
Towards A Process-Oriented
Software Architecture Reconstruction Taxonomy

Damien Pollet Stéphane Ducasse Loïc Poyet Ilham Alloui Sorana Cîmpan Hervé Verjus

LISTIC, Université de Savoie, France
E-mail: 〈damien.pollet,stephane.ducasse〉@univ-savoie.fr

Abstract

To maintain and understand large applications, it is cru-
cial to know their architecture. The first problem is that
unlike classes and packages, architecture is not explicitly
represented in the code. The second problem is that success-
ful applications evolve over time, so their architecture in-
evitably drifts. Reconstructing the architecture and checking
whether it is still valid is therefore an important aid. While
there is a plethora of approaches and techniques support-
ing architecture reconstruction, there is no comprehensive
state of the art and it is often difficult to compare the ap-
proaches. This article presents a state of the art on software
architecture reconstruction approaches.

1. Introduction

Software architecture acts as a shared mental model of
a system expressed at a high-level of abstraction [50]. By
leaving details aside, this model plays a key role as a bridge
between requirements and implementation. It allows you to
reason architecturally about a software application during
the various steps of the software life cycle. According to Gar-
lan, software architecture plays an important role in at least
six aspects of software development: understanding, reuse,
construction, evolution, analysis and management [34].

Software architecture is thus crucial for software devel-
opment, but architectures are not explicitly represented in
the code as classes and packages. Another problem is that
successful software applications are doomed to continually
evolve and grow [71]; and as a software application evolves
and grows, so does its architecture. The conceptual archi-
tecture often becomes inaccurate with respect to the im-
plemented architecture; this results in architectural erosion
[83, 98], drift [98], mismatch [35], or chasm [106].

Several approaches and techniques have been proposed in
the literature to support Software architecture reconstruction
(SAR). Mendonça et al. presented a first raw classification
of SAR environments based on a few typical scenarios [85].

O’Brien et al. surveyed SAR practice needs and approaches
[95]. Still, there is no comprehensive state of the art and
it is often difficult to compare the approaches. This article
presents a state of the art of software architecture recon-
struction approaches. It takes the perspective of a reverse
engineer who would like to reconstruct the architecture of
an existing application and would like to know which tools
or approaches to consider. We structure the study around
the processes, the inputs, the techniques and the outputs of
SAR approaches and we propose a taxonomy for SAR in
this context.
About selecting the approaches. In this paper, we select
works in two steps. First, in addition to works that extract
architectural information, we consider approaches that visu-
alize programs since they are often the basis for abstracting
and extracting architectural views, but we limit ourselves to
the program visualization approaches that support the over-
all extraction process. For the sake of space, we exclude
approaches that do not specifically extract architecture but
related artefacts such as design patterns, features or roles.

In a second step, we support the comparison of the ap-
proaches with a table for each axis that structures this survey.
We only list in the tables works that are the most concerned
about architectural extraction. For the sake of space again,
we consider only two categories of works: the important
ones i.e., those which were influential or were precursors,
and the original works taking a specific approach to the gen-
eral problem. This latter category is interesting because it
opens the survey space.

Section 2 describes the criteria that we adopted in our
taxonomy. Sections 3 to 6 then cover each of those criteria
before concluding.

2. SAR taxonomy axes

We propose a deeper classification (Fig. 1) based on the
life time of SAR approaches: intended goals, followed pro-
cesses, required inputs, used techniques and expected out-
puts. Our taxonomy treats a larger number of approaches
than the previous attempts at classifying the field.

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

Goals

Redocumentation
Reuse

Conformance
Co-Evolution

Analysis
Evolution

Bottom-Up
Top-Down

Hybrid

Processes

Inputs
Techniques

Outputs

Non-Architectural
Architectural

SAR

Styles
Viewpoints

Source Code
Textual Information

Dynamic Information
Physical Organization
Human Organization
Historical Information

Human Expertise

Graph Queries
Relational Queries

Logic Queries
Programs

Lexical Queries

Recognizers
Graph Pattern Matching

State Engine
Maps

Abstraction
Investigation

Contruction
ExplorationQuasi-Manual

Semi-Automatic
Quasi-Automatic

Visual
Architecture

Conformance
Analysis

Horizontal
Vertical

Figure 1. A process-oriented taxonomy for SAR.

Goals. SAR is considered by the community as a proactive
approach to answer stakeholder’s business goals [23, 118].
The reconstructed architecture is the basis for redocumen-
tation, reuse investigation and migration to product lines,
or co-evolution of implementation and architecture. Some
approaches do not extract the architecture itself but related
and orthogonal artifacts that provide valuable additional
information to engineers such as design patterns, roles or
features. For sake of space, as previously said, we do not
expand further this axis.

Processes. We distinguish three kinds of SAR processes
based on their flow to identify an architecture: bottom-up,
top-down or hybrid.

Inputs. Most SAR approaches are based on source code in-
formation and human expertise. However, some of them
exploit other architectural or non-architectural informa-
tion sources such as dynamic information or historical
information. It is worth noting that not all approaches use
architectural styles and viewpoints even though those are
the paramount of software architecture.

Techniques. The research community has explored various
architecture reconstruction techniques that we classify
according to their level of automation.

Outputs. While all SAR approaches intend to provide ar-
chitectural views, some of them produce other valuable
outputs such as information about the conformance of
architecture and implementation.

3. SAR processes

SAR follows either a bottom-up, a top-down or an hybrid
opportunistic process.

3.1. Bottom-up processes

Bottom-up processes start with low-level knowledge to
recover architecture. In most cases, from source code models,

they progressively raise the abstraction level until a high-
level understanding of the application is reached [9, 120]
(see Fig. 2).

Also called architecture recovery processes, bottom-up
processes are closely related to the well-known extract-
abstract-present cycle described by Tilley et al. [129].
Source code analyses populate a repository, which is queried
to yield abstract system representations, which are then pre-
sented in a suitable interactive form to reverse engineers.

2

Extracted architecture

A

B

C

Source code

1

+

--

A

B

*(a)/s -->

B extends A
-->

 Extraction Techniques

Refinement

Figure 2. A bottom-up process: from the source
code, views are (1) extracted and (2) refined.

Examples. The Dali tool by Kazman et al. [56, 57] sup-
ports a typical example of a bottom-up process: (1) Hetero-
geneous low-level knowledge is extracted from the software
implementation, fusioned and stored in a relational database;
(2) Using the Rigi visualization tool [91, 128], a reverse
engineer visualizes and manually abstracts this information;
(3) A reverse engineer specifies patterns by selecting source
model entities with SQL queries and abstracting them with
Perl expressions. Based on Dali, Guo et al. proposed ARM
[40] which focuses on design patterns conformance.

In Intensive, Mens et al. use intension logic to group

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

related source-code entities [87, 145]. Reverse engineers
incrementally define views and their relations with intensions
specified as Smalltalk or logic queries. Intensive classifies
the views and displays consistencies and inconsistencies
with the code and between architectural views. Intensive
visualizes its results with CodeCrawler [70].

Lungu et al. built both a method and the Softwarenaut
tool [77] to interactively explore packages. They enhance
the exploration process in the package architectural structure
by guiding the reverse engineer towards the relevant pack-
ages. They characterize packages based on their relations
and on their internal structure. A set of packages are high-
lighted and associated to exploration operations that indicate
to the reverse engineer the actions to perform to get a better
understanding of the software architecture.

