
A Semantic QoS-Aware Discovery Framework for Web Services

Qian MA, Hao WANG, Ying LI, Guotong XIE, Feng LIU
IBM China Research Laboratory, Beijing, 100094, China.

E-mail: { maqian, wanghcrl, lying, xieguot, liufcrl }@cn.ibm.com

Abstract

Augmenting web services with explicit semantics forms
the foundation of Service Oriented Architectures (SOAs)
automation. As more and more Semantic Web Services
(SWSs) are deployed, similar SWSs could have quite
different quality-of-service (QoS) levels. The QoS-aware
discovery becomes an important challenge. While some
efforts try to solve it via Constraint Programming (CP),
they suffer from the purely syntactic matchmaking method.
Furthermore, the construction of constraints and the
selection of services are completely dependent on the
literal translation from QoS descriptions, which increase
obstacles to actually apply CP. In this paper, we propose
a semantic QoS-aware framework for SWSs discovery by
combining the semantic matchmaking and CP. Initially, a
QoS ontology is presented to define QoS data into service
descriptions. Then the ontology reasoning is adopted to
change previous syntactic matchmaking into a semantic
way. Through confirming the compatibility of concepts,
complex QoS conditions are solved as constraints and a
selection algorithm is proposed to obtain the optimal offer.
Finally, the prototype implementation of our framework is
discussed and a SWSs discovery case is used to illustrate
the comprehensive discovery process.

1. Introduction

Semantic Web Services (SWSs), to enable web
services with well-defined semantics, are viewed as a
promising technology that provides interoperability
between web services by describing their own capabilities
in a computer-interpretable way. With the ever increasing
number of functional similar SWSs, it is an absolute
requirement to distinguish them using a set of quality-of-
service (QoS) criteria. In other words, QoS has become an
especially important factor in the automatic SWSs
discovery [2, 13].

Most approaches on automatic discovery of SWSs use
Description Logics (DLs) to semantically match the
functional requirements [6, 8], while discovering from the
QoS aspect, has not been discussed sufficiently. It not
only means to find out services which meet the QoS
requirement, but also expects to select the optimal offer
by summing up all qualities criteria. Some efforts propose
to use Constraint Programming (CP), i.e., to transform as
a Constraint Satisfaction Problem (CSP) or a Constraint

Satisfaction Optimization Problem (CSOP) which could
be solved by checking the conformance of constraints [2,
3]. This is partly due to DL reasoners have limitations on
integrating complex QoS conditions within queries. A
condition “find a service which Availability ≥ 0.9, where
Availability = MTTF / (MTTF + MTTR)” 1 can not be
expressed in DLs [3]. However, even if these conditions
are able to be described as constraints, there are two
major drawbacks in the above efforts. Firstly, they suffer
from a purely syntactic way in matching QoS parameters,
while the semantic matchmaking is still an indispensable
part in the QoS-aware SWSs discovery. The two parties
may describe the same QoS concepts in a different way,
e.g., “the requester looks for Price by dollars, while the
provider uses Cost by cents”. Another more complicated
case could be “the requester demands Availability, while
the provider offers MTTF and MTTR”. Both cases can not
be handled by previous approaches. Secondly, if lacking
of semantic support, it is actually infeasible to apply CP
to solve the QoS-aware discovery. The construction of
constraints is subject to the literal translation, but those
multifarious data types and features in various parameters,
in fact, are hard to be comprehended based on their
syntaxes. Moreover, current CP solutions depend on the
service requester to provide utility functions for selecting
the better QoS offer since the intrinsic data tendencies can
not be understood from the syntactic descriptions. This
behavior makes an additional burden for using services
and an objective evaluation can not be obtained before the
intercomparison of available service candidates either. As
a conclusion, although QoS conditions are contemplated
in previous studies, an integrated discovery framework
based on QoS semantics is still an open challenge so far.

To address the challenge, a novel semantic framework
for QoS-aware SWSs discovery is proposed in this paper.
By introducing semantic technologies and combining with
constraint programming, our framework avoids the
drawbacks of simply focusing on one aspect and provides
an integrated solution. More specifically, it consists of
three layers, where semantic technologies construct as the
foundation. With an OWL [11]-based QoS ontology that
complements OWL-S [12], a promising standard of SWS
descriptions, QoS conditions in service requirements and
advertisements are ensured to be defined by a common
vocabulary. Then, the semantic matchmaking mechanism

1 MTTF stands for “Mean Time To Failure”, while MTTR
stands for “Mean Time To Repair”.

2008 IEEE International Conference on Web Services

978-0-7695-3310-0/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWS.2008.44

129

based on DL reasoning forms the fundamental layer in
this framework to examine the compatibility of involved
concepts between both sides. After that, QoS conditions
are translated as declarative constraints and solved to get
eligible offers in the CP layer. Finally, a QoS selection
algorithm is adopted in the top layer to obtain the optimal
offer by integrating the consideration of all attributes. In
order to illustrate the comprehensive discovery process in
our framework, we implement a prototype and discuss a
SWSs discovery case to compare with existing studies.

The rest of the paper is structured as follows. In
Section 2, we discuss related works on discovering SWSs.
Section 3 gives an overview of our semantic discovery
framework and describes our QoS ontology. The detailed
discovery process is studied in Section 4, including the
semantic matchmaking, constraint programming and QoS
selection. Section 5 presents a prototype implementation
and a service discovery case to illustrate our framework.
The last section discusses conclusions and future work.

