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ABSTRACT
Mobile handheld computing is gaining momentum as more
and more wireless handheld devices are being used to ac-
complish various computing tasks. Context-awareness can
help to adapt and personalize applications or to optimize
resource usage. However, many existing context infrastruc-
tures by themselves impose heavy resource requirements for
deployment or highly affect the limited autonomy of the mo-
bile device. In this paper we describe how resource-driven
self-adaptation is used in our layered context-driven applica-
tion middleware in order to enable deployment on a mobile
device and optimize resource usage. Our evaluation shows
that the introspection and intercession capabilities of the
self-adapting middleware provide the necessary flexibility
to achieve a balanced resource usage between the context-
driven application middleware and the context-aware appli-
cations, and that the resource-driven self-adaptation is able
to more than double the battery lifetime in real life scenar-
ios.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; H.3.4
[Information Storage And Retrieval]: Systems and Soft-
ware

Keywords
Context-awareness, adaptation, mobile computing

1. INTRODUCTION
The rapid advancements of wireless networking and the

proliferation of portable and mobile handheld devices promise
to change drastically the human-computer interaction [10].
Context-awareness [3] is one of the important key drivers of
the growing middleware support for pervasive services. It
provides the intelligence backbone to enable non-intrusive
access to personalized services and information in public ar-
eas, at work, as well as in the home environment. As Charles

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

Darwin stated earlier: “It is not the most intelligent of the
species that survive the longest, it is the most adaptable.”
This statement holds as well for pervasive computing ap-
plications. In order to be successful, applications need to
adapt continuously to their environment and therefore re-
quire information from the environment for the adaptation
to be effective. However, mobile devices have not benefited
to the same extend as other high-end systems from the latest
advancements in context toolkits, frameworks and architec-
tures. The main reason is that the supporting infrastructure
is not adapted to the capabilities and limitations of the mo-
bile device. We identify the following issues:

• In many cases the design of the context framework
only allows an all-or-nothing deployment without any
support for adaptation whatsoever. There is no way to
free up allocated resources for functions of the frame-
work that are not required or not being used.

• The minimum resource requirements for deploying the
context framework are often far beyond of what a mo-
bile device can offer today. The dependencies on many
heavyweight libraries for the parsing and processing of
context information do not help either.

• Many context frameworks are not built with the lim-
ited autonomy of a mobile handheld in mind. Process-
ing power and memory are becoming less of a problem,
but energy consumption is still a bottleneck on mo-
bile devices. Having a permanent wireless connection
might not be a good idea on a mobile device.

In order to achieve a resource-efficient context-driven mid-
dleware for mobile handheld applications that overcomes the
previously mentioned issues, we describe an application mid-
dleware that self-adapts in order to reduce its own resource
consumption to a minimum. The middleware itself has a
layered design and provides introspection and intercession
capabilities within each layer to support a more flexible self-
adaptation strategy at runtime.

In section 2 we discuss the deployment of our context-
driven application middleware on a PDA and elaborate on
how its component-based design combined with introspec-
tion and intercession are used to support behavioral and
structural self-adaptation at runtime. In section 3 we detail
how self-adaptation of the middleware is achieved in order
to minimize resource consumption. In section 4 we conduct
experiments to validate the strategies for resource driven
context-awareness on a personal handheld device. Section 5
provides an overview of related work. We end with conclu-
sions and future work in section 6.
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Figure 1: The context-driven application middle-
ware for component-based applications

2. BEHAVIORAL AND STRUCTURAL SELF-
ADAPTATION

We use components [9] as modular building blocks for the
design and deployment of adaptable services [7] and con-
text management [6]. The component paradigm makes it
possible to add, remove or replace a component at run-
time when the execution context changes. An overview of
our Java-based context-driven application middleware for
component-based applications is given in Figure 1. The lay-
ered architecture separates the applications, the manage-
ment of context information and resources, the component
runtime and the underlying Java virtual machine.

2.1 Self-adaptation in the application layer
Applications are modeled as a composition of mandatory,

optional and alternative inter-connected components that
send asynchronous messages to one another to cooperate.
Figure 2 shows the composition of a conferencing client that
supports Jabber-based instant messaging, web based docu-
ment sharing and playing multimedia files.