Other bottom-up approaches include ArchView [99], Re-
vealer [100, 101], ARES [26], ARMIN [58] and Gupro [24].
We classify the works around PBS/SBS in this category, but
since they consider conceptual architectures to steer the pro-
cess, we could as well have classified them with the hybrid
processes [8, 31, 49, 113].

3.2. Top-down processes

Top-down processes start with high-level knowledge such
as requirements or architectural styles and aim to discover
architecture by formulating conceptual hypotheses and by
matching them to the source code [12, 92, 120] (see Fig-
ure 3). The term architecture discovery often describes this
process.

1

2

3

Refinement

Hypothesized architecture

--

A

B

C

Source code checking

Figure 3. A top-down process: (1) an hypothe-
sized architecture is defined, (2) the architecture
is checked against the source code, (3) the archi-
tecture is refined.

Examples. The Reflexion Model of Murphy et al. is a
typical example of a top-down process [92, 93]. First, the
reverse engineer defines his high-level hypothesized con-
ceptual view of the application. Second, he specifies how
this view maps to the source code concrete view. Finally,
RMTool confronts both conceptual and concrete views to
compute a reflexion model that highlights convergences, di-
vergences and absences. The reverse engineer iteratively

computes and interprets reflexion models until satisfied. In
a reflexion model, a convergence locates an element that is
present in both views, a divergence an element that is only in
the concrete view, and an absence an element that is only in
the conceptual view. The reflexion model offers a better sup-
port to express the conceptual architecture and the results of
the process than the approach developed in SoFi [12]. The re-
flexion model influenced other works [13, 44, 61, 105, 132].

3.3. Hybrid processes

Hybrid processes combine bottom-up with top-down pro-
cesses [120]. On one hand, low-level knowledge is ab-
stracted using various techniques. On the other hand, high-
level knowledge is refined and confronted against the pre-
viously extracted views. By reconciling the conceptual and
concrete architectures, hybrid processes are frequently used
to stop architectural erosion [83, 98]. Hybrid approaches
often use hypothesis recognizers that provide bottom-up re-
verse engineering strategies to support top-down exploration
of architectural hypotheses [97].
Examples. Sartipi implements a pattern-based SAR ap-
proach in Alborz [110]. The architecture reconstruction has
two phases. During the first bottom-up phase, Alborz parses
the source code, presents it as a graph, then divides that
graph in cohesive regions using data mining techniques. The
resulting model is at a higher abstraction level than the code.
During the second top-down phase, the reverse engineer iter-
atively specifies his hypothesized views of the architecture in
terms of patterns. These patterns are approximately mapped
with graph regions from the previous phase using graph
matching and clustering techniques. Finally, the reverse en-
gineer decides to proceed or not to a new iteration based
on the partially reconstructed architecture and evaluation
information that Alborz provides.

Christl et al. present an evolution of the Reflexion Model
[13]. They enhance it with automated clustering to facilitate
the mapping phase. As in the Reflexion Model, the reverse
engineer defines his hypothesized view of the architecture in
a top-down process. However, instead of manually mapping
hypothetic entities with concrete ones, the new method in-
troduces clustering analysis to partially automate this step.
The clustering algorithm groups concrete entities that are not
mapped yet with similar concrete entities already mapped to
hypothesized entities.

To assess the creation of product lines, Stoermer et al.
introduce the MAP method [117]. MAP combines (1) a
bottom-up process to recover the concrete architectures of ex-
isting products; (2) a top-down process to map architectural
styles onto recovered architectural views; (3) an approach
to analyze commonalities and variabilities among recovered
architectures. They stress the ability of architectural styles to
act as the structural glue of the components, and to highlight
architecture strengths and weaknesses.

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

Other hybrid processes include Focus [18, 84], Nimeta
[106], ManSART [4, 43], ART [32], X-Ray [86], ARM [40]
and DiscoTect [146]. In ManSART, a top-down recogni-
tion engine maps a style-compliant conceptual view with a
system overview defined in a bottom-up way using a visual-
ization tool [4, 43].

Table 1. SAR process overview

Alborz [110] hybrid
ArchView [99] bottom-up
ArchVis [45] bottom-up
ARES [26] bottom-up
ARM [40] hybrid
ARMIN [58] bottom-up
ART [32] hybrid
Bauhaus [13, 25, 62] hybrid
Bunch [79, 90] bottom-up
Cacophony [28] hybrid
Dali [56, 57] bottom-up
DiscoTect [146] hybrid
Focus [18, 84] hybrid
Gupro [24] bottom-up
Intensive [87, 145] bottom-up
ManSART [4, 43] hybrid
MAP [117] hybrid
PBS/SBS [8, 31, 49, 113] hybrid
PuLSE/SAVE [61, 103] top-down
QADSAR [118, 119] hybrid
Revealer [100, 101] bottom-up
RMTool [92, 93] top-down
SARTool [30, 64] bottom-up
SAVE [89, 94] top-down
Softwarenaut [77] bottom-up

... with Hapax [67, 76, 77] bottom-up
Symphony,Nimeta [106, 135] hybrid
URCA [6] bottom-up
W4 [44] top-down
X-Ray [86] hybrid
— [7] hybrid
— [51] hybrid
— [75] bottom-up
— [97] hybrid
— [132] hybrid

4. SAR Inputs

Most often, SAR works from source code representations,
but it also considers other kinds of information, such as
dynamic information extracted from a system execution, or
historical data held by version control system repositories.
A few approaches work from architectural elements such
as styles or viewpoints. There is no clear trend because
SAR approaches are fed with heterogeneous information of
various abstraction levels. In this section, we present first
the non-architectural inputs, then the architectural inputs.

4.1. Non-architectural inputs

Source Code Constructs. The source code is an om-
nipresent trustworthy source of information that most ap-
proaches consider. Some of the approaches directly query
the source code using regular expressions like in RMTool
[92, 93] or [100, 101]. However, most of them do not work
from the source code text but represent it using metamodels.
These metamodels cope with the paradigm of the analyzed
software. For instance, the language independent metamodel
FAMIX is used to reverse engineer object-oriented appli-
cations [17]; its concepts include classes, methods, calls
or accesses. FAMIX is used in ArchView [99], Software-
naut [77] and Nimeta [106]. Other metamodels such as the
Dagstuhl Middle Metamodel [72] or GXL [48] have been
proposed with the same intent of abstracting the source code.
Symbolic Textual Information. Some approaches work
from the symbolic information available in the comments
[100, 101] or in the method names [66].
Dynamic Information. Static information is often insuf-
ficient for SAR since it only provides a limited insight into
the runtime nature of the analyzed software; to understand
behavioral system properties, dynamic information is more
relevant [68]. Some SAR approaches use dynamic informa-
tion alone [138, 146] while others mix static and dynamic
knowledge [51, 73, 99, 107, 137]. A lot of approaches us-
ing dynamic information extract design views rather than
architecture [41, 42, 104, 125, 126]. Huang et al. consider
runtime events such as method calls, CPU utilization or net-
work bandwidth consumption because it may inform reverse
engineers about system security properties or system perfor-
mance aspects [51]. DiscoTect uses dynamic information too
[146]. Li et al. use run-time process information to derive
architectural views [73]. Some works focus on dynamic soft-
ware information visualization [21, 54, 126]. To get a more
precise analysis of these works, we refer the reader to the
survey of Hamou-Lhadj et al. [42]. Dynamic information is
also used to identify features [25, 38, 109], design patterns
[46, 139], or collaborations and roles [105, 142].
Physical Organization. The physical organization of ap-
plications in terms of files and folders often reveals architec-
tural information. ManSART [4, 43] and Softwarenaut [77]
work from the structural organization of physical elements
such as files, folders, or packages. Some approaches map
packages or classes to components and use the hierarchical
nature of the physical organization as architectural input
[69, 102, 143].
Human Organization. According to Conway [15]: “Or-
ganizations which design systems are constrained to produce
designs which are copies of the communication structures
of these organizations”. It is then important to consider the
influence of the human organization on the extracted archi-
tectures or views. Inspired by Conway’s thesis, Bowman
et al. use the developer’s organization to form an ownership

