of the system described in Figure 4
was to preserve global structural constraints. It was
primarily this requirement that dictated a consistent
view of system structure. It may well be that taking a
more behavioural view of system constraints will
provide opportunities for relaxing the consistency
requirement. For example, if we are not at all
interested in structure, components can simply bind to
any service that satisfies the local requirement. Failure
of the remote service can trigger a search for a
replacement service.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

3.3 Goal Management Layer
The initial problem is to have a precise specification of
the goals required of a system. These need to
encompass both application goals and system goals
concerned with self-management. It is likely that the
refinement of very high-level goals to precisely
specified goals that can be processed by machines will
require human assistance as is current practice in goal
oriented requirements engineering [38]. The challenge
is to achieve goal specification such that it is both
comprehensible by human users and machine readable.

If we ignore the problem of precisely specifying
structure, behaviour and performance required of a
system, the function of goal management can be
succinctly described. It takes a declarative
specification of system goals, a snapshot of the current
state of the system and produces a change plan which
moves the system from its current state to a state which
satisfies the system goals. Regrettably, this is of course
a computationally hard and sometimes intractable
problem. Even when tractable, the time taken to
generate a plan may not meet the response times
required.

Solutions so far have focussed on dealing as far as is
possible with planning by designing a set of plans
(sometimes referred to as tactics) offline that can be
shown either by construction or by a verification
process to satisfy system constraints for a range of
possible system states. For example, in our system
described in [23], we specified system structural
constraints in Alloy [26] and developed tactics that
could be shown using the Alloy model checker to
move a system into a state that satisfied constraints. In
other words, the planning problem was done off-line
and the problem reduced to one of verification. This
approach is sufficient if it can be shown that the set of
change plans are sufficient to deal with any possible
system state. This is of course exactly what is done in
some of the classic fault-tolerant architectures such as
active-standby server pairs.

There has been promising work in the autonomous
composition of Web services using a “planning as
model-checking approach” [35]. In essence, this is in
its present state an off-line planning approach. The
more challenging problem in the spirit of autonomous
self-management is to provide an on-line planner. This
is invoked by the change management layer when it
finds that none of its current plans apply to the
observed system state. This is where the real research
challenges in true self-management lie – in the
automatic decomposition of goals and in the generation

of operationalized plans from these goals. The usual
strategy of constraining the problem domain will
undoubtedly help.

4 Conclusion
In this paper, we have described our vision of self-
management at the architectural level, where a self-
managed software architecture is one in which
components automatically configure their interaction
in a way that is compatible with an overall
architectural specification and achieves the goals of the
system. We chose to concentrate on an architectural
approach as we believe that this offers the required
level of abstraction and generality to integrate some of
the possible solutions to the challenges posed. We are
biased towards a rigorous engineering approach in
which low-level actions can be clearly and formally
related to high-level goals that are precisely specified.

We have defined a three layer reference model –
component control, change management and goal
management – to provide a context for discussing the
main research challenges which self-management
poses. At the component layer, the main challenge is to
provide change management which reconfigures the
software components, ensures application consistency
and avoids undesirable transient behaviour. At the
change management layer, decentralized configuration
management is required which can tolerate
inconsistent views of the system state, but still
converge to a satisfactory stable state. Finally, some
form of on-line (perhaps constraint based) planning is
required at the goal management layer.

To provide a self-managed system, solutions to these
challenges need to be integrated to provide a
comprehensive solution, supported by an appropriate
infrastructure. In addition, the approach must be
amenable to a rigorous software development approach
and analysis, so as to ensure preservation of desirable
properties and avoid undesirable emergent behaviour.
A challenge indeed!

References
[1] 2nd IEEE Int. Workshop on Self-Managed Networks,

Systems and Services (SelfMan 2006), IEEE, Dublin,
2006.

[2] The 3rd IEEE International Conference on Autonomic
Computing IEEE, Dublin, 2006.

