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Abstract 

 
Self-management is put forward as one of the 

means by which we could provide systems that are 
scalable, support dynamic composition and rigorous 
analysis, and are flexible and robust in the presence of 
change.  In this paper, we focus on architectural 
approaches to self-management, not because the 
language-level or network-level approaches are 
uninteresting or less promising, but because we believe 
that the architectural level seems to provide the 
required level of abstraction and generality to deal 
with the challenges posed. A self-managed software 
architecture is one in which components automatically 
configure their interaction in a way that is compatible 
with an overall architectural specification and 
achieves the goals of the system. The objective is to 
minimise the degree of explicit management necessary 
for construction and subsequent evolution whilst 
preserving the architectural properties implied by its 
specification. This paper discusses some of the current 
promising work and presents an outline three-layer 
reference model as a context in which to articulate 
some of the main outstanding research challenges. 

 
1 Introduction 
As the size, complexity and adaptability required by 
applications increases, so does the need for software 
systems which are scalable, support dynamic 
composition and rigorous analysis, and are flexible and 
robust in the presence of change. Self-management is 
the rallying vision. What exactly are self-managed 
systems? The vision is of systems which are capable of 
self-configuration, self-adaptation and self-healing, 
self-monitoring and self-tuning, and so on, often under 
the flag of self-* or autonomic systems. 

For instance, consider that you have a specification of 
the goals, properties and constraints that you expect 

your system to achieve and preserve. Consider further 
that you have a set of software components which 
implement the required functionality. The aim of self-
configuration is that the components should either 
configure themselves such that they satisfy the 
specification or be capable of reporting that they 
cannot.  

What if the system suffers from changes in its 
requirements specification [14] or operational 
environment such as changes in use, changes in 
resource availability or faults in the environment or in 
parts of the system itself? The aim of self-adaptation 
and self-healing is that the system should reconfigure 
itself so as to again either satisfy the changed 
specification and/or environment, or possibly degrade 
gracefully or report an exception. Change as evolution 
of the system tends to imply an off-line process in 
which the system evolves through a number of 
releases, where each release could employ self-
configuration. However, dynamic change, which 
occurs while the system is operational, is far more 
demanding and requires that the system evolves 
dynamically, and that the adaptation occurs at run-
time.  

Finally, we should note that our required specifications 
include not only functional behaviour, but also those 
non-functional properties such as response time, 
performance, reliability, efficiency and security, and 
that satisfaction of a specification may well include 
optimisation. 

Clearly this is a challenging vision, which includes 
almost every one of the research challenges identified 
in the first FOSE: Software Engineering: A Roadmap 
at ICSE 2000 [19], namely compositionality, change, 
NF properties, service-view, perspectives, architecture, 
configurability, and domain specificity. 
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How can we approach this dream? 

Different research communities are already engaged in 
relevant research, investigating and proposing 
approaches to various aspects of self-management for 
particular domains. For instance, in the networking, 
distributed systems and services community, there has 
been the Autonomic Computing conferences [2] and 
more  recently, the SelfMan Workshop 2006 [1] to 
discuss and analyse the potential of self-* systems for 
managing and controlling networked systems and 
services. A special issue associated with SelfMan 2005 
on Self-Managed Systems and Services [31] covers a 
diverse range of descriptions of work on aspects such 
as self-healing by dynamic fault awareness and self-
adaptation/tuning for dealing with transient web 
overloads. Dobson et al.  [17] provide a recent survey 
on autonomic communications, covering research 
work on context awareness, autonomic algorithms, 
trust and security and appropriate adaptation 
techniques. They propose an autonomic control loop (a 
phased approach) of actions collect (monitoring), 
analyse, decide and act, a cycle which naturally 
appears in many proposed approaches. In addition to 
those mentioned above, there is also the International 
Conference on Self-Organization and Autonomous 
Systems in Computing and Communications 
(SOAS’2006) [3], and the International Conference on 
Autonomic and Autonomous Systems ICAS 2006 [6].  