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

architecture that helps stakeholders reconstruct the software
architecture [7].
Historical Information. Historical information is rarely
used in SAR. Wuyts worked on the co-evolution between
code and design [145]. ArchView is a recent approach that
exploits source control system data and bug reports to an-
alyze the evolution of recovered architectural views [99].
Mens et al. analyse the evolution of extracted software views
with Intensive [87, 145]. To assist a reverse engineer in un-
derstanding dependency gaps in a reflexion model [92, 93],
Hassan et al. annotate entity dependencies with sticky notes
that record dependency evolution and rationale with infor-
mation extracted from version control systems [44].
Human Expertise. Although one cannot entirely trust hu-
man knowledge, it is very helpful when it is available. At
high abstraction levels, SAR is iterative and requires human
knowledge to guide it and to validate its results. To specify a
conceptual architecture [44, 84, 92], reverse engineers have
to study system requirements, read available documentation,
interview stakeholders, recover design rationale, investigate
hypotheses and analyze the business domain. Human exper-
tise is also required when specifying viewpoints, selecting
architectural styles (Section 4.2), or investigating orthog-
onal artifacts. While SAR processes involve strategy and
knowledge of the domain and the application itself, only
a few approaches take human expertise explicitly into ac-
count. Ivkovic et al. [53] propose to systematically update a
knowledge base that would become a helpful collection of
domain-specific architectural artifacts.

4.2. Architectural inputs

Architectural styles and viewpoints are the paramount of
software architecture, therefore we analyzed whether SAR
approaches consider them as input to steer the extraction
process.
Styles. Architectural styles such as pipes and filters, lay-
ered system, data flow and blackboard are popular because
like design patterns, they represent recurrent architectural
situations [11, 59]. They are valuable, expressive, and ac-
cepted abstractions for SAR and more generally for software
understanding.

Recognizing them is however a challenge because they
span several architectural elements and can be implemented
in various ways [100, 101]. The question that turns up is
whether SAR helps reverse engineers specify and extract
architectural styles.
Examples. In Focus, Ding et al. use architectural styles
to infer a conceptual architecture that will be mapped to a
concrete architecture extracted from the source code [18, 84].

Closely related to this work, Medvidovic et al. introduce
an approach to stop architectural erosion. In a top-down pro-
cess, requirements serve as high-level knowledge to discover
the conceptual architecture [83]. In a bottom-up process,

system implementation serves as low level knowledge to re-
cover the concrete architecture. Both the conceptual and the
concrete architectures are incrementally built. The reverse
engineer reconciles the two architectures, based on architec-
tural styles. Their approach considers architectural styles
as key design idioms since they capture a large number of
design decisions, their rationale, effective compositions of
architectural elements, and system qualities that will likely
result from using the style.

DiscoTect reconstructs style-compliant architectures
[146]. Using a state machine, DiscoTect incrementally rec-
ognizes interleaved patterns in filtered execution traces of the
application. The state machine represents an architectural
style; by refining it, the reverse engineer defines which hy-
pothesized architectural style the tool should look for [123].

ManSART [4, 43], ART [32] and MAP [117] are other
SAR approaches taking architectural styles into account.

Viewpoints. The system architecture acts as a mental
model shared among stakeholders [50]. Since the stakehold-
ers’ interests are diverse, viewpoints are important aspects
that SAR may consider [52, 114]. Viewpoint catalogues
were built to address this issue: the 4 + 1 viewpoints of
Kruchten [65]; the four viewpoints of Soni et al. [47, 116],
the build-time viewpoint introduced by Tu et al. [134] or
the implicit viewpoints inherent to the UML standard. Most
SAR approaches reconstruct architectural views according
either to a single viewpoint or a few preselected viewpoints.
Smolander et al. highlight that viewpoints cannot be stan-
dardized but should be selected or defined according to the
environment and to the situation [114]. O’Brien et al. present
the View-Set Scenario pattern that helps determine which ar-
chitectural views sufficiently describe the system and cover
the stakeholders’ needs [95].

Examples. The Symphony approach of van Deursen et al.
aims at reconstructing software architecture using appro-
priate viewpoints [135]. Viewpoints are selected from a
catalogue or are defined if they do not exist, and they evolve
throughout the process. They constrain SAR to provide ar-
chitectural views matching the stakeholders’ expectations,
and ideally immediately usable. The authors show how to
define viewpoints step by step, and applied their approach
on four case studies with different stakeholders’ goals. They
provide architectural views to reverse engineers following
the viewpoints those reverse engineers typically use dur-
ing design phases. Based on Symphony, Riva proposed the
view-based SAR approach Nimeta [106].

Favre outlines Cacophony, a generic SAR metamodel-
driven approach [28]. Like Symphony, Cacophony recog-
nizes the need to identify the viewpoints that are relevant
to the stakeholders’ concerns and that SAR must consider.
Contrary to Symphony, Cacophony states that metamodels
are keys for representing viewpoints.

The QADSAR approach both reconstructs the architec-

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

ture of a system and drives quality attribute analyses on it
[118, 119]. To identify the relevant architectural viewpoints,
reverse engineers formulate scenarios that highlight interest-
ing quality attributes of the system. ARES [26] and SARTool
[30, 64] also take viewpoints into account.

4.3. Mixing inputs

Most approaches work from a limited source of informa-
tion, even if multiple inputs are necessary to generate rich
and different architectural views. Kazman et al. [55] advo-
cate the fusion of multiple source of inputs to produce richer
architectural views: for example, they produce interprocess
communication and file access views. Lange et al. [68] mix
dynamic and static views to extract design patterns.

ArchVis [45] works from source code, file structures and
dynamic information such as network log or message sends.

Knodel et al. [60] discuss the combination of different
information sources such as documents, source code and
historical data. However it is not clear whether the approach
is used in practice. Multiple inputs must be organized and
Ivkovitch proposes a systematic way to organize application
domain knowledge into a unified structure [53].

5. SAR Techniques

There is a variety of formalisms used to express, query
and exchange data representing applications [36, 107]. A
couple of exchange formats exist from simple textual tuples
in RSF [141] or in TA [8, 31, 49, 113], to XML in GXL [48]
and in [24, 106], or to CDIF in FAMIX [17]. The format may
limit the merging or manipulation of the information [22].
An important property of an exchange format is that it can
be easily generated and used with simple tools [19].

SAR techniques are often correlated with the data they
operate on and the formalisms used for their representation
and manipulation: for example, Mens et al. express logic
queries on facts [87, 145] while Ebert et al. perform queries
on graphs [24]. Thus, instead of using data formalisms as a
criterion, we classify techniques into three automation levels:
Quasi-manual. the reverse engineer manually identifies ar-

chitectural elements using a tool to assist him in under-
standing his findings;

Semi-automatic. the reverse engineer manually instructs the
tool how to automatically discover refinements or recover
abstractions;

Quasi-automatic. the tool has the control and the reverse
engineer steers the iterative recovery process.