2. Related Work

Semantic discovery of SWSs on the functional aspect
is widely studied in many research works. Paolucci et al.
[8] define a semantic matchmaking engine to prevent
traditional keyword-based search. The “similar degree” is
used to rank the matching, i.e., a matching means the
offer can be of some use for the requester. In fact, the
underlying rationale is performed by the DL reasoning. Li
et al. [6] analyze how to use the DAML-S (the OWL-S
precursor) and a DL reasoner to implement a service
matchmaking prototype. The composite characteristic of
QoS parameters is similar with the “correlation” in [14].
Zeng et al. provide a correlation matchmaking algorithm
in the services composition. All these works emphasize
the functional discovery of SWSs, while we focus on QoS
factors. One of our contributions is to integrate semantic
technologies into the SWSs discovery on the QoS aspect.

For the QoS-aware discovery, several works target the
development of QoS ontology model, such as [9], while
not consider QoS matching. Zhou et al. [15] describe QoS
conditions by cardinality restrictions within an ontology
DAML-QoS and use a DL reasoner to find out proper
offers. Unfortunately, complex QoS conditions can not be
processed by the DL reasoner. Benbernou et al. [2]
include QoS constraints into service descriptions and
solve them to get appropriate offers, but the descriptions
are described in a private way and constraints are not
solved as a formal CSP. Conversely, Martín-Díaz et al.[7]
formally describe QoS conditions to constraints and solve
them by CP, but in non-SWSs. An improvement is done
by Kritikos et al. [5]. Instead of using DL reasoning, they
propose a rule-based semantic matchmaking algorithm on
a QoS ontology. Meanwhile, a holistic view of the QoS-
aware discovery is lacked in that work which leads to the
translation between the ontology and constraints rather

obscure, especially for handling various data types. Wang
et al. [13] present a QoS ontology and selection algorithm
to evaluate multiple qualities. However, the matchmaking
is missing, so that the selection is possible to base on non-
compatible concepts and the symmetric way mentioned in
[7] can not be supported without CP.

From the framework viewpoint, the work presented in
[3] is a little similar with ours. It proposes a hybrid
framework to combine the functional discovery and CP
on the QoS aspect for SWSs, which is a subsequent work
of [7]. The insufficiency is that it lacks of a semantic
foundation, which still induces the QoS matchmaking to a
syntactic way. As well as without a semantic vocabulary,
it is hard to extract constraints from service descriptions.
Another constraint driven framework is METEOR-S [1],
which discovers SWSs for dynamic services composition.
Our framework could be a complementary work for it to
enable QoS considerations during SWSs discovery.

3. Semantic QoS-Aware Discovery Framework

Regarding the drawbacks of purely using CP in the
QoS-aware discovery, we present a semantic discovery
framework to consider both semantic matchmaking and
CP for an integrated solution.

3.1. Framework Overview

The overview of the proposed framework is illustrated
in Figure 1. At first, the SWS Requirement that describes
a service query is submitted to the discovery framework.
In the context of a QoS-aware discovery, this query
typically has two parts. One is functional requirements,
e.g., the capability descriptions in OWL-S. The other is
QoS conditions defined by the QoS ontology. After that,
the service query will go through our framework to obtain
the optimal advertisement. Finally, each selected SWS
Advertisement will be returned to corresponding clients.
Its format may need to conform to the specification of a
concrete SWS technology for invoking the target service.

Our semantic discovery framework explicitly splits the
whole discovery process into three layers. Different from
[3], which doesn’t prescribe necessary order among each
discovery stage in that framework, our discovery process
executes in a bottom-to-up way. In more details, the
functions of each layer are stated as follows:

1) Semantic Matchmaking Layer: As the semantic
technologies are well used in the functional matching of
SWSs, this layer applies the DL reasoning into the QoS
aspect based on a QoS ontology. Due to DLs’ deficiency
on processing mathematical operations, the DL reasoning
just guarantees that QoS data in the advertisement are
semantically compatible with that in the request. For the
cases in Section 1, when the requester looks for the
expense, the advertisements should have Price or Cost. If

130

it inquires about Availability, the offers are expected to
provide availability data or values on MTTF and MTTR
which can compute it. This goal of this layer is to prevent
the QoS matchmaking from the syntactic way and provide
offers owning semantically compatible parameters.

2) Constraint Programming Layer: CP is involved
here to check the value conformance of QoS parameters.
After identifying compatible concepts between the service
requester and provider, our framework translates QoS
conditions into a series of constraints according to their
intrinsic semantics. In particular, a composite parameter
may be calculated by other parameters. Its evaluation is
naturally translated as a mathematical expression in CP,
which conquers DLs’ deficiency on the mathematical
calculation. Consequently, QoS constraints are treated as
a CSP problem to find out advertisements satisfying the
requirements on values.

3) QoS Selection Layer: It is possible that there are
many service candidates fulfilling a request from the QoS
satisfaction aspect. To obtain the best one can be seen as
an optimization task on QoS data. More specifically, our
framework quantifies the QoS income of each parameter
based on its data tendency from the semantic description,
and combines the consideration of all parameters by
multiplying their relative weights. The total income is
used to sort these advertisements and get the final results.