[3] International Conference on Self-Organization and
Autonomous Systems in Computing and
Communications (SOAS’2006), Erfurt, Germany,
September 2006.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

[4] Proceedings of IEE/IFIP 1st Int. Workshop on
Configurable Distributed Systems (CDS 92), in J.
Kramer, ed., London, May 1992.

[5] Proceedings of IEEE 3rd International Conference on
Configurable Distributed Systems (CDS 96), in J.
Magee and K. Schwan, eds., May 1996.

[6] Proceedings of International Conference on Autonomic
and Autonomous Systems ICAS 2006, Santa Clara, July
2006.

[7] Proceedings of the 1st ACM SIGSOFT workshop on
Self-managed systems, in D. Garlan, J. Kramer and A.
Wolf, eds., ACM Press, Newport Beach, California,
2004, pp. 119.

[8] Proceedings of the first workshop on Self-healing
systems, in D. Garlan, J. Kramer and A. Wolf, eds.,
ACM Press, Charleston, South Carolina, 2002, pp. 120.

[9] Proceedings. of IEEE 2nd International. Conference on
Configurable Distributed Systems, Pittsburgh, (CDS
94). in J. Kramer and J. Purtilo, eds., Pittsburgh, May
1994

[10] C. Agre and D. Chapman, What are Plans for?,
Robotics and Autonomous Systems, 6 (1990), pp. 17-
34.

[11] L. Baresi, C. Ghezzi and S. Guinea, Smart monitors for
composed services, Proceedings of the 2nd
international conference on Service oriented computing,
ACM Press, New York, NY, USA, 2004.

[12] J. S. Bradbury, J. R. Cordy, J. Dingel and M.
Wermelinger, A survey of self-management in dynamic
software architecture specifications, Proceedings of the
1st ACM SIGSOFT workshop on Self-managed systems,
ACM Press, Newport Beach, California, 2004.

[13] M. Castaldi, A. Carzaniga, P. Inverardi and A. L. Wolf,
A light-weight infrastructure for reconfiguring
applications, Proceedings of 11th Software
Configuration Management Workshop (SCM03), LNCS,
Portland, Oregon, 2003.

[14] B. H. C. Cheng and J. Atlee, M., Research Directions in
Requirements Engineering, in L. Briand and A. L. Wolf,
eds., Future of Software Engineering 2007, IEEE-CS
Press, 2007.

[15] N. Damianou, N. Dulay, E. Lupu and M. Sloman, The
Ponder Policy Specification Language, Proceedings of
the International Workshop on Policies for Distributed
Systems and Networks, Springer-Verlag, 2001.

[16] E. M. Dashofy, A. van der Hoek and R. N. Taylor,
Towards architecture-based self-healing systems,
Proceedings of the first workshop on Self-healing
systems, ACM Press, Charleston, South Carolina, 2002.

[17] S. Dobson, S. Denazis, Fernndez, Antonio, D. Gati, E.
Gelenbe, Massacci, P. Nixon, F. Saffre, N. Schmidt and
F. Zambonelli, A survey of autonomic communications,
ACM Trans. Auton. Adapt. Syst., 1 (2006), pp. 223-
259.

[18] S. Dolev, Self-Stabilization, MIT Press, 2000.

[19] A. Finkelstein and J. Kramer, Software engineering: a
roadmap, Proceedings of the Conference on The Future
of Software Engineering, ACM Press, Limerick, Ireland,
2000.

[20] H. Foster, J. Magee, S. Uchitel and J. Kramer, Scenario-
Based Software Synthesis for Adaptable Software
Architectures of UAVs, Proceedings of First Annual
SEAS DTC Conference, www.seasdtc.com, Edinburgh,
2006.

[21] D. Garlan and B. Schmerl, Model-based adaptation for
self-healing systems, Proceedings of the first workshop
on Self-healing systems, ACM Press, Charleston, South
Carolina, 2002.