Of course, the boundaries in the classification are not clear-
cut. Moreover, reverse engineers often use visualization tools
to understand the results of their analyses, but a comparison
of the visualization tools is beyond the scope of this article.
Table 3 synthesizes the classification of SAR techniques.

Table 2. SAR input overview

Alborz [110] src dyn exp
ArchView [99] src dyn hist exp
ArchVis [45] src text dyn phys style viewp
ARES [26] src exp
ARM [40] src exp
ARMIN [58] src exp
ART [32] src exp style
Bauhaus [13, 25, 62] src dyn exp
Bunch [79, 90] src exp
Cacophony [28] exp viewp
Dali [56, 57] src exp
DiscoTect [146] src dyn exp style
Focus [18, 84] src exp style
Gupro [24] src exp
Intensive [87, 145] src exp
ManSART [4, 43] src phys exp style
MAP [117] src exp style
PBS/SBS [8, 31, 49, 113] src phys exp
PuLSE/SAVE [61, 103] src exp
QADSAR [118, 119] src exp viewp
Revealer [100, 101] src text exp
RMTool [92, 93] src exp
SARTool [30, 64] src exp viewp
SAVE [89, 94] src exp
Softwarenaut [77] phys exp

... with Hapax [67, 76, 77] src text phys exp
Symphony,Nimeta [106, 135] dyn exp viewp
URCA [6] src dyn exp
W4 [44] src hist exp
X-Ray [86] src exp
— [7] src org hist exp
— [51] src dyn style
— [75] src exp
— [97] src dyn exp style
— [132] src exp
src source code text textual information dyn dynamic information

phys physical organization org human organization
hist historical information exp human expertise style styles

viewp viewpoints

5.1. Quasi-manual techniques

SAR is a reverse engineering activity which faces scala-
bility issues in manipulating knowledge. In response to this
problem, researchers have proposed slightly assisted tech-
niques; we group those into two categories: construction-
based techniques and exploration-based techniques.
Construction-based techniques. These techniques recon-
struct the software architecture by manually abstracting
low-level knowledge, thanks to interactive and expressive
visualization tools: Rigi [91, 128], CodeCrawler [70],
Shrimp/Creole [121, 122], Verso [69], 3D [81] or
GraphViz [33].
Exploration-based techniques. These techniques give re-
verse engineers an architectural view of the system by guid-
ing them through the highest-level artifacts of the imple-

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

mentation, like in Softwarenaut [77]. The architectural view
is then closely related to the developer’s view. Instead of
providing guidance, the SAB browser [27] allows reverse
engineers to assign architectural layers to classes and then to
navigate the resulting architectural views. ArchView1 [29]
visualizes simple architectural elements and their relation-
ships in 3D.

5.2. Semi-automatic techniques

Semi-automatic techniques automate repetitive aspects
of SAR. The reverse engineer steers the iterative refine-
ment or abstraction, leading to the identification of archi-
tectural elements. As in the quasi-manual techniques, we
distinguish two categories: abstraction-based techniques and
investigation-based ones.
Abstraction-based techniques. These techniques aim at
mapping low-level concepts with high-level ones. Reverse
engineers specify reusable abstraction rules and execute
them automatically; we identified five approaches:
Graph queries. Gupro queries graphs using a specialized

declarative expression language called GReQL [24]. Rigi
is based on graph transformations written in Tcl [91, 128].

Relational queries. Often, relational algebra engines ab-
stract data out of entity-relation databases. Dali [56, 57]
and ARMIN [58] use SQL queries to define grouping rules.
Relational algebra defines a repeatable set of transforma-
tions such as abstraction or decomposition to create a par-
ticular architectural view. In PBS/SBS, Holt et al. propose
the Grok relational expression calculator to reason about
software facts [49]. Krikhaar presents a SAR approach
based on an extension of relational algebra [30, 64].

Logic queries. Logic queries are powerful because of the un-
derlying unification mechanism which allows us the writ-
ing of dense multi valued queries. Kramer and Prechelt
[63], Wuyts [144], Gueneheuc [39] use Prolog queries to
identify design patterns. Mens and Wuyts use Prolog as a
meta programming language to extract intensional source-
code views and relations in Intensive [87, 145]. Richner
also chose a logic query based approach to reconstruct
architectural views from static and dynamic facts [104].

Programs. Some approaches build analyses as plain object-
oriented programs. For example, the analyses made in
the Moose environment are performed as object-oriented
programs that manipulate models representing the various
inputs [20].

Lexical and structural queries. Some approaches are di-
rectly based on the lexical and structural information in
the source code. Pinzger et al. state that some hot-spots
clearly localize patterns in the source code and consider
them as the starting point of SAR [100, 101]. To drive a
pattern-supported architecture recovery, they introduce a

1Different of ArchView Pinzger’s approach [99], though homonymous.

pattern specification language and the Revealer tool. RM-
Tool identifies architectural elements and relations using
lexical queries [92, 93]. The Searchable Bookshelf is a
typical example of supporting navigation via queries [113].
ArchVis [45] supports multiple inputs (files, programs,
Acme information), works from static and dynamic infor-
mation (program execution but also log files and network
traffic), and provides different views to specific stakehold-
ers (component, developer, manager views).

Investigation-based techniques. These techniques map
high-level concepts with low-level ones. The considered
high-level concepts cover a wide area from architectural
descriptions and styles to design patterns and features. Ex-
plored approaches are:
Recognizers. ManSART [4, 43], ART [32], X-Ray [86] and

ARM [40] are based on recognizers for architectural styles
or patterns written in a query language. The tools then
report the source code elements matching the recognized
structures. More precisely, pattern definitions in ARM
are progressively refined and finally transformed in SQL
queries exploitable in Dali [56, 57].

Graph pattern matching. In ARM [40], pattern definitions
can also be transformed into graph patterns to match a
graph-based source code representation; this is similar to
what is done in [110].

State engine. In DiscoTect state machines are defined to
check architectural styles conformance [146]. A state
engine tracks the system execution at run-time and outputs
architectural events when the execution satisfies the state
machine description.

Maps. SAR approaches based on the Reflexion Model
[92, 93] use rules to map hypothesized high-level enti-
ties with source code entities. Since these Perl-like rules
take plain source code as input, we could have classified
the reflexion model in the lexical and structural queries
group mentioned previously, but the real focus is on the
mapping. SoFi [12] use naming conventions of files and
folders to automatically group entities.

5.3. Quasi-automatic techniques

Purely automated SAR techniques do not exist. Reverse
engineers must still steer the most automated approaches.
Those often combine concept, dominance and cluster analy-
sis techniques.
Concepts. Formal concept analysis is a branch of lattice
theory used to identify design patterns [3], features [25, 38],
or modules [111]. Tilley et al. [130] present a survey of
works using formal concept analysis [5, 16, 108, 112, 115,
131, 136].
Clustering algorithms. Clustering algorithms identify
groups of objects whose members are similar in some way.
They have been used to produce software views of appli-
cations. To identify subsystems, Anquetil and Lethbridge

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

cluster files using naming conventions [2]. Some approaches
automatically partition software products into cohesive clus-
ters that are loosely interconnected [1, 79, 80, 90, 133, 140].
Clustering algorithms are also used to extract features from
object interactions [109]. Koschke emphasizes the need to re-
fine existing clustering techniques, first by combining them,
and second by integrating the reverse engineer as a confor-
mance supervisor of the reconstruction process [13, 62].
Dominance. In directed graph, a node D dominates a node
N if all paths from a given root to N go through D. In soft-
ware maintenance, dominance analysis identifies the related
parts in an application [10, 14, 37]. In the context of software
architecture extraction, adhering to Koschke’s thesis, Trifu
unifies cluster and dominance analysis techniques to recover
architectural components in object-oriented legacy systems
[133]. Similarly, Lundberg et al. outline a unified approach
centered around dominance analysis [75]. On one hand,
they demonstrate how dominance analysis identifies passive
components. On the other hand, they state that dominance
analysis is not sufficient to recover the complete architecture:
this requires other techniques such as concept analysis to
take component interactions into account.