The QoS-aware discovery process in our framework
acts as a filter-by-filter style to select the best offer for a
given request. The input of the upper layer comes from
the output of the lower layer. All available SWSs and
related semantic concepts will be recorded in the SWSs
Repository and Ontology Repository.

3.2. QoS Ontology

A QoS ontology is the foundation of our work on the
SWSs discovery. Generally, our framework is open to
apply any QoS ontologies. Referring to [5, 9], we present
a sample QoS ontology here to cover the kernel concepts
of QoS parameters. It can be extended to include more
concepts. As a start, we formally define the core concept
QoSParameter in our QoS ontology (See Definition 1).

Definition 1 (QoS Parameter). A QoS parameter q in our
ontology is defined by the DL notions as follows.

QoSParameter ≡ (∀hasCategory. Category) ⊓
(= 1 hasCategory) ⊓

 (∀hasTendency. Tendency) ⊓
(= 1 hasTendency) ⊓
(∀hasMetric. Metric) ⊓
(= 1 hasMetric)

Metric ≡ (∀hasType. Type) ⊓
(= 1 hasType) ⊓
(∀hasUnit. Unit) ⊓
(= 1 hasUnit) ⊓

 (∀hasValue. Value) ⊓
(≤ 1 hasValue)

where Category specifies the measurement aspect of the
parameter; Tendency is the tendency of the parameter’s
value; Metric provides the metric of the parameter.

The QoS upper ontology based on OWL is shown in
Figure 2. Here, we visualize it like a class diagram in the
object-oriented approach by EMF Ontology Definition
Metamodel (EODM) Workbench in IBM Integrated
Ontology Development Toolkit (IODT) [4].

Each QoSParameter has a weight to present its relative
importance. It is restricted to [0, 10]. The sum is 10. Both
Category and Tendency are the union of subclasses. The
former has subclasses, e.g., C_Economic, C_Performance.
There are three kinds of Tendency. If it is High, the client
hopes that the value is as large as possible, or else it is
Low. When the parameter is expected to be close to the
value range in the requirement, the tendency is Given. If
no explicit tendency, we will get NullTendency. We have
five metric types: Numeric, RegionalNumeric, Boolean,
Enumeration and OridnalEnum. The RegionalNumeric’s
domain is described in from and to while fromInclusive
and toInclusive present if they are inclusive. Enumeration
and OrdinalEnum describe a finite collection of items.
The values are in item and orderedItem. The latter one is
an ordered collection, e.g. the security may be { VeryLow,
Low, Medium, High, VeryHigh }. The parameter’s value
is between start and end in Value, while startInclusive
and endInclusive give the boundary. A single value is in
the given field. Enumerated items will use their literal
denotations. Numeric values are parsed when translated
into constraints. Unit is also the union of subclasses, e.g.
Second, Dollar. ConversionFormulas are used to convert
into others. We prescribe units for the same measurement
to be equal with each other. Take time as an example, we
have Second ≡ Minute ≡ Hour. CompositeQoSParameter
extends QoSParameter with a CompositionFunction. The
function is a mathematical expression and described
recursively. It has an Operator with two operands, which
could be a NumericOperand, another QoSParameter or
another CompositionFunction. For complementing OWL-
S, a class QoSProfile is used to collect all QoS parameters
for a service description. The range of presents in Service
is expanded to include QoSProfile.

Figure 1. Overview of Semantic QoS-Aware
Discovery Framework

Ontology Repository

SWS Req.

SWSs Repository

OWL-S + QoS
Ontology Reasoning

Engine

Semantic Matchmaking
Layer

Compatible
SWSs

Eligible SWSsConstraint Solver
Constraint Programming

Layer

Best SWSsSelection
Algorithm

QoS Selection Layer Eligible SWSs

Ontology-Based Translation

Ontology-Based Translation

SWS Adv.

Semantic QoS-Aware SWSs Discovery Framework

131

To semantically match QoS parameters (See Section

4.1), we make an assumption to apply our ontology. The
constituents for a QoS parameter, such as classes under
Category, Tendency, Type, Value, and Unit, should keep
in the same ontology. The requesters and providers can
extend parameters by composing them. In particular, it is
hard to decide if two RegionalNumeric, Enumeration or
OrdinalEnum have the same domains or collected items
from DLs. Hence, we use different children to distinguish
specific types, e.g. Fraction extends RegionalNumeric to
define [0, 1]. Each domain can be given by the hasValue
restrictions. All the parameters are finally combined to
one ontology for matchmaking. We have provided some
extensions for widely-used parameters, e.g. Availability is
a CompositeQoSParameter and calculated by parameters:
MTTF and MTTR. Their definitions are given as follows.
The composition function and the conversion formula are
ignored due to the limited space. [9, 15] use a similar way
to extend their basic QoS ontology model.