The proliferation of conferences and workshops 
mentioned above reflects the interest in the topic; and 
this is only from the networking, systems and services 
communities. Other research communities also 
interested and appropriate include the intelligent agent, 
machine learning and planning communities, and many 
others, adopting underlying models as diverse as those 
derived from biology and social interaction. 

In the software engineering community there has been 
a series of workshops which started in the distributed 
systems community with the CDS (Configurable 
Distributed Systems) conferences [4, 9, 5] and more 
recently with WOSS (Workshop on Self-Healing and 
Self-Managed Systems) [8, 7] and SEAMS (Software 
Engineering for Adaptive and Self-Managing Systems) 
[3]. These conferences and workshops have provided 
excellent forums for discussing the software issues 
involved. However, although the work discussed over 
the years has provided much that is useful in 
contributing towards self-management, it has not yet 
resolved some of the general and fundamental issues in 
order to provide a comprehensive and integrated 
approach.  

Why an architectural approach?  

In this paper we focus on the use of an architecture-
based approach, as we believe that it offers the 
following potential benefits: 

• Generality – the underlying concepts and 
principles should be applicable to a wide range of 
application domains, each associated with 
appropriate software architectures. 

• Level of abstraction – software architecture can 
provide an appropriate level of abstraction to 
describe dynamic change in a system, such as the 
use of components, bindings and composition, 
rather than at the algorithmic level. 

• Potential for scalability – architectures generally 
support both hierarchical composition and other 
composition and hiding techniques which are 
useful for varying the level of description and the 
ability to build systems of systems, thereby 
facilitating their use in large-scale complex 
applications.  

• Builds on existing work – there is a wealth of 
architecture description languages and notations 
which include some support for dynamic 
architectures and for formal architecture-based 
analysis and reasoning [12]. These provide a good 
basis for a rigorous approach which could support 
evaluation and reasoning, constraints and run-time 
checks.  

• Potential for an integrated approach - many 
ADLs and approaches support software 
configuration, deployment and reconfiguration. In 
fact, as mentioned in an accompanying FOSE 
paper in this proceedings  on Software Design and 
Architecture [37], “software architecture 
encompasses work in modelling and 
representation, design methods, analysis, 
visualization, supporting the realization of designs 
into code, experience capture and reuse, product 
lines, deployment and mobility, security, 
adaptation, and so on.” 

We are not alone in favouring a component-based 
architectural approach. Many others also advocate use 
of architectural principles in their work.  For instance, 
Oreizy et al [34] provide a general outline of an 
architectural approach which includes adaptation and 
evolution management; Garlan and Schmerl [21] 
describe the use of architecture models to support self-
healing; Dashofy, van der Hoek and Taylor propose 
the use of an architecture evolution manager to provide 
the infrastructure for run-time adaptation and self-
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healing in ArchStudio [16];  Gomaa and Hussein [24] 
describe the use of dynamic software reconfiguration 
and reconfiguration patterns for software product 
families; Medvidovic, Rosenblum and Taylor present a 
language and associated environment for architecture-
based development and component evolution [33]; 
Wang et al [39]  describe an experiment to support 
component-based dynamic software evolution; Baresi 
et al. [11] suggest the use of contracts expressed as 
assertions to monitor and check dynamic service 
compositions in service-oriented systems; and Castaldi 
et al. [13] extend the concepts of network management 
to component-based, distributed software systems to 
propose an infrastructure for both component- and 
application-level reconfiguration using a hierarchy of 
managers. Our own work has concentrated on the use 
of ADLs for software design and implementation from 
components [29], including limited language support 
for dynamic change [30], a general model for dynamic 
change and evolution [28], associated analysis 
techniques [27] and initial steps towards self-
management [23].  

In order to try to draw all these threads together, we 
now propose an architectural reference model as a 
means of identifying more precisely the concerns and 
research issues that are needed in progressing towards 
self-management. 