[22] E. Gat, Three-layer Architectures, Artificial Intelligence
and Mobile Robots, MIT/AAAI Press, 1997.

[23] I. Georgiadis, J. Magee and J. Kramer, Self-organising
software architectures for distributed systems,
Proceedings of the first workshop on Self-healing
systems, ACM Press, Charleston, South Carolina, 2002.

[24] H. Gomaa and M. Hussein, Dynamic Software
Reconfiguration in Software Product Families, 5th
International Workshop on Software Product-Family
Engineering, LNCS 3014, Springer 2004, 435-444.,
Siena, Italy, 2003.

[25] D. Hirsch, J. Kramer, J. Magee and S. Uchitel, Modes
for Software Architectures, Third European Workshop
on Software Architecture (EWSA 2006), Springer,
Nantes, France, Sept 2006.

[26] D. Jackson, Software Abstractions: Logic, Language,
and Analysis, MIT Press, 2006.

[27] J. Kramer and J. Magee, Analysing dynamic change in
distributed software architectures, Software, IEE
Proceedings-, 145 (1998), pp. 146-154.

[28] J. Kramer and J. Magee, The evolving philosophers
problem: dynamic change management, Software
Engineering, IEEE Transactions on, 16 (1990), pp.
1293-1306.

[29] J. Magee, N. Dulay, S. Eisenbach and J. Kramer,
Specifying Distributed Software Architectures, 5th
European Software Engineering Conference (ESEC),
Sitges, Spain, 1995.

[30] J. Magee and J. Kramer, Dynamic structure in software
architectures, Proceedings of the 4th ACM SIGSOFT
symposium on Foundations of software engineering,
ACM Press, San Francisco, California, United States,
1996.

[31] J.-P. Martin-Flatin, J. Sventek and K. Geihs, Special
Issue on Self-managed systems and services Commun.
ACM, 49 (2006), pp. 36-39.

[32] A. McVeigh, J. Kramer and J. Magee, Using
resemblance to support component reuse and evolution,
Proceedings of the 2006 conference on Specification
and verification of component-based systems, ACM
Press, Portland, Oregon, 2006.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

[33] N. Medvidovic, D. S. Rosenblum and R. N. Taylor, A
language and environment for architecture-based
software development and evolution, Proceedings of the
21st international conference on Software engineering,
IEEE Computer Society Press, Los Angeles, California,
United States, 1999.

[34] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S.
Rosenblum and A. L. Wolf, An architecture-based
approach to self-adaptive software, Intelligent Systems
and Their Applications, IEEE [see also IEEE Intelligent
Systems], 14 (1999), pp. 54-62.

[35] M. Pistore, A. Marconi, P. Bertoli and P. Traverso,
Automated Composition of Web Services by Planning at
the Knowledge Level, IJCAI-05, Proceedings of the
Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, 2005.

[36] W. Schaefer and H. Wehrheim, The Challenges of
Building Advanced Mechatronic Systems, in L. Briand
and A. L. Wolf, eds., Future of Software Engineering
2007, IEEE-CS Press, 2007.

[37] R. N. Taylor and A. van der Hoek, Software Design and
Architecture: The Once and Future Focus of Software
Engineering, in L. Briand and A. L. Wolf, eds., Future
of Software Engineering 2007, IEEE-CS Press, 2007.

[38] A. van Lamsweerde, Goal-Oriented Requirements
Engineering: A Guided Tour, Proceedings of the 5th
IEEE International Symposium on Requirements
Engineering, IEEE Computer Society, 2001.

[39] Q. Wang, J. Shen, X. Wang and H. Mei, A component-
based approach to online software evolution: Research
Articles, J. Softw. Maint. Evol., 18 (2006), pp. 181-205.

[40] J. Zhang and B. H. C. Cheng, Model-based development
of dynamically adaptive software, Proceeding of the
28th international conference on Software engineering,
ACM Press, Shanghai, China, 2006.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