Behavioral self-adaptation
Behavioral self-adaptation does not change the composition
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Figure 2: Building blocks of a component-based con-
ferencing client

of the application, but changes the way an application be-
haves due to a changing context. Some examples:

• At home, the media player will automatically increase
the volume when playing one of your favorite songs.

• During meetings the application will change the online
status of the user and redirect incoming calls.

Context information is required to initiate non-intrusive be-
havioral self-adaptation: location awareness, user prefer-
ences, devices and resources. This information is delivered
by the layer below, the Context Layer. The self-adaptation
is based on the appropriate messages being sent from one
component to another (e.g. to change the volume).

Structural self-adaptation
Structural self-adaptation is the ability of the application to
reconfigure the composition of the application itself:

• Add a Web Server component for sharing files.

• Replace the Jabber Protocol component with another
instant messaging protocol component.

Preconditions on the incoming messages trigger structural
self-adaptation. For example, the Jabber Protocol compo-
nent will replace itself with an alternative instant messaging
component based on the address of the user.

2.2 Self-adaptation in the context layer
The Context Layer acquires and aggregates data from var-

ious sources and is self-adaptable. It can (un)load its own
context managing components whenever appropriate. The
following context managing components are available:

• Input: Encapsulate data gathering from sensors, user
preferences and profiles, and other public databases.

• Filter: Filter out irrelevant or old data or compare
the accuracy of different input components.

• Persistency: Provide a repository for context values
as well as relationships between context concepts.

• Transformation: Translate a concept from one rep-
resentation to another, e.g. GPS position to city.

• Reasoning: Combine known context concepts with
derivation rules to derive new information.
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A simplified overview is given in Figure 1 and shows three
composite components for context retrieval (combining in-
put and filter), storage (persistency) and manipulation (com-
bining transformation and reasoning).

Behavioral self-adaptation
If the storage capacity of the context repository is limited so
that not all context information can be retained for future
use, then the Context Layer will self-adapt:

• Free up memory by purging old, rarely used or redun-
dant key-value pairs and ontologies.

• Reduce the rate at which certain context concepts are
sensed and retrieved.

Note that the same context concept can be stored multiple
times in the context repository, as its value may be provided
by different sources or at different times.

Structural self-adaptation
The Context Layer provides many optional components of
the input and transformation type and will structurally self-
adapt as follows:

• When a context-aware application requests specific con-
text information, the Context Layer will add the ap-
propriate components into the processing chain.

• If a context concept is no longer used, then all the
relevant input and transformation context components
are removed from the processing chain.

Obviously, when an application exits then the relevant con-
text managing components are removed as well.

2.3 Self-adaptation in the runtime layer
The Runtime Layer provides the basic functions to deploy

and run component compositions and acts as a hardware
abstraction layer. Self-adaptivity takes place at this level
to provide uniform access to platform specific I/O features,
hardware resources and resource monitors. The Runtime
Layer provides the following functions (see Figure 1):

• Core Component Management: Deploys and con-
nects components, schedules and delivers asynchronous
messages from one component port to another.

• Self-Evaluation and Adaptation Control: Eval-
uates and adapts to resource usage and controls on-
demand activation of computational resources.

• Resource Access: Provide uniform access to plat-
form specific I/O features (audio, backlight), persis-
tency (hard disk, flash memory), communication (WiFi,
Bluetooth, GPRS), power management, etc.

• Resource Monitors: Keep track of the CPU load,
memory usage, disk space allocation, network band-
width, battery status, etc.

Behavioral self-adaptation
Behavioral self-adaptation in the Runtime Layer mainly in-
volves resource-awareness:

• Decrease the CPU clock frequency when no application
is active or when the system is idle.

• Reduce the display backlight to extend the autonomy
of the device when running on battery.

<componentstructure>
<component type=’composite’>

<instance name=’server’ opt=’Y’ impl=’WebServer.jar’ />
<instance name=’jabber’ opt=’N’ impl=’Jabber.jar’

alt=’MSN.jar, Yahoo.jar’ />
<instance name=’ui’ opt=’N’ impl=’GUI.jar’
<instance name=’player’ opt=’Y’ impl=’Player.jar’ />
...