 

2 Towards an Architectural Model for 
Self-Management 

In taking initial steps in the direction of an architecture 
model for self-management, we have sought 
inspiration from the large existing body of work on 
autonomous systems – namely robotics. The first 
architectures proposed for self–management 
correspond nearly exactly with the early sense-plan-act 
SPA architectures used in robots (cf. autonomic 
control loop [17] mentioned earlier). For example, 
Garlan’s proposed adaptation framework for self-
healing systems [21] consists of monitoring, 
analysis/resolution and adaptation. The monitoring of 
system operation corresponds to a robot sensing its 
environment, the analysis/resolution of faults 
corresponds to planning and adaptation or the 
execution of changes corresponds to action in the SPA 
framework. Indeed, Garlan’s framework maintains an 
abstract model of a system in the same way as SPA 
robots try to maintain a symbolic model of their 
environment. It is not surprising that this 
correspondence exists since a self-managed system is 
clearly an autonomous system in exactly the same way 

as a robot is. Both are intended to achieve goals 
without human intervention. Since the SPA 
architectures of the early eighties, robot architectures 
have evolved considerably and now, since the mid-
90’s, nearly all conform to the three layer architecture 
described by Gat [22]. In Gat’s paper’s, the three 
layers are Control: reactive feedback control, 
Sequencing: reactive plan execution and Deliberation: 
planning. In the following, we attempt to interpret this 
three-level robotic architectural model for self-
managed systems. Our goal is to exploit the 
considerable advances that modern robotic systems 
have in terms of flexibility and responsiveness over 
their SPA predecessors.  

2.1 Component Control 
The bottom layer of Gat’s three layer architecture is 
the control layer. It consists of sensors, actuators and 
control loops. The bottom layer of a self-managed 
system consists of the set of interconnected 
components that accomplish the application function 
of the system. It must of course include facilities to 
report the current status of components to higher layers 
and also include the capability to support component 
creation, deletion and interconnection. In the same way 
that the control layer of a robot includes feedback 
loops to implement primitive behaviours such as wall 
following and moving to a destination, the bottom 
layer of a self-managed system will contain behaviours 
to adjust the operating parameters of components – for 
example the timeout values in a component 
implementing a TCP protocol. In summary, this layer 
of a self-managed system will include self-tuning 
algorithms, event and status reporting to higher levels 
and operations to support modification – component 
addition, deletion and interconnection. An important 
characteristic of this level, is that when a situation is 
met that the current configuration of components is not 
designed to deal with, this layer detects this failure and 
reports it to higher layers.  

2.2 Change Management 
The middle layer of Gat’s three layer architecture is the 
sequencing layer which reacts to changes in state 
reported from the lower levels and executes plans that 
select new control behaviours and set new operating 
parameters for existing control layer behaviours. This 
is reactive plan execution. Given a new situation, this 
layer executes an action or sequence of actions to 
handle the new situation. For example, when the robot 
reaches a target location, this layer will determine what 
should be done next. In a self-managed system, this 
layer is responsible for effecting changes to the 
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underlying component architecture in response to new 
states reported by that layer or in response to new 
objectives required of the system introduced from the 
layer above. This layer can introduce new components; 
recreate failed components; change component 
interconnections and change component operating 
parameters. It consists of a set of plans which are 
activated in response to changes of the operating state 
of the underlying system. For example, when a 
component fails, change management can effect a 
repair either by changing component connections or by 
creating new components. In robotic systems, this 
layer has been implemented in a number of ways from 
conditional sequencing systems [10] to sets of state 
machines. Work in the network management area has 
produced languages such as Ponder [15] which 
perform a similar function to the planning languages in 
the context of systems. Ponder is essentially a language 
which execute actions in response to recognising 
(possible complex) events. The essential characteristic 
of this change management layer is that it consists of a 
set of pre-specified plans which are activated in 
response to state change from the system below. The 
layer can respond quickly to new situations by 
executing what are in essence pre-computed plans. If a 
situation is reported for which a plan does not exist 
then this layer must invoke the services of the higher 
planning layer. In addition, new goals for a system will 
involve new plans being introduced into this layer.  