MTTF ≡ QoSParameter ⊓
 (∀hasCategory. C_Availability) ⊓

 (∀hasTendency. High) ⊓
 (∀hasMetric. TimeMetric)

MTTR ≡ QoSParameter ⊓
 (∀hasCategory. C_Availability) ⊓

 (∀hasTendency. Low) ⊓
 (∀hasMetric. TimeMetric)

Availability ≡ CompositeQoSParameter ⊓
 (∀hasCategory. C_Availability) ⊓

 (∀hasTendency. High) ⊓
 (∀hasMetric. FractionMetric)

Availability ⊑ (∃ hasConstituent. MTTF) ⊓
 (∃ hasConstituent. MTTR)

TimeMetric ≡ Metric ⊓
(∀hasType. Numeric) ⊓
(∀hasUnit. Minute)

FractionMetric ≡ Metric ⊓
(∀hasType. Fraction) ⊓

 (∀hasUnit. NullUnit)

4. QoS-Aware SWS Discovery Process

Using the QoS ontology as the foundation, we explore
the comprehensive process of discovering SWSs in our
semantic framework.

4.1. Semantic Matchmaking

A service request usually includes functional and non-
functional requirements. Semantic matchmaking on the
functional part is widely discussed in many literatures.
Here we apply it to non-functional part, typically QoS. A
QoS requirement is denoted as QR = { q1, q2, …, qm },
where q1, q2, …, qm indicates required QoS parameters.
Likewise, a QoS advertisement is denoted as QA = { q1,
q2, …, qn }, where q1, q2, …, qn indicates provided QoS
parameters. The same as the functional part, the rationale
behind the QoS semantic matchmaking is still the DL
reasoning. A QoS advertisement matches a request if its
parameters can be of some use for the requester. As a
consequence, our discovery framework looks for QAs as
many as possible that semantically compatible with QR. In
formal, the semantic compatibility is defined as:
Definition 2 (QoS Semantic Compatibility). A QA is
semantically compatible with a QR, denoted as QA QR iff
∀qk∈QR, ∃qj∈QA, qj is semantically compatible with qk.

The semantic compatibility between QR and QA is
dependent on the compatibility of their QoS parameters.
We argue two differences in our semantic matchmaking
for QoS. One is the composition of QoS parameters.
Previous compatibility only supports one-to-one matching
between concepts. Nevertheless, a composite parameter
may be computed by other parameters, and hence the
complicated example about Availability, MTTF and
MTTR in Section 1 can not be handled in these methods.
To overcome this barrier, our algorithm enables one-to-
multiple matching by using the semantics recorded by the
composite QoS parameter in our ontology. The other is
the “subsumption” between two concepts. Different from
previous methods using of this relationship to rank the
matching degree, we propose that the matching degree of
QoS is determined by the conformance on parameters’
values (See Section 4.2). We do not restrict either side to
extend the ontology, while our algorithm guarantees the
compared concepts from two parties having potential
semantic relationships. Thus, the semantic compatibility
between QoS parameters is enlarged as:
Definition 3 (Enlarged QoS Parameter Compatibility).
There is a QoS parameter qj∈QA semantically compatible
with qk∈QR, denoted as qj qk , iff in the ontology, either
1) qj ≡ qk; 2) qj ⊑ qk or qk ⊑ qj; 3) qk can be composed by
Q = { q1, q2, …, qs } via a composition function f, where
∀qy∈Q, ∃qx∈QA (qx qy) based on 1) 2). If none of qx
satisfies the compatibility and qy is a composite parameter,
the decomposition continues recursively.

Our QoS semantic matchmaking algorithm is listed as
follows (See Algorithm 1). It accepts the requirement and

Figure 2. The QoS Upper Ontology

<<owl-s:Class>>
Service

<<owl:Class>>
QoSProfile

+weight : xsd:float

<<owl:Class>>
QoSParameter <<owl:Class>>

Metric

<<owl:Class>>
CompositionFunction <<owl:Class>>

CompositeQoSParameter

-hasMetric

1

<<owl:ObjectProperty>>

-hasType1

<<owl:ObjectProperty>>

-hasValue 0..1
<<owl:ObjectProperty>>

-hasUnit1
<<owl:ObjectProperty>>

-hasTendency 1

<<owl:ObjectProperty>>

-hasFunction

1<<owl:ObjectProperty>>

+Plus
+Minus
+Multiply
+Divide

<<EnumeratedClass>>
Operator

+numericValue : xsd:float

<<owl:Class>>
NumericOperand

<<owl:Class>>
Tendency

<<owl:Class>>
Category

-hasCategory 1

<<owl:ObjectProperty>>

<<owl:Class>>
Type

<<owl:Class>>
Unit

-computedBy

*

<<owl:ObjectProperty>>

+start : xsd:string
+end : xsd:string
+given : xsd:string
+startInclusive : xsd:boolean
+endInclusive : xsd:boolean

<<owl:Class>>
Value

<<owl:Class>>
ConversionFormula

-functionOp1

<<owl:ObjectProperty>>

-formulaOp

1

<<owl:ObjectProperty>>

-computedBy*<<owl:ObjectProperty>>

-computedBy

*

<<owl:ObjectProperty>>

-convertedBy1

<<owl:ObjectProperty>>

-convertTo 1
<<owl:ObjectProperty>>

-presents*

<<owl:ObjectProperty>>

-hasParameter

*

<<owl:ObjectProperty>>

-hasConstituent *<<owl:ObjectProperty>>

-hasFormula

*

<<owl:ObjectProperty>>

<<owl:Class>>
High

<<owl:Class>>
Low

<<owl:Class>>
C_Economic

<<owl:Class>>
C_Performance

...

<<owl:Class>>
Second

<<owl:Class>>
Minute

...