6. SAR Outputs
SAR approaches result in different outputs, among which

visual software views, architectures and conformance data,
as well as analyses.

6.1. Visual software views

A lot of approaches offer architectural views or use visu-
alizations as output. As we mentioned earlier, several tools
such as Rigi [91, 128], Shrimp/Creole [121, 122], GraphViz
[33] or CodeCrawler [70] are used to visualize graph rep-
resentations of software views [31, 56, 62, 101, 106, 110].
Some authors propose open toolkits to build architectural
extractors [74, 88, 127].

Classifying the outputs of the various visualization ap-
proaches is difficult and outside of the scope of this arti-
cle, but we can still distinguish some groups: some visual-
ization approaches present source code entities and group
them as boxes using the visualization tools mentioned above
[31, 56, 62, 101, 106, 110]. Some offer enhanced views
that provide architectural information [77, 87, 99]. In this
context some approaches improve their visualizations with
2D/3D [29, 69, 74, 81, 127]. Finally some approaches define
dedicated tool support to represent architectural elements
and layers; for example, the Software Architecture Browser
is a graphical editor dedicated to navigation in layers [27].
Pacione proposed both the architecture-oriented visualiza-
tion tool Vanessa, and a taxonomy in which he surveyed
related tools [96].

Some SAR approaches focus on the behavior of software
(Section 4). Hamou-Lhadj et al. surveyed trace visualization

Table 3. SAR technique overview

Quasi- Semi-automatic Quasi-
Tools manual Abstr. Invest. auto.

Alborz [110] gpm auto
ArchView [99] rel
ArchVis [45] cns rel, prg auto
ARES [26]
ARM [40] cns gra, rel
ARMIN [58] gra
ART [32] rec
Bauhaus [13, 25, 62] rec, map auto
Bunch [79, 90] auto
Cacophony [28]
Dali [56, 57] cns rel
DiscoTect [146] sta
Focus [18, 84] cns
Gupro [24] gra
Intensive [87, 145] log
ManSART [4, 43] cns rec
MAP [117]
PBS/SBS [8, 31, 49, 113] rel map
PuLSE/SAVE [61, 103] map
QADSAR [118, 119]
Revealer [100, 101] lex
RMTool [92, 93] map
SARTool [30, 64] rel
SAVE [89, 94] map
Softwarenaut [77] exp

... with Hapax [67, 76, 77] gra
Symphony,Nimeta [106, 135]
URCA [6] auto
W4 [44] map
X-Ray [86] rec auto
— [7]
— [51] auto
— [75] auto
— [97] cns, exp auto
— [132] rel map

cns construction exp exploration gra graph queries
rel relational queries log logic queries prg programs

lex lexical queries rec recognizers gpm graph pattern matching
sta state engine map maps auto quasi-automatic

tools [42]. To offer multiple views of an application, it is
interesting to combine static and dynamic analyses [45, 68,
104, 124]. For example, Shimba [124] combines static and
dynamic information to produce high-level views of Java
systems; it displays static information with Rigi [91, 128],
and dynamic information as state diagrams. Both views
are thus displayed separately, but the reverse engineers can
constrain the abstraction of each view to the other one.

6.2. Architecture

Since SAR approaches focus on providing better under-
standing of the applications, they tend to present recon-
structed architectural views to stakeholders. As the code
evolves, some approaches focus on the co-evolution of the

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

reconstructed architecture: Intensive [87, 145] synchronizes
the architecture with its implementation and highlights the
differences due to evolution.

Iterative approaches based on the reflexion model [13,
61, 92, 105] make explicit the absences, convergences and
divergences between the conceptual architecture and the
architecture that results from mapping source code elements
to architectural elements.

Architecture Description Languages (ADLs) have been
proposed both to formally define architectures and to sup-
port architecture-centric development activities [82]. In the
context of SAR, X-Ray [86] uses Darwin [78] to express
reconstructed architectural views. Darwin was also extended
by Eixelsberger et al. [26]. Acme [36] has ADL-like fea-
tures and is used in DiscoTect [146]. Huang et al. specify
architectures with the ABC ADL [51].

6.3. Conformance

Some approaches focus on determining the conformance
of an application to a given architecture. We distinguish two
kinds of architecture conformance: horizontal conformance
between similar abstractions and vertical conformance be-
tween different abstraction levels.

Horizontal conformance is checked between two recon-
structed views, or between a conceptual and a concrete ar-
chitecture, or between a product line reference architecture
and the architecture of a given product. For example, SAR
approaches for product line migration identify commonal-
ities and variabilities among products, like in MAP [117].
Sometimes, SAR compares a conceptual architecture with
the reconstructed one [40, 132]. Sometimes, an architecture
must conform to architectural rules or styles, as discussed
in Nimeta [106], the SARTool tool [30, 64], Focus [18, 84]
and DiscoTect [146].

Vertical conformance assesses whether the recontructed
architecture conforms to the implementation. Both Reflexion
Model-based [92, 93] and co-evolution-oriented [87, 145]
approaches revolve around vertical conformance.

6.4. Analysis

Some approaches perform extra analysis on the extracted
architecture to qualify it or to refine it further. Reverse
engineers use modularity quality metrics either to iteratively
assess current results and steer the process, or to get cues
about reuse and possible system improvement [62, 110].

A few SAR approaches propose other analyses:
ArchView [99] provides structural and evolutionary proper-
ties of a software application. Eixelsberger et al. in ARES
[26], and Stoermer in QADSAR [118, 119] reconstruct soft-
ware architectures to highlight properties like safety, concur-
rency, portability or other high-level statistics [51].

ARM [40], Revealer [100, 101], Alborz [110] highlight
architectural patterns or orthogonal artifacts.

Table 4. SAR output overview

Alborz [110] vis ana
ArchView [99] vis
ArchVis [45] vis desc
ARES [26] vis desc ana
ARM [40] vis
ARMIN [58] vis ana
ART [32] vis
Bauhaus [13, 25, 62] vis vert
Bunch [79, 90] vis
Cacophony [28]
Dali [56, 57] vis desc ana
DiscoTect [146] vis desc horz vert
Focus [18, 84] vis
Gupro [24] vis
Intensive [87, 145] vis
ManSART [4, 43] vis
MAP [117] vis
PBS/SBS [8, 31, 49, 113] vis
PuLSE/SAVE [61, 103] vis vert ana
QADSAR [118, 119] vis ana
Revealer [100, 101] vis
RMTool [92, 93] vis vert
SARTool [30, 64] vis horz vert ana
SAVE [89, 94] vis vert
Softwarenaut [77] vis

... with Hapax [67, 76, 77] vis
Symphony,Nimeta [106, 135] vis horz vert ana
URCA [6] vis
W4 [44] vis vert ana
X-Ray [86] vis desc
— [7] vis horz
— [51] desc horz ana
— [75] vis
— [97] vis
— [132] vis vert

vis architecture visualization desc architecture description
horz horizontal conformance vert vertical conformance

ana analysis

7. Discussion and conclusion

Here are some general points that appeared to us at the
light of this survey. A lot of approaches visualize software
entities but few work from diverse information sources or
even take advantage of having different kinds of informa-
tion. Several times this paper stresses the need to provide
stakeholders with a large variety of views at different levels
of abstraction. SAR must be integrated in an environment
that provides reverse engineers with views at different levels
of abstraction and means to navigate horizontally and verti-
cally. To fulfill this requirement, we state that a mechanism
is required to express consistently viewpoints whatever the
level of abstraction of the views they respectively describe.
In this perspective, the metamodel-based SAR outlined by
Favre is promising [28].