2.3 Goal Management 
The uppermost layer of Gat’s three layer architecture is 
the deliberation layer. This layer consists of time 
consuming computations such as planning which takes 
the current state and a specification of a high-level 
goal and attempts to produce a plan to achieve that 
goal. An example in robotics would be given the 
current position of a robot and a map of its 
environment produce a route plan for execution by the 
sequencing layer. Changes in the environment, such as 
obstacles that are not in the map, will involve re-
planning. The role of the equivalent layer in a self-
managed system is Goal Management. This layer 
produces change management plans in response to 
requests from the layer below and in response to the 
introduction of new goals. For example, if the goal in 
to maintain some architectural property such as triple 
redundancy for all servers, this layer could be 
responsible for finding the resources on which to 
create new components after failure and producing a 
plan as how to create and integrate these new 
components to the change management layer. It could 
be responsible for deciding the optimal placement of 
servers for load balancing purposes. As we will 

address further in the next section there are many 
research issues here as to how to represent high level 
system goals, how to synthesize change management 
plans from these goals and how general or domain 
specific this layer should be. 

Figure 1 summarises our proposed three layer model 
for a self managed system following Gat’s work on 
architectures for robotic systems. The principal criteria 
for placing function in different layers in Gat’s 
architecture is one of time scale and this would seem to 
apply equally well to self managed systems. Immediate 
feedback actions are at the lowest level and the longest 
actions requiring deliberation are at the uppermost 
level. We would emphasize that we do not consider 
this an implementation architecture but rather a 
conceptual or reference architecture which identifies 
the necessary functionality for self management. We 
will use it in the next section to organise and focus 
discussion of the research challenges present by self 
management. 
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Figure 1 – Three Layer Architecture Model for 

 Self-Management. 

 

3 Research Issues 
In the previous section we outlined a three layer 
architecture model which is intended as a form of 
reference model rather than as a guide to how self 
managed software should be implemented. In this 
section, we use the model to structure the presentation 
of the research issues we see presented by the 
challenge of implementing self-managed systems. To 
ground this discussion, we draw examples from the 
work with which we are most familiar – namely our 
own. 

3.1 Component Control Layer 
We are concerned with management at the 
architectural level where we consider a system to 
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consist of a set of interconnected components which 
may be co-located and/or distributed over a network of 
communicating computer nodes. Our model of a 
component is depicted in figure 2 below. A component 
implements the set of services that it provides and it 
may use another set of services, denoted the required 
services, in implementing these services. In addition, a 
component has an externally visible state which we 
term its mode. The mode is simply an abstracted view 
of the internal state of a component that is made visible 
for management purposes. For example, the mode may 
indicate whether the component is in an active or 
standby mode. It may in addition indicate non-
functional aspects such as the current load on a server. 
Mode may therefore consist of more than a simple 
scalar datatype, although in our examples we use only 
a simple scalar mode.  We have used the Darwin [29] 
format for diagrams updated with modes [25], 
however, we could equally have used UML 2.0 as the 
Darwin form of component can now be satisfactorily 
encoded in UML2.0 [32].  

 

Component
Provided
services
(ports)

Required
services
(ports)

mode

Component
Provided
services
(ports)

Required
services
(ports)

mode

 
Figure 2 – Example component model 

 

To initially construct and subsequently change 
systems, we need a set of operations on components. 
These are typically: 

create C: T     
 – create component instance C from type T. 
delete C 
  – delete component instance C. 
bind C1.r – C2.p 
 –  connect required port r of component C1 to  
     provided port p of component C2. 
unbind C1.r 
 –  disconnect  required port r of component C1 
set C1.m to val 
 –  set mode m of component C1 to val. 