<<owl:Class>>
Numeric

<<owl:Class>>
Boolean

<<owl:Class>>
Given

<<owl:Class>>
RegionalNumeric

<<owl:Class>>
Enumeration

<<owl:Class>>
OrdinalEnum

<<owl:Class>>
Dollar

<<owl:Class>>
NullTendency

<<owl:Class>>
C_Availability

s

s

s

132

a set of advertisements as inputs. In the loop, each QoS
parameter in the offer will compare with a parameter of
the demand to decide their compatibility. If a parameter
can not be matched and it is a composite parameter, the
algorithm splits it and appends all its constituents into the
queue waiting for comparison. Finally, the algorithm
outputs a subset of offers containing compatible ones.

4.2. Constraint Programming

Although [15] proposes to use cardinality restrictions
to depict QoS requirements, DL reasoners fail to process
mathematical operations. Thus, CP is used here to check
the QoS conformance as a CSP (See Definition 4). QoS
conditions are translated to declarative constraints.
Definition 4 (Constraint Satisfaction Problem) A CSP is
defined as the tuple p = < V, D, C >, where

 V = { v1, v2, …, vn } is a set of variables;
 D = { d1, d2, …, dn } is a set of nonempty

domains corresponding to each vk in V;
 C = { c1, c2, …, cm } is a set of declarative

constraints. Each ck = < Vck, Dck, Rck >, where Vck = { vi,
vi+1, …, vj } ⊆ V, Dck = { di, di+1, …, dj } ⊆ D and one
restriction Rck .

One of the difficulties to apply CP is the construction
of constraints from service descriptions, which is merely a
literal way in [3]. In our framework, the QoS ontology
can guide this construction. A QoSParameter is mapped
to v in the constraints, while its metric type represents the
domain d. The value restriction could be concluded as:

 Numeric and RegionalNumeric Types: The start
and end with startInclusive and endInclusive in the Value
indicate the specific range of the numeric metric or the
property given specifies a certain value.

 Boolean Type: TRUE/FALSE is mapped to 1/0.

 Enumeration Type: Use the requirement to align
the collected items in the advertisement. Map each item to
1/0 according to whether it appears. The comparison of
parameter v becomes to determine whether there is a set
of corresponding items having the same value.

 OrdinalEnum Type: Map the literal domain to a
numeric domain. Then construct the restriction based on
corresponding values, e.g. the security is { VeryLow, Low,
Medium, High, VeryHigh }, so it is mapped to { 0, 1, 2, 3,
4 }. The security v better than Medium is v ≥ 2.

Usually, if we have qk in the requirement and qj in the
advertisement such that qj qk, we will have a constraint vj
= vk, where vj and vk are the corresponding variables to qj
and qk. There are two places involving mathematical
operations: the composite QoS parameter and the unit
conversion. We will rewrite them to separate constraints,
e.g. “find a service which Availability ≥ 0.9, where
Availability = MTTF / (MTTF + MTTR)” is going to be:

 c1 = < Vc1, Dc1, Rc1 > = < { Availability }, { [0,
1] }, { Availability ≥ 0.9 } >

 c2 = < Vc2, Dc2, Rc2 > = < { Availability, MTTF,
MTTR }, { [0, 1], [0, +∞], [0, +∞] }, { Availability =
MTTF / (MTTF + MTTR) } >

Another case “the requester looks for Price by dollars,
while the provider uses Cost by cents” is turn to be:

 c3 = < Vc3, Dc3, Rc3 > = < { Price, Cost }, { [0,
+∞], [0, +∞] }, { Cost = Price * 100 } >

The QoS conformance lies in determining whether
every solution to the advertisement’s CSP can also be a
solution to the requirement’s CSP (See Definition 5 [7]).
Definition 5 (CSP Conformance) In the CP layer, an
advertisement conforms to a requirement iff

Conformance (CA, CR) ↔ Satisfy (CA, ¬ CR) = ∅
where CA and CR are the constraints of the advertisement
and requirement respectively. The Satisfy(x, y) is to check
if a successful assignment to x is also a solution to y.

The essence of the conformance is to decide whether
the guarantee in the advertisement is no looser than that in
the requirement. The CP algorithm (See Algorithm 2) is a
bridge from the semantic matchmaking to QoS selection
(See Section 4.3). We use the degree of “no looser” to
rank the output of our algorithm, whose definition is
different from [8, 15]. The highest is Exact that means the
constraints in the advertisement are no looser than those
in the requirement, either with better QoS or equal. Plugin
match is the second preferable since the advertisement
provides looser constraints, so the values in the looser
region could not satisfy the requirement. Intersection
match is the next best one since we can just expect that
the intersection part of the solution space between the
requirement and advertisement could be used. Disjoint is
the lowest level since it shows that nothing satisfies both
parties. In other words, it is a failed match.