Lots of works focused on extracting design information

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

such as design patterns but stopped building on this knowl-
edge up to the architectural level. Similarly few works bring
together features and architectural information.

Because it is complex to extract architectural components
from source code, those are often simply mapped to packages
or files. Even if this practice is understandable, we think it
limits and overloads the component term.

We see that few works really take into account archi-
tectural styles. That may be the result of having different
communities working on architectural description languages
and maintenance.

SAR is complex and time consuming. The iterative as-
pects of SAR imposed themselves as a key point to ensure a
successful reconstruction. Now to reach a high-level of ma-
turity in leading such an activity, we advocate that SAR has
to support co-evolution and conformance checking mecha-
nisms. Indeed both horizontal and vertical conformance help
bringing all the recovered views face to face. That confronta-
tion allows reverse engineers to refine views iteratively, to
identify commonalities and variabilities among views (espe-
cially if they represent product line architectures), to lead
impact analysis or still to update views when the system
evolves.

Since successful systems are doomed to continually
evolve and grow, SAR approaches should support co-
evolution mechanisms to keep all recovered views synchro-
nized with the source code. The logic-based approach of
Intensive proved to be efficient in checking horizontal and
vertical conformance and in allowing co-evolution [87, 145].

It is hard to classify research approaches in a complex
field where the subject matter is as fuzzy as software archi-
tecture. Still this survey has provided an organization of
the significant fundamental contributions made on software
architecture reconstruction. To structure the paper, we fol-
lowed the general process of SAR: what are the stakeholders’
goals; how does the general reconstruction proceed; what are
the available sources of information; based on this, which
techniques can we apply, and finally what kind of knowledge
does the process provide. We believe that software archi-
tecture reconstruction is still an important topic since it is
crucial for the understanding of large industrial applications
and their evolution.

References
[1] Anquetil and Lethbridge. Experiments with Clustering as a Soft-

ware Remodularization Method. In WCRE, 1999.
[2] Anquetil and Lethbridge. Recovering software architecture from

the names of source files. Journal of Software Maintenance: Re-
search and Practice, 11, 1999.

[3] Arévalo, Buchli, and Nierstrasz. Detecting implicit collaboration
patterns. In WCRE, 2004.

[4] A.S.Yeh, Harris, and Chase. Manipulating recovered software
architecture views. In ICSE, 1997.

[5] Bojic and Velasevic. Reverse Engineering of Use Case Realizations
in UML. In SAC, 2000.

[6] Bojic and Velasevic. A use-case driven method of architecture
recovery for program understanding and reuse reengineering. In
CSMR, 2000.

[7] Bowman and Holt. Software architecture recovery using conway’s
law. In the Centre for Advanced Studies Conference, CASCON’98,
1998.

[8] Bowman, Holt, and Brewster. Linux as a case study: its extracted
software architecture. In ICSE, 1999.

[9] Brooks. Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies, 18,
1983.

[10] Burd and Munro. An initial approach towards measuring and
characterizing software evolution. In WCRE, 1999.

[11] Buschmann, Meunier, Rohnert, Sommerlad, and Stad. Pattern-
Oriented Software Architecture — A System of Patterns. Wiley,
1996.

[12] Carmichael, Tzerpos, and Holt. Design maintenance: Unexpected
architectural interactions. In ICSM, 1995.

[13] Christl, Koschke, and Storey. Equipping the reflexion method with
automated clustering. In WCRE, 2005.

[14] Cimitile and Visaggio. Software salvaging and the call dominance
tree. JSS, 28, 1995.

[15] Conway. How do committees invent ? Datamation, 14(4), 1968.
[16] Dekel and Gil. Revealing class structure with concept lattices. In

WCRE, 2003.
[17] Demeyer, Tichelaar, and Ducasse. FAMIX 2.1 — The FAMOOS

Information Exchange Model. Technical report, Univ. of Bern,
2001.

[18] Ding and Medvidovic. Focus: A light-weight, incremental ap-
proach to software architecture recovery and evolution. In WICSA,
2001.

[19] Ducasse and Demeyer, eds. The FAMOOS Object-Oriented Reengi-
neering Handbook. Univ. of Bern, 1999.

[20] Ducasse, Gîrba, Lanza, and Demeyer. Moose: a collaborative
and extensible reengineering environment. In Tools for Software
Maintenance and Reengineering. Franco Angeli, 2005.

[21] Ducasse, Lanza, and Bertuli. High-level polymetric views of con-
densed run-time information. In CSMR, 2004.

[22] Ducasse and Tichelaar. Dimensions of reengineering environment
infrastructures. Journal on Software Maintenance, 15(5), 2003.

[23] Dueñas, Lopes de Oliveira, and de la Puente. Architecture recovery
for software evolution. In CSMR, 1998.

[24] Ebert, Kullbach, Riediger, and Winter. GUPRO – generic un-
derstanding of programs, an overview. Fachberichte Informatik
7–2002, Universität Koblenz-Landau, 2002.

[25] Eisenbarth, Koschke, and Simon. Locating features in source code.
IEEE Computer, 29(3), 2003.

[26] Eixelsberger, Ogris, Gall, and Bellay. Software architecture recov-
ery of a program family. In ICSE, 1998.

[27] Erben and Löhr. Sab - the software architecture browser. In
VISSOFT, 2005.

[28] Favre. CacOphoNy: Metamodel-driven software architecture re-
construction. In WCRE, 2004.

[29] Feijs and Jong. 3d visualization of software architectures. Commu-
nications of the ACM, 41(12), 1998.

[30] Feijs, Krikhaar, and van Ommering. A relational approach to
support software architecture analysis. Software – Practice and
Experience, 28(4), 1998.

[31] Finnigan, Holt, Kalas, Kerr, Kontogiannis, Mueller, Mylopoulos,
Perelgut, Stanley, and Wong. The software bookshelf. IBM Systems
Journal, 36(4), 1997.

[32] Fiutem, Antoniol, Tonella, and Merlo. Art: an architectural re-
verse engineering environment. Journal of Software Maintenance:
Research and Practice, 11(5), 1999.

[33] Gansner and North. An open graph visualization system and its
applications to software engineering. Software Practice Experience,
30(11), 2000.

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

[34] Garlan. Software architecture: a roadmap. In ICSE – Future of SE
Track, 2000.

[35] Garlan, Allen, and Ockerbloom. Architectural mismatch: Why
reuse is so hard. IEEE Software, 12(6), 1995.

[36] Garlan, Monroe, and Wile. Acme: Architectural description of
component-based systems. In Foundations of Component-Based
Systems, chapter 3. Cambridge University Press, 2000.

[37] Girard and Koschke. Finding components in a hierarchy of modules:
a step towards architectural understanding. In ICSM, 1997.