 

A system constructed in this way will have a 
configuration or management state consisting precisely 
of the set of components instances, the set of 
connections between components and the set 
component mode values – an example architecture for 

an autonomous underwater vehicle [20] operating in a 
mode in which the sonar is passive shown in Figure 3.  
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  Figure 3 – Example component architecture 

 

The research challenges at this level of a self-managed 
architecture are primarily concerned with preserving 
safe application operation during change. For example, 
the change of mode in a mechatronic system 
controlling a vehicle [36] can involve moving from 
one control algorithm to another. The implementation 
at this level must ensure that the mode change required 
to adapt to a change of the external operating 
environment does not generate undesirable transient 
behavior resulting in, for example, sharp accelerations 
or decelerations. In systems where the behavior is 
transactional rather than continuous, the challenge is to 
ensure that state information is not lost when the 
configuration is modified. The change management 
algorithm outlined in [28] tries to ensure stable 
conditions for change by ensuring that components are 
passive or quiescent before change. For example, a 
component can be safely removed from a system if it is 
isolated (no bindings to or from) and passive (cannot 
initiate transactions). The challenge is to find scalable 
algorithms that minimize disruption to the system 
during change and ensure that system safety properties 
are not violated. An associated challenge is to verify 
that safety properties are not violated during change 
[27], a problem addressed more promisingly by Zhang 
and Cheng [40]. 

We have looked at a system as a collection of 
components; however a component itself may consist 
of multiple interconnected components.  To deal with 
complex systems in a scalable way, we must deal with 
hierarchical structure. This raises interesting issues 
with the respect to the type of a component. When we 
modify the internal structure of a component, we are 
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clearly creating a variant of its type. We may want to 
instantiate new instances of this variant. It is likely that 
self-management of system will require the online 
dynamic execution of operations that we currently 
consider to be offline maintenance or version control 
operations. 

3.2 Change Management Layer 
This layer as outlined in section 2 is responsible for 
executing changes in response either to changes in 
state reported from the lower layer are in response to 
goal changes. We think of this layer as a precompiled 
set of plans or tactics that respond to a predicted class 
of state change. For example, in a fault-tolerant 
system, failure of a component may cause a duplicate 
server to immediately switch from standby to active 
mode; however, the state change observed by change 
management should cause the system to create a new 
standby server. In a fault tolerant system, it is clear that 
server failure is a predicted state change and the 
change management layer will include a procedure for 
dealing with the change. Similarly, we would consider 
the example repair strategy outlined by Garlan and 
Schmerl [21] as a plan executed by change 
management.  

One of the major research challenges at this level is 
dealing with distribution and decentralization.  It is this 
issue of distribution or decentralization that appears to 
be the essential factor in distinguishing the problem of 
performing self-management of complex software 
systems from existing work on robotic systems. 
Distribution is the most general situation raising issues 
of latency, concurrency and partial failures, and is 
likely to be the case (at least for parts of the system) in 
large and complex applications. Coping with 
distribution and arbitrary failure leads to the need for 
some level of local autonomy while preserving global 
consistency. In essence, distribution contributes the 
problem of obtaining consistent views of system state 
on which to base change decisions and decentralization 
of control brings the problem of robust execution in a 
situation in which partial failure can occur. Our first 
attempt to deal with this resulted in a change 
architecture with completely decentralized change 
execution; this, however, required state change to be 
serialized to ensure termination of the configuration in 
a valid state [23]. This decentralized implementation 
architecture is shown in Figure 4. 
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Figure 4 – Decentralized Change Management 
Implementation architecture 

The system depicted in Figure 4, was an experiment to 
look at extreme distribution in which change 
management layer functionality was included with 
each component. Each component maintained a view 
of the overall system and executed local changes 
(include connection to other components) in response 
to state changes in the view. The problems with this 
system were 1) the view of the system has to be 
complete and 2) it requires a total order broadcast bus 
to keep views consistent. Consequently, this was a 
fully decentralized architecture that reliably executed 
change in the presence of arbitrary failure. However, it 
was not a scalable architecture. What we require are 
systems which can accommodate partial inconsistent 
views and as a consequence relax the need for totally 
ordered broadcast communication. The challenge is to 
find change management algorithms that can tolerate 
inconsistency and which eventually terminate in a 
system that satisfies constraints. It is also required that 
the system does not violate safety constraints while it 
is converging on a stable state. There are of course 
examples of self stabilising algorithms [18]; however, 
these are for specific configurations and applications.  