4.3. QoS Selection

Algorithm 1: Q′A = semanticQoSMatchmaking (QR, QA), where QA = {
QA1, QA2, …, QAu }, Q′A ∈P (QA)

1: Boolean match = FALSE;
2: for each QAi ∈QA do
3: Q′R ← QR;
4: for each qk ∈Q′R do
5: match = FALSE;
6: for each qj ∈QAi do
7: if isSemanticCompatible (qj, qk) then
8: match = TRUE; break;
9: end if
10: end for
11: if match == FALSE then
12: if qk ⊑ CompositeQoSParameter then
13: Q′R.append (getConstituents (qk));
14: else break;
15: end if
16: end if
17: end for
18: if match == TRUE then Q′A.append(QAi); end if
19: end for
20: return Q′A;

1 ...i i jd d d+⊆ × × ×

s

133

It is possible that several advertisements are ranked
Exact after our CP checking. Our ultimate goal is to get
the best choice from the client’s viewpoint. It is a CSOP
for evaluating all quality metrics in combination. The
selection is based on each parameter’s utility function u: d
→ [0, 1], where d is its domain. Previous studies, such as
[3, 5], depend on the requester to provide such functions,
which makes an additional burden for using services.
Moreover, it is also infeasible to do a fair evaluation
before the comparison of various candidates since the
maximal value span of each parameter is not known. That
span, however, is used to normalize the QoS income [13].
Thus, we present a more reasonable way to select the final
result based on data tendencies in our QoS ontology.

 Preprocessing Step: We assume that Q″A = {
Q″A1, Q″A2, …, Q″At } is the advertisements with Exact
rank and each Q″Ai = { qi1, qi2, …, qin }. To construct this,
we select a representative value for each parameter if its
value is a range. We use the worst case. For Numeric and
RegionalNumeric, considering a ≤ qij ≤ b, a is selected if
Tendency is High. Otherwise, b is the choice if Tendency
is Low. When Tendency is Given, it means that the data
should be close to the middle of the given region in the
requirement, so we will use (a + b) / 2. Enumeration and
Boolean do not have “better” semantics, so they are not
taken into account. Finally, OrdinalEnum is transformed
into the numeric value and handled as the same way.

Due to the composite QoS parameters and the units’
conversions, we need to align Q″Ai with QR by using
composition functions and conversion formulas. Given QR
= { q1, q2, …, qm }, we get a matrix MA.

11 12 1

21 22 2

1 2

...

...
...

...

m

m
A

t t tm

q q q
q q q

M

q q q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 Normalization Step: Each QoS parameter would
have its value span among advertisements, and hence it is
hard to make a fair evaluation. This step normalizes them
in [0, 1] to guarantee they are evaluated by the same span.

1) If the Tendency is High, the ratio is calculated by
the following formula.

min max min() ()ij ijq q q q q′ = − −
2) If the Tendency is Low, the ratio is calculated by

the following formula.
max max min() ()ij ijq q q q q′ = − −

3) If the Tendency is Given, the ratio is calculated
by the following formula.

(() 2) ()ij ij start endq q g gα α β′ = − − + −

where qmax = max { qij }, qmin = min { qij }, gstart, gend are the
start, end of given range in the requirement, α = max
{ () 2ij start endq g g− + }, β = min { () 2ij start endq g g− + }

for j∀ ∈{ 1, 2, ..., m }.
 Combination Step: Different users have different

preferences. It can be projected as the relative importance
of each QoS parameter. For instance, the service selection
may be driven by price, called price-sensitive, regardless
of other qualities. Conversely, a requester may be service-
sensitive, who considers more on other qualities than the
price. The weight describes such relative importance. We
assume W = { w1, w2, …, wm } as the vector of weights.
The combination of all parameters is given as follows.

1
()

m

A A ij j
j

M M W q w
=

′′ ′ ′= × = ×∑

5. Implementation and Case Study

5.1. Prototype Overview

To demonstrate our semantic discovery framework, we
have implemented a prototype of QoS-aware discovery
engine based on it, as shown in Figure 3. The ontology
development environment uses the IODT, which includes
EODM to manipulate an ontology using Java objects and
an OWL repository to save our QoS ontology. It has a
reasoner to support taxonomy subsumption reasoning for
the ontology. When Query Receiver receives a request, it
would extract the QoS requirement, and then look for the
advertisements with compatible QoS concepts during the
semantic matchmaking. After that, Constraint Translator
would translate the QoS conditions in compatible offers
into a series of declarative constraints. They are described
by the Oz language and solved by Mozart programming
system [10]. Towards QoS advertisements that are ranked
as Exact match, QoS Selector will choose the best offer
according to our three-step QoS selection algorithm. At
last, the result is returned to the requester. The prototype
has a SWSs repository to contain all the advertisements
published by the service provider.

5.2. Case Study

For comparison, we have conducted an experiment in
our prototype based on the case in [7]. They implement a

Algorithm 2: qosCSPSolving (QR, Q′A), where Q′A = { Q′A1, Q′A2, …,
Q′Av }

1: CR ← translateToConstraints (QR);
2: for each Q′Ai ∈Q′A do
3: CA ← translateToConstraints (Q′Ai);
4: if Satisfy (CA, ¬ CR) = ∅ then
5: Q′Ai.rank = Exact;
6: else if Satisfy (¬ CA, CR) = ∅ then
7: Q′Ai.rank = Plugin;
8: else if ¬ Satisfy (CA, CR) = ∅ then
9: Q′Ai.rank = Intersection;
10: else Q′Ai.rank = Disjoint;
11: end if
12: end for

134

hypothetical web portal to look for web services that
deliver video on demand. Different video providers offer
discrepant QoS conditions. The web portal not only looks
for services that fulfill QoS requirements, but also selects
the best one for a request. [7] considers two parameters.
One is Availability that is computed as MTTF / (MTTF +
MTTR). The other is a domain specific parameter Media
Support which means the supported connection mode, i.e.
{ Modem, ISDN, ADSL }. To show our capabilities, we
increase: Price/Cost, Security, Response Time, Buffer
Time, Reputation, and Exception Handling, whose types
are Numeric, OrdinalEnum { VeryLow, Low, Medium,
High, VeryHigh }, Numeric, Numeric, RegionalNumeric
[0, 5] and Boolean. Each is possible to be a single value
or a range. For demonstrating the semantic matchmaking,
besides the availability case, we assume that the requester
demands Price by Dollar, while some offers provide Cost
by Cent. The complete service data are in Table 1.