<connection src=’jabber/Control’ dest=’player/Control’ />
<connection src=’jabber/Msg’ dest=’ui/IO’ />
<connection src=’ui/Control’ dest=’player/Control’ />
...

</component>
</componentstructure>

Figure 3: Deployment descriptor of the Conferenc-
ing Client application specifying mandatory, optional
and alternative components

• Increase concurrent behavior by changing the number
of messages that can be processed in parallel.

Structural self-adaptation
The Runtime Layer provides access to several optional mon-
itors, I/O devices and hardware resources. These modules
are enabled on demand when required by the applications or
the Context Layer and again disabled when no longer active
and after a resource specific timeout.

3. RESOURCE-DRIVEN INTROSPECTION
AND INTERCESSION

Applications are implemented as a composition of compo-
nents and accompanied by a deployment descriptor specify-
ing all the mandatory, alternative and optional components
(see Figure 3). The Runtime Layer provides the means for
introspection to find out which of the alternative compo-
nents has actually been deployed. The state of a component
is modeled explicitly as a list of state variables and their
values, not only for inspection purposes, but also to support
replacement of components at runtime while preserving the
state. A component’s state can be retrieved by sending a
state requesting message to the dedicated State port of the
component (not shown in Figure 2 for legibility reasons).

Behavioral self-adaptation is performed by sending mes-
sages to a particular component port. Structural self-adap-
tation is initiated within each layer independently. Each
layer determines the state of its components and the new
configuration and instructs the Runtime Layer to activate
new components and/or to reconnect the composition. The
old component state retrieved by introspection is forwarded
to the new component’s State port.

3.1 Resource-driven component deployment
The whole resource-driven component selection algorithm

is entirely based on the processing of resource information.
It consists of the following steps:

1. Hardware Process the hardware of the device to dis-
cover processing power, network capabilities, and other
input providers, such as a GPS module.

2. Resource-awareness Request the current available
resources on the device, including the CPU load, the
memory and bandwidth usage, and the battery status.
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@sense = {}
@subsume = {}
for each a in @applications

// Get for each application the context concept dependencies
for each c in a.concepts()

if @sense subsumes c then
@subsume += c

else
for each s in @sense

if c subsumes s
@sense -= s
@subsume += s

@sense += c

@sensors = {}
for each s in @sense

// Sort all components sensing s by energy efficiency and
// start using the first ‘sensor’ in the list
@sensors[s] = s.components().sort(‘energy’)
@sensors[s].lastused = 1

for each s in @sense
idx = @sensors[s].lastused
@value[s] = @sensors[s][idx].sense()
r = random() // Returns a random value in [0.0..1.0]
// The sensor accuracy to measure s goes from [0.0..1.0]
if r > @sensors[s][idx].accuracy then

v = @sensors[s][idx+1].sense()
if @value[s] = v then

v = @sensors[s][idx-1].sense()
if @value[s] = v then

@sensors[s].lastused -= 1
else

@value[s] = v
@sensors[s].lastused += 1

for each s in @subsume
@values[s] = @values.subsume(s)

Figure 4: Resource-driven context component selec-
tion

3. Context dependencies Check which context infor-
mation is required by the active applications for per-
sonalization and non-intrusiveness behavior.

4. Context component selection Determine for each
context concept the minimum resolution and the re-
source requirements, and select the most energy effi-
cient one as outlined in the algorithm.

5. Application component selection Determine a fea-
sible application composition based on its components’
resource requirements, and select the most resource ef-
ficient ones.

The algorithm in Figure 4 outlines the approach that is be-
ing used to retrieve all the contextual concepts that the ap-
plications have requested and choose the most energy effi-
cient context components among the alternatives that fulfill
the context dependencies of the applications. The algorithm
ensures when multiple applications request similar concepts
but with a different resolution (e.g. city and office floor) that
only the most fine-grained context concept is sensed. The
other contextual concepts are retrieved by subsumption, us-
ing ontologies to provide the requested information in the
right format (country, city, zip code, address, building, etc.).
Subsumption is less expensive than sensing similar concepts
multiple times. Note that the algorithm has been simpli-
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Figure 5: Resource usage for GPS-based location-
awareness.
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Figure 6: Resource usage for WiFi signal strength-
based location-awareness.

fied and does not include any checks on boundary crossing
whatsoever.