One of the goals of the system described in Figure 4 
was to preserve global structural constraints. It was 
primarily this requirement that dictated a consistent 
view of system structure. It may well be that taking a 
more behavioural view of system constraints will 
provide opportunities for relaxing the consistency 
requirement. For example, if we are not at all 
interested in structure, components can simply bind to 
any service that satisfies the local requirement. Failure 
of the remote service can trigger a search for a 
replacement service.  
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3.3 Goal Management Layer 
The initial problem is to have a precise specification of 
the goals required of a system. These need to 
encompass both application goals and system goals 
concerned with self-management. It is likely that the 
refinement of very high-level goals to precisely 
specified goals that can be processed by machines will 
require human assistance as is current practice in goal 
oriented requirements engineering [38]. The challenge 
is to achieve goal specification such that it is both 
comprehensible by human users and machine readable. 

If we ignore the problem of precisely specifying 
structure, behaviour and performance required of a 
system, the function of goal management can be 
succinctly described. It takes a declarative 
specification of system goals, a snapshot of the current 
state of the system and produces a change plan which 
moves the system from its current state to a state which 
satisfies the system goals. Regrettably, this is of course 
a computationally hard and sometimes intractable 
problem. Even when tractable, the time taken to 
generate a plan may not meet the response times 
required.  

Solutions so far have focussed on dealing as far as is 
possible with planning by designing a set of plans 
(sometimes referred to as tactics) offline that can be 
shown either by construction or by a verification 
process to satisfy system constraints for a range of 
possible system states. For example, in our system 
described in [23], we specified system structural 
constraints in Alloy [26] and developed tactics that 
could be shown using the Alloy model checker to 
move a system into a state that satisfied constraints. In 
other words, the planning problem was done off-line 
and the problem reduced to one of verification. This 
approach is sufficient if it can be shown that the set of 
change plans are sufficient to deal with any possible 
system state. This is of course exactly what is done in 
some of the classic fault-tolerant architectures such as 
active-standby server pairs.  

There has been promising work in the autonomous 
composition of Web services using a “planning as 
model-checking approach” [35]. In essence, this is in 
its present state an off-line planning approach. The 
more challenging problem in the spirit of autonomous 
self-management is to provide an on-line planner. This 
is invoked by the change management layer when it 
finds that none of its current plans apply to the 
observed system state. This is where the real research 
challenges in true self-management lie – in the 
automatic decomposition of goals and in the generation 

of operationalized plans from these goals. The usual 
strategy of constraining the problem domain will 
undoubtedly help.  

4 Conclusion 
In this paper, we have described our vision of self-
management at the architectural level, where a self-
managed software architecture is one in which 
components automatically configure their interaction 
in a way that is compatible with an overall 
architectural specification and achieves the goals of the 
system. We chose to concentrate on an architectural 
approach as we believe that this offers the required 
level of abstraction and generality to integrate some of 
the possible solutions to the challenges posed. We are 
biased towards a rigorous engineering approach in 
which low-level actions can be clearly and formally 
related to high-level goals that are precisely specified. 

We have defined a three layer reference model – 
component control, change management and goal 
management – to provide a context for discussing the 
main research challenges which self-management 
poses. At the component layer, the main challenge is to 
provide change management which reconfigures the 
software components, ensures application consistency 
and avoids undesirable transient behaviour. At the 
change management layer, decentralized configuration 
management is required which can tolerate 
inconsistent views of the system state, but still 
converge to a satisfactory stable state. Finally, some 
form of on-line (perhaps constraint based) planning is 
required at the goal management layer.  

To provide a self-managed system, solutions to these 
challenges need to be integrated to provide a 
comprehensive solution, supported by an appropriate 
infrastructure. In addition, the approach must be 
amenable to a rigorous software development approach 
and analysis, so as to ensure preservation of desirable 
properties and avoid undesirable emergent behaviour. 
A challenge indeed! 
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