[38] Greevy and Ducasse. Correlating features and code using a compact
two-sided trace analysis approach. In CSMR, 2005.

[39] Guéhéneuc, Sahraoui, and Zaidi. Fingerprinting design patterns.
In WCRE, 2004.

[40] Guo, Atlee, and Kazman. A software architecture reconstruction
method. In WICSA, 1999.

[41] Hamou-Lhadj, Braun, Amyot, and Lethbridge. Recovering behav-
ioral design models from execution traces. In CSMR, 2005.

[42] Hamou-Lhadj and Lethbridge. A survey of trace exploration tools
and techniques. In CASON. IBM Press, 2004.

[43] Harris, Reubenstein, and Yeh. Reverse engineering to the architec-
tural level. In ICSE. ACM, 1995.

[44] Hassan and Holt. Using development history sticky notes to under-
stand software architecture. In IWPC, 2004.

[45] Hatch. Software Architecture Visualisation. PhD thesis, Research
Institute in Software Engineering, Univ. of Durham, 2004.

[46] Heuzeroth, Holl, Högström, and Löwe. Automatic design pattern
detection. In IWPC, 2003.

[47] Hofmeister, Nord, and Soni. Applied Software Architecture. Addi-
son Wesley, 2000.

[48] Holt, Schürr, Sim, and Winter. Gxl: A graph-based standard
exchange format for reengineering. Science of Computer Program-
ming, 60(2), 2006.

[49] Holt. Structural manipulations of software architecture using tarski
relational algebra. In WCRE, 1998.

[50] Holt. Sofware architecture as a shared mental model. In ASERC
Workshop on Software Architecture, Univ. of Alberta, 2001.

[51] Huang, Mei, and Yang. Runtime recovery and manipulation of
software architecture of component-based systems. Automated
Software Engineering, 13(2), 2006.

[52] IEEE. Ieee recommended practice for architectural description
for software-intensive systems. Technical report, The Architecture
Working Group of the Software Engineering Committee, 2000.

[53] Ivkovic and Godfrey. Enhancing domain-specific software archi-
tecture recovery. In IWPC, 2003.

[54] Jerding and Rugaber. Using visualization for architectural localiza-
tion and extraction. In Baxter, Quilici, and Verhoef, eds., WCRE,
1997.

[55] Kazman and Carriere. View extraction and view fusion in architec-
tural understanding. In ICSR, 1998.

[56] Kazman and Carriere. Playing detective: Reconstructing software
architecture from available evidence. Automated Software Engi-
neering, 1999.

[57] Kazman, O’Brien, and Verhoef. Architecture reconstruction guide-
lines. CMU/SEI-2001-TR-026, Carnegie Mellon Univ., Software
Engineering Institute, 2001.

[58] Kazman, O’Brien, and Verhoef. Architecture reconstruction guide-
lines, third edition. CMU/SEI-2002-TR-034, Carnegie Mellon
Univ., Software Engineering Institute, 2003.

[59] Klein. Sources of Power — How People Make Decisions. Addison
Wesley, 1999.

[60] Knodel, John, Ganesan, Pinzger, Usero, Arciniegas, and Riva.
Asset recovery and their incorporation into product lines. In WCRE,
2005.

[61] Knodel, Muthig, Naab, and Lindvall. Static evaluation of software
architectures. In CSMR, 2006.

[62] Koschke. Atomic Architectural Component Recovery for Program
Understanding and Evolution. PhD thesis, Univ. Stuttgart, 2000.

[63] Kramer and Prechelt. Design Recovery by Automated Search for
Structural Design Patterns in Object-Oriented Software. In WCRE,
1996.

[64] Krikhaar. Software Architecture Reconstruction. PhD thesis, Univ.
of Amsterdam, 1999.

[65] Kruchten. The 4+1 view model of architecture. IEEE Software,
12(6), 1995.

[66] Kuhn, Ducasse, and Gîrba. Enriching reverse engineering with
semantic clustering. In WCRE, 2005.

[67] Kuhn, Ducasse, and Gîrba. Semantic clustering: Identifying topics
in source code. Information and Software Technology, 2006.

[68] Lange and Nakamura. Interactive visualization of design patterns
can help in framework understanding. In OOPSLA, New York NY,
1995.

[69] Langelier, Sahraoui, and Poulin. Visualization-based analysis of
quality for large-scale software systems. In ASE, 2005.

[70] Lanza and Ducasse. Polymetric views—a lightweight visual ap-
proach to reverse engineering. IEEE TSE, 29(9), 2003.

[71] Lehman and Belady. Program Evolution: Processes of Software
Change. London Academic Press, 1985.

[72] Lethbridge, Tichelaar, and Plödereder. The dagstuhl middle meta-
model: A schema for reverse engineering. In Electronic Notes in
Theoretical Computer Science, volume 94, 2004.

[73] Li, Chu, Hu, Chen, and Yun. Architecture recovery and abstraction
from the perspective of processes. In WCRE, 2005.

[74] Lowe and Panas. Rapid construction of software comprehension
tools. In Journal of Software Engineering and Knowledge Engi-
neering, 2005.

[75] Lundberg and Löwe. Architecture recovery by semi-automatic com-
ponent identification. Electronic Notes in Theoretical Computer
Science, 82(5), 2003.

[76] Lungu, Kuhn, Gîrba, and Lanza. Interactive exploration of semantic
clusters. In VISSOFT, 2005.

[77] Lungu, Lanza, and Gîrba. Package patterns for visual architecture
recovery. In CSMR, 2006.

[78] Magee, Dulay, Eisenbach, and Kramer. Specifying distributed
software architectures. In ESEC, volume 989 of LNCS. Springer,
1995.

[79] Mancoridis and Mitchell. Using Automatic Clustering to produce
High-Level System Organizations of Source Code. In IWPC, 1998.

[80] Maqbool and Babri. The weighted combined algorithm: A linkage
algorithm for software clustering. In CSMR, 2004.

[81] Marcus, Feng, and Maletic. 3d representations for software visual-
ization. In SoftVis. IEEE, 2003.

[82] Medvidovic and Taylor. A classification and comparison framework
for software architecture description languages. IEEE TSE, 26(1),
2000.

[83] Medvidovic, Egyed, and Gruenbacher. Stemming architectural
erosion by architectural discovery and recovery. In International
Workshop from Software Requirements to Architectures (STRAW),
2003.

[84] Medvidovic and Jakobac. Using software evolution to focus archi-
tectural recovery. Automated Software Engineering, 13(2), 2006.

[85] Mendonca and Kramer. Requirements for an effective architecture
recovery framework. In ISAW-2), 1996.

[86] Mendonça and Kramer. An approach for recovering distributed
system architectures. Automated Software Engineering, 8(3-4),
2001.

[87] Mens, Kellens, Pluquet, and Wuyts. Co-evolving code and de-
sign with intensional views – a case study. Journal of Computer
Languages, Systems and Structures, 32(2), 2006.

[88] Meyer, Gîrba, and Lungu. Mondrian: An agile visualization frame-
work. In SoftVis, 2006.

[89] Miodonski, Forster, Knodel, Lindvall, and Muthig. Evaluation of
software architectures with eclipse. Technical report, Fraunhofer
IESE, 2004.

[90] Mitchell and Mancoridis. On the automatic modularization of

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

software systems using the bunch tool. IEEE TSE, 32(3), 2006.
[91] Müller, Wong, and Tilley. Understanding software systems using

reverse engineering technology. In Alagar and Missaoui, eds.,
Object-Oriented Technology for Database and Software Systems.
World Scientific, 1995.