Also note that the sorting on energy efficiency can only be
done at runtime. For example, using WiFi RSSI triangula-
tion for positioning is very cheap if wireless network access is
already required for a particular context-aware application.

4. PERFORMANCE EVALUATION AND EX-
PERIMENTAL VALIDATION

Our current mobile test platform, the Qtek 9090 hand-
held, is equipped with several wireless communication pro-
tocols (WLAN 802.11b, GPRS, Bluetooth, Infrared irDA)
for information retrieval. In our test setup we also use
a Bluetooth-enabled external GPS module (GlobalSat 338
Bluetooth GPS) for outdoors location-awareness. This mod-
ule has a default operation time in continuous mode of 17
hours after having been fully recharged, and more that 20
hours when power saving is enabled. The energy consump-
tion on the PDA only reflects the Bluetooth communication
to read the GPS receiver’s NMEA-0183 [5] output containing
time, longitude, latitude, speed and direction information.

Before the experiment we profiled several location-sensing
context components for their energy efficiency and CPU us-
age. The difference in memory consumption was negligible.
Table 1 provides an overview of the characteristics and the
profiled resource requirements of the different location sens-
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Locating Type Reference Sensing Limitation Sensing Battery CPU
Technique Accuracy Frequency Usage Load

Bluetooth GPS physical absolute 5-10 m outdoors 1 sec 30% / h 12 %
WLAN RSSI physical relative < 10 m indoors, ≥ 3 AP 1 sec 41% / h 17 %
WLAN MAC physical relative < 100 m ≥ 1 AP 30 sec 38% / h 13 %
IP Address symbolic absolute country/city network access 4 min 34% / h 5 %

Personal Agenda symbolic absolute user 4 min 12% / h 2 %

Table 1: Characteristics and resource requirements of different location sensing techniques
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Figure 7: Resource usage for PIM-based location-
awareness.

ing techniques. To provide a fair comparison, the sensed val-
ues had all to be converted to the most accurate symbolic
representation. The performance results therefore include
the transformation from one location specification (address,
geographical coordinates, city, country) to another. The
CPU load in the last column depends on:

• The amount of processing to read the sensor data.

• The enhancing of the physical coordinates to the cor-
responding symbolic location information.

• The sensing frequency, which depends on the inherent
precision and accuracy of the technique.

Figures 5, 6 and 7 illustrate the CPU load and the battery
consumption for the GPS, WiFi and PIM-based location-
awareness technique respectively over a period of 60 min-
utes. Obviously, the power consumption for WiFi-based
techniques is the highest. However, if WiFi network ac-
cess is already used for the IM application, then the extra
overhead is negligible. Also, for the GPS-based technique
the battery usage does not include the power consumption
of the external Bluetooth GPS module. This module has its
own battery which uses about 5 to 6 % per hour of its to-
tal capacity. The least expensive method from a power and
CPU perspective is the PIM-based technique (using the cur-
rent time and entries in the personal agenda) as it requires
no wireless network access and already provides the infor-
mation in the most appropriate form for the user. However,
this method can only be used when the agenda specifies an
event for which location information is present. The high
peak for CPU usage in the beginning is the result of parsing
the personal agenda.