We start from the semantic matchmaking. The QoS
requirement and advertisement is defined as follows. We
merely show Price and Cost here for matchmaking, while
ignore others due to the limited space. The descriptions of
the Availability, MTTF and MTTR are in Section 3.2.

QoSProfilereq ⊑ QoSProfile ⊓
(∃hasParameter. Availability) ⊓
(∃hasParameter. Price) ⊓ …

QoSProfileadv ⊑ QoSProfile ⊓
(∃hasParameter. MTTF) ⊓
(∃hasParameter. MTTR) ⊓
(∃hasParameter. Cost) ⊓ …

Price ≡ QoSParameter ⊓
 (∀hasCategory. C_Economic) ⊓

 (∀hasTendency. Low) ⊓

 (∀hasMetric. PriceMetric)
Cost ≡ QoSParameter ⊓

 (∀hasCategory. C_Economic) ⊓
 (∀hasTendency. Low) ⊓

 (∀hasMetric. CostMetric)
PriceMetric ≡ Metric ⊓

(∀hasType. Numeric) ⊓
 (∀hasUnit. Dollar)

CostMetric ≡ Metric ⊓
(∀hasType. Numeric) ⊓

 (∀hasUnit. Cent)
In this way, the framework does not care the syntactic
name of these parameters, but focuses on the semantic
compatibility. Availability is compatible with MTTF and
MTTR since it is composed by them.

We then translate the QoS conditions to a series of
constraints. The sample Oz code is provided as follows to
check the conformance. A5 is ranked Fail since its Price
and Exception Handling do not meet the requirement.
Due to the ranges of Media Support and Response Time
are intersected with the requirement, A6 is decided as
Intersection. A7 has got a Plugin score for Availability and
Security looser than the demand. Others are Exact match.

 To select the best one, we consider the value tendency.
Availability, MTTF, Security and Reputation are expected
to be higher, while MTTR, Price/Cost and Response Time
are to be lower. Buffer Time is required to be close to the
given range since it will influence the video’s fluency if it
is too long or too short. Availability could be computed by
MTTF and MTTR. We get the matrix MA.

0.92 1.50 3 4.0 80 2.8
0.94 2.30 3 3.6 45 3.3
0.96 2.50 4 1.2 60 5.0
0.99 3.00 2 2.3 90 2.0

AM

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

After the normalization step, we get the matrix M′A.
0 1 0.500 0 0.333 0.267

0.286 0.467 0.500 0.143 0.500 0.433
0.571 0.333 1 1 1 1

1 0 0 0.607 0 0

AM

⎡ ⎤
⎢ ⎥
⎢ ⎥′ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 The weights vector W defines the relative importance.
We do a comparison between the price-sensitive and
service-sensitive selection. For price-sensitive, W is { 1, 7,
0.5, 0.5, 0.5, 0.5 }. The proportion between the price and
other qualities is 7:3. Conversely for service-sensitive, W

Table 1. Experiment Data

Data Availability Media Support Price /
Cost Security Response

Time (s)
Buffer

Time (s) Reputation Exception
Handling MTTF (m) MTTR (m)

R ≥ 0.90 Modem, ISDN ≤ $3.00 ≥ Medium ≤ 4.0 [30, 90] ≥ 2.0 True
A1 [110, 120] [5, 10] Modem, ISDN, ASDL 150C ≥ High [2.5, 4.0] [70, 90] 2.8 True
A2 [180, 200] [5, 12] Modem, ISDN $2.30 ≥ High [1.5, 3.6] [30, 60] 3.3 True
A3 ≥ 0.96 Modem, ISDN 250C ≥ Very High [0.8, 1.2] 60 5.0 True
A4 ≥ 0.99 Modem, ISDN, ASDL $3.00 ≥ Medium ≤ 2.3 90 2.0 True
A5 [240, 280] [8, 20] Modem, ISDN $4.00 ≥ Medium ≤ 3.0 [30, 60] 3.0 False
A6 [150, 180] [10, 15] ISDN, ADSL 180C ≥ Very High [2.5, 5.0] [40, 50] 3.0 True
A7 ≥ 0.86 Modem, ISDN 200C ≥ Low ≤ 3.0 75 2.8 True

Figure 3. Prototype Architecture

Service
Requester

Q
uery

R
eceiver

Q
oS

Extractor

Reasoning
Engine

Ontology
Repository

SWSs
Repository

CSP Solver QoS Selector

R
esult

G
enerator

IODT Environment

Oz Programming
Environment

QoS-Aware SWSs Discovery Engine

Semantic Matchmaking Layer Constraint Programming Layer QoS Selection Layer

Service
Provider

C
onstraint

Translator

135

is { 2, 3, 1, 1, 1, 2 }, where the price and other factors is
in the ratio of 3:7. The evaluation is shown in Table 2.