[92] Murphy, Notkin, and Sullivan. Software reflexion models: Bridging
the gap between source and high-level models. In FSE, 1995.

[93] Murphy. Lightweight Structural Summarization as an Aid to Soft-
ware Evolution. PhD thesis, Univ. of Washington, 1996.

[94] Naab. Evaluation of graphical elements and their adequacy for the
visualization of software architectures. Master’s thesis, Fraunhofer
IESE, 2005.

[95] O’Brien, Stoermer, and Verhoef. Software architecture reconstruc-
tion: Practice needs and current approaches. Technical Report
CMU/SEI-2002-TR-024, Carnegie Mellon Univ., 2002.

[96] Pacione. A Novel Software Visualisation Model to Support Object-
Oriented Program Comprehension. PhD thesis, Univ. Strathclyde,
2005.

[97] Pashov and Riebisch. Using feature modelling for program com-
prehension and software architecture recovery. In ECBS, 2004.

[98] Perry and Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4), 1992.

[99] Pinzger. ArchView – Analyzing Evolutionary Aspects of Complex
Software Systems. PhD thesis, Vienna Univ. of Technology, 2005.

[100] Pinzger, Fischer, Gall, and Jazayeri. Revealer: A lexical pattern
matcher for architecture recovery. In WCRE, 2002.

[101] Pinzger and Gall. Pattern-supported architecture recovery. In
IWPC, 2002.

[102] Pinzger, Gall, and Fischer. Towards an integrated view on architec-
ture and its evolution. Electronic Notes in Theoretical Computer
Science, 127(3), 2005.

[103] Pinzger, Gall, Girard, Knodel, Riva, Pasman, Broerse, and Wijnstra.
Architecture recovery for product families. In Int’l Workshop on
Product Family Engineering, LNCS 3014. Springer, 2004.

[104] Richner and Ducasse. Recovering high-level views of object-
oriented applications from static and dynamic information. In
ICSM, 1999.

[105] Richner and Ducasse. Using dynamic information for the iterative
recovery of collaborations and roles. In ICSM, 2002.

[106] Riva. View-based Software Architecture Reconstruction. PhD
thesis, Technical Univ. of Vienna, 2004.

[107] Riva and Rodriguez. Combining static and dynamic views for
architecture reconstruction. In CSMR, 2002.

[108] Sahraoui, Melo, Lounis, and Dumont. Applying Concept Forma-
tion Methods to Object Identification in Procedural Code. In ASE,
1997.

[109] Salah and Mancoridis. A hierarchy of dynamic software views:
from object-interactions to feature-interacions. In ICSM, 2004.

[110] Sartipi. Software Architecture Recovery based on Pattern Matching.
PhD thesis, Univ. of Waterloo, Canada, 2003.

[111] Siff and Reps. Identifying Modules via Concept Analysis. In ICSM,
1997.

[112] Siff and Reps. Identifying modules via concept analysis. IEEE
TSE, 25(6), 1999.

[113] Sim, Clarke, Holt, and Cox. Browsing and searching software
architectures. In ICSM, 1999.

[114] Smolander, Hoikka, Isokallio, Kataikko, Mäkelä, and Kälviäinen.
Required and optional viewpoints – what is included in software
architecture? Technical report, Univ. Lappeenranta, 2001.

[115] Snelting and Tip. Reengineering Class Hierarchies using Concept
Analysis. In ACM Trans. Programming Languages and Systems,
1998.

[116] Soni, Nord, and Hofmeister. Software architecture in industrial
applications. In ICSE, 1995.

[117] Stoermer and O’Brien. Map - Mining architectures for product line
evaluations. In WICSA, 2001.

[118] Stoermer, O’Brien, and Verhoef. Moving towards quality attribute

driven software architecture reconstruction. In WCRE, 2003.
[119] Stoermer, Rowe, O’Brien, and Verhoef. Model-centric software

architecture reconstruction. Software — Practice and Experience,
36(4), 2006.

[120] Storey, Fracchia, and Müller. Cognitive Design Elements to Sup-
port the Construction of a Mental Model during Software Explo-
ration. Journal of Software Systems, 44, 1999.

[121] Storey and Müller. Manipulating and Documenting Software Struc-
tures using SHriMP Views. In ICSM, 1995.

[122] Storey, Wong, and Müller. How do program understanding tools
affect how programmers understand programs? In WCRE, 1997.

[123] Svetinovic and Godfrey. A lightweight architecture recovery pro-
cess. In WCRE, 2001.

[124] Systä, Koskimies, and Müller. Shimba — an environment for
reverse engineering Java software systems. Software — Practice
and Experience, 1(1), 2001.

[125] Systä. On the relationships between static and dynamic models in
reverse engineering java software. In WCRE, 1999.

[126] Systä. Static and Dynamic Reverse Engineering Techniques for
Java Software Systems. PhD thesis, Univ. of Tampere, 2000.

[127] Telea, Maccari, and Riva. An open visualization toolkit for reverse
architecting. In IWPC, 2002.

[128] Tilley. Domain-retargetable reverse engineering II: Personalised
user interfaces. In ICSM, 1994.

[129] Tilley, Smith, and Paul. Towards a framework for program under-
standing. In IWPC, 1996.

[130] Tilley, Cole, Becker, and Eklund. A Survey of Formal Concept
Analysis Support for Software Engineering Activities. In Stumme,
ed., ICFCA. Springer, 2003.

[131] Tonella. Concept Analysis for Module Restructuring. IEEE TSE,
27(4), 2001.

[132] Tran and Holt. Forward and reverse repair of software architecture.
In CASCON, 1999.

[133] Trifu. Using Cluster Analysis in the Architecture Recovery of
Object-Oriented Systems. PhD thesis, Univ. Karlsruhe, 2001.

[134] Tu and Godfrey. The build-time software architecture view. In
ICSM, 2001.

[135] van Deursen, Hofmeister, Koschke, Moonen, and Riva. Symphony:
View-driven software architecture reconstruction. In WICSA, 2004.

[136] van Deursen and Kuipers. Identifying objects using cluster and
concept analysis. In ICSE, 1999.

[137] Vasconcelos and Werner. Software architecture recovery based on
dynamic analysis. In Brazilian Symposium on Software Engineer-
ing, 2004.

[138] Walker, Murphy, Freeman-Benson, Wright, Swanson, and Isaak.
Visualizing dynamic software system information through high-
level models. In OOPSLA. ACM, 1998.

[139] Wendehals. Improving design pattern instance recognition by
dynamic analysis. In ICSE WODA, 2003.

[140] Wiggerts. Using Clustering Algorithms in Legacy Systems Remod-
ularization. In WCRE, 1997.

[141] Wong. The rigi user’s manual — version 5.4.4. Technical report,
Univ. of Victoria, 1998.

[142] Wu, Sahraoui, and Valtchev. Program comprehension with dynamic
recovery of code collaboration patterns and roles. In CASCON.
IBM Press, 2004.

[143] Wu, Murray, Storey, and Lintern. A reverse engineering approach
to support software maintenance: Version control knowledge ex-
traction. In WCRE, 2004.

[144] Wuyts. Declarative reasoning about the structure object-oriented
systems. In TOOLS USA, 1998.

[145] Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD
thesis, Vrije Univ. Brussel, 2001.

[146] Yan, Garlan, Schmerl, Aldrich, and Kazman. Discotect: A system
for discovering architectures from running systems. In ICSE, 2004.

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