In the experiment, a test person carried around two iden-
tical PDAs during a whole day, going from home to the office
and back. Each PDA was running the application mentioned
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Figure 8: Performance evaluation for the WiFi and
GPS-based scenario.
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Figure 9: Performance evaluation for the adaptive
resource-aware scenario.

in the introduction. Location-awareness is used to automat-
ically set the volume of the media player and set the online
status of the user if connected to the Internet. One of the
PDAs was continuously using the WiFi triangulation and
GPS methods for indoors and outdoors location-awareness,
whereas the second PDA used the adaptive context-driven
resource-aware approach. Neither of both PDAs was turned
off or suspended during the experiment. The results of the
performance evaluation are shown in Figures 8 and 9. The
CPU load shown here is averaged over small time intervals
(therefore no high peaks of short duration are shown) and
includes the load of all applications, including the Context
Layer and Runtime Layer. The results in the first figure
show that the first PDA did not make it through the day.
The PDA ran out of battery power around 15h00. The sec-
ond PDA in Figure 9 experienced an overall lower CPU load
and had plenty of time left to recharge at the end of the day.

1169



5. RELATED WORK
In recent years, many researchers have addressed the issue

of context-awareness and self-adaptive middleware. This re-
search has greatly improved our knowledge of how context-
aware and self-adaptive middleware can accommodate to
new functionality requirements, performance optimization,
variable runtime conditions and changing environments. Pro-
viding a detailed review of the state of the art on context-
awareness and self-adaptability is beyond the scope of this
paper. Instead, we focus on those contributions that are
most related to the work presented in this paper.

Cakmakci et al. [1] propose statistical modeling of raw sen-
sor data to provide context-awareness in system with lim-
ited resources. Their approach exists in keeping the data
processing closer to the sensors in order to save power and
is able to distinguish simple contexts at this level. Their ap-
proach is fundamentally different compared to ours, as the
context information is tightly coupled to the device and the
application. Our approach is more complex and uses more
resources, but adds layers of abstraction to manage context
information in a uniform and interchangeable way.

Puppeteer [2] is a system for adapting component-based
applications in mobile environments. Compared to our work
Puppeteer also takes advantage of the component-based na-
ture of the applications to perform adaptation. The differ-
ence with our work is that their goal is to adapt applications
in order to achieve reductions in user-perceived latencies in
two office applications without modifying the applications
themselves.

The BBN QuO system [4] also supports applications that
adapt to resource variability allowing users to define opera-
tion regions. The runtime systems monitors the application
and execution environment and activates application han-
dlers when the application changes operation region. Com-
pared to our work, context-awareness is not being considered
for application adaptation.

Sousa et al. [8] compare their work with other systems
that adapt their computing strategies in reaction to band-
width, memory, CPU and power variation. They claimed
their work is an improvement as it was not restricted to
adaptation of one component at a time, but they also tackled
multi-component integration, configuration and reconfigura-
tion. Our work also deals with multi-component reconfig-
uration, but subdivides these components into three layers
of abstractions to separate self-adaption concerns into layer
specific reconfigurations.

6. CONCLUSIONS
This paper presents a resource-aware and context-driven

application middleware for mobile devices. The modular de-
sign and the small resource footprint of the middleware allow
deployment on mobile devices with limited resources and au-
tonomy. The number of deployable components depends on
the available resources. The necessary flexibility for deploy-
ment on such devices is achieved through self-adaptation in
each of the layers of the application middleware. Runtime
adaptation ensures a resource efficient deployment of com-
ponents. Experiments have shown that our self-adapting ap-
plication middleware can more than double the autonomy of
a mobile handheld device by intelligently adapting the ap-
proach for location-awareness depending on the resolution
required by the applications. The result is an increased au-

tonomy of the handheld device and a better resource usage
trade-off between the application middleware and the regu-
lar applications.

Ongoing work looks at how to make use of resource rich
systems in the environment of the mobile device by dis-
tributing applications or single components to other devices.
However, this requires a clear view on the message flow of
each components as a good trade-off needs to be found be-
tween, for example, memory and CPU consumption on the
one hand and network bandwidth and energy efficiency on
the other hand.

Future work will focus on the modeling of resource re-
quirements for other indoor and outdoor locating methods
and integration of other positioning systems into our context
middleware. The major focus in this paper with respect to
resource usage was on battery lifetime and CPU load. This
will be further enhanced by modeling the interdependencies
of CPU load, the battery lifetime, the memory and band-
width usage. This should result in a better trade-off when
relocating context information and processing components
from one system to another, as relocating data also has an
effect on the CPU load, the autonomy of the device, and the
overall quality of service of the regular applications.
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