According to the evaluation, A1 is the best one for
price-sensitive selection. Although most parameters in A2
are better than A1, it can not win since its price is higher.
But Price can not dominate the evaluation. A3 precedes A2
since other parameters are more valuable. On the contrary,
A3 has the highest score in the service-sensitive evaluation,
but other qualities can not dominate the selection either.
A1 is better than A2 since it has a more attractive price.

6. Conclusion and Future Work

QoS-aware discovery can be deemed as one of the
important challenges for SWSs. To our best knowledge, it
still lacks of a comprehensive discovery framework. This
paper proposes a framework by combining the semantic
matchmaking and CP. A QoS ontology is used as the
semantic foundation to prevent the syntax-based search.
After the matchmaking, QoS conditions are translated to
constraints and solved as a CSP. A selection algorithm is
used to obtain the best offer for a QoS requirement. At
last, we present a prototype and adopt a discovery case to
evaluate our framework. Our future work will integrate
the framework into existing implementations of service
registry, e.g. UDDI, and test its performance. We also
want to investigate more in future on how to deal with the
services whose QoS parameters are not exactly matched.

References

[1] R. Aggarwal, K. Verma, J. Miller, W. Milnor.
Constraint Driven Web Service Composition in
METEOR-S. In 1st International Conference on
Services Computing (SCC’04), 2004.

[2] S. Benbernou, M.-S. Hacid. Resolution and
Constraint Propagation for Semantic Web Services
Discovery. In Distributed and Parallel Databases,
vol. 18, no. 1, pp. 65-81, 2005.

[3] J.M. García, D. Ruiz, A. Ruiz-Cortés, O. Martín-
Díaz, M. Resinas. A Hybrid, QoS-Aware Discovery
of Semantic Web Services Using Constraint
Programming. In 5th International Conference on
Service-Oriented Computing (ICSOC’07), 2007.

[4] IBM AlphaWorks. IBM Integrated Ontology
Development Toolkit, 2006.
http://www.alphaworks.ibm.com/tech/semanticstk

[5] K. Kritikos, D. Plexousakis. Semantic QoS Metric
Matching, In 4th IEEE European Conference on Web
Services (ECOWS’06), 2006.

[6] L. Li, I. Horrocks. A Software Framework For
Matchmaking Based on Semantic Web Technology,
In 12th International World Wide Web Conference
(WWW’03), 2003.

[7] O. Martín-Díaz, A. Ruiz-Cortés, D. Benavides, A.
Durán, M. Toro. A Quality-Aware Approach to Web
Services Procurement, In 4th International VLDB
Workshop Technologies for E-Services (TES’03),
2003.

[8] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara.
Semantic Matching of Web Services Capabilities. In
1st International Semantic Web Conference
(ISWC’02), 2002.

[9] I.V. Papaioannou, D.T. Tsesmetzis, I.G. Roussaki,
M.E. Anagnostou. A QoS Ontology Language for
Web-Services, In 20th International Conference on
Advanced Information Networking and Applications
(AINA’06), 2006.

[10] C. Schulte, G. Smolka. Finite Domain Constraint
Programming in Oz: A Tutorial, 2006.
http://www.mozart-oz.org/documentation/fdt/

[11] W3C. OWL: Web Ontology Language, 2004.
http://www.w3.org/TR/owl-ref/,

[12] W3C. OWL-S: Semantic Markup for Web Services,
2004. http://www.w3.org/Submission/OWL-S/

[13] X. Wang, T. Vitar, M. Kerrigan, I. Toma. A QoS-
aware Selection Model for Semantic Web Services.
In 4th International Conference on Service-Oriented
Computing (ICSOC’06), 2006.

[14] L. Zeng, B. Benatallah, G.T. Xie, H. Lei. Semantic
Service Mediation. In 4th International Conference
on Service-Oriented Computing (ICSOC’06), 2006.

[15] C. Zhou, L.-T. Chia, B.-S. Lee. DAML-QoS
Ontology for Web Services. In 2nd International
Conference on Web Services (ICWS’04), 2004.

proc {QoS Root} Availability MTTF MTTR Price Cost ... in
 Root = sol (avail:Availability mttf:MTTF mttr:MTTR price:Price

cost:Cost …)
 %Transform all variables into positive integers.

Availability :: 0#100 %Similar definitions on MTTF, MTTR
… %Cost, Price and other parameters.

 MTTF >=: 110 %QoS in the advertisement A1.
 MTTF =<: 120
 MTTR >=: 5
 MTTR =<: 10
 Cost =: 15000

Availability <: 90 %QoS in the opposition of the requirement
Price >: 300

 %Oz has no finite domain propagators for fractions, thus multiply
 %with the denominators.

 Availability * (MTTF + MTTR) =: MTTF * 100
 Cost =: Price * 100
 ... %Omit other parameters.
 { FD.distribute ff Root }
end

Table 2. Results of Sensitivity Adjustment

Adv Price-Sensitive QoS
Value

Service-Sensitive QoS
Value

A1 7.550 4.367
A2 4.343 3.982
A3 4.902 7.141
A4 1.304 2.607

136

