
Utility-based QoS Brokering in Service Oriented Architectures

Daniel A. Menascé
Department of Computer Science, MS 4A5

George Mason University
Fairfax, VA 22030, USA
menasce@cs.gmu.edu

Vinod Dubey
The Volgenau School of IT & Engineering

George Mason University
Fairfax, VA 22030, USA
vdubey@gmu.edu

Abstract

Quality of Service (QoS) is an important consideration
in the dynamic service selection in the context of Service
Oriented Architectures. This paper extends previous work
on QoS brokering for SOAs by designing, implementing,
and experimentally evaluating a service selection QoS bro-
ker that maximizes a utility function for service consumers.
Utility functions allow stakeholders to ascribe a value to
the usefulness of a system as a function of several attributes
such as response time, throughput, and availability. This
work assumes that consumers of services provide to a QoS
broker their utility functions and their cost constraints on
the requested services. Service providers register with the
broker by providing service demands for each of the re-
sources used by the services provided and cost functions for
each of the services. Consumers request services from the
QoS broker, which selects a service provider that maximizes
the consumer’s utility function subject to its cost constraint.
The QoS broker uses analytic queuing models to predict the
QoS values of the various services that could be selected un-
der varying workload conditions. The broker and services
were implemented using a J2EE/Weblogic platform and ex-
periments were conducted to evaluate the broker’s efficacy.
Results showed that the broker adequately adapts its selec-
tion of service providers according to cost constraints.

1. Introduction

Service Oriented Architectures (SOA) enable a multi-
tude of service providers (SP) to provide loosely coupled
and interoperable services at different Quality of Service
(QoS) and cost levels in a number of service domains. This
provides a unique opportunity for businesses to dynami-
cally select services that better meet their business and QoS
needs in a cost-effective manner. However, the real value
of dynamic service selection can only be realized if the ser-
vice provider selected on the fly meets client’s QoS require-

ments/SLAs under varying workload conditions. Also, the
selected service providers need to optimize a global utility
for their clients under cost constraints. Clients may want
to negotiate for certain QoS commitments from the partic-
ipating service providers and the service providers need to
ensure that they keep the client’s commitments at runtime
and not be affected by operational factors such as workload
variations and server failures.

Menascé et. al. [9] devised a framework for QoS man-
agement in SOAs where a QoS Broker(QB) provides QoS
negotiation and resource reservation mechanisms on behalf
of service providers and ensures that the QoS commitments
made on their behalf are honored during runtime. The
framework allows the clients to send QoS requests and ne-
gotiate with the QB for a QoS commitment on behalf of a
service provider. At the end of a successful QoS negotia-
tion, the client receives from the broker a digitally signed
token representing a QoS commitment on behalf of a ser-
vice provider. The client uses that token to send requests
directly to the service provider. The service provider pro-
vides services while keeping the commitments made by the
broker on its behalf by performing admission control. De-
cisions on QoS commitments are made by the broker with
the help of an analytical performance model.

The work in [9] assumed that the client specifies the ser-
vice provider it wants to use. In this paper, we discuss an
extension to the QoS framework of [9] in which the QoS
broker uses utility functions and cost functions to perform
service provider selection. With the help of predictive ana-
lytical queuing network performance models, the QoS bro-
ker identifies the service provider that optimizes a global
utility for a client under a cost constraint. We have also ad-
dressed the performance and availability issues of the QoS
Broker and extended it to provide a flexible and loosely cou-
pled integration scheme. Additionally, we have provided a
demonstration of the ideas presented in this paper by devel-
oping components and services using J2EE platforms and
by conducting experiments. The results presented in the pa-
per show that the QoS broker adapts to the cost constraints

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

and selects service providers based on cost and utility.
The rest of the paper is organized as follows: Section 2

discusses the extended QoS Broker Architecture. Section
3 discusses the QoS Broker Interaction Protocol. The next
section highligts the performance model used. Section 5
specifies the utility functions used and shows how to evalu-
ate global utility of a service provider for a client. Section 6
describes the service selection algorithm and section 7 de-
scribes the results of the experiments carried out to validate
the ideas presented in this paper. Section 8 discusses related
work and section 9 presents some concluding remarks.

2 Extended QoS Broker Architecture

The QoS Broker architecture described in this paper ex-
tends the architecture discussed in [9] in which QoS broker-
ing was used for resource reservation and to guarantee QoS
commitments. In the present paper, the QoS Broker (QB)
selects a service provider, from among participating service
providers, that maximizes a global utility for a client under
a cost constraint. Additionally, our architecture supports a
flexible and loosely coupled integration scheme and serves
as a mediator to route requests and responses between ser-
vice providers and consumers. As in [9], the broker ensures
that none of the previous commitments made on behalf of
the SPs are violated.
The extended QB architecture (see Fig. 1) consists of

Registration Services, QoS Negotiation Services, Busi-
ness Services, QoS Request Evaluator, Performance Model
Solver, Utility Function Evaluator, repositories to store
SLA/QoS commitments and service providers’ metadata in-
cluding a service demand matrix (see below), and a QB Ser-
vice Bus.
The Registration Service allows SPs to submit service

descriptions (e.g., WSDL files), a service demand matrix,
and cost functions to the QB. The service demand ma-
trix indicates the amount, in time units, required of each
resource—hardware and software resources—to process re-
quests for each of the services provided by a SP [11]. The
QB uses this information, along with an analytical pefor-
mance model and the client’s utility function, to evaluate a
QoS request and identify an optimal SP. The cost vs. re-
sponse time function is assumed to be monotonically de-
creasing.
The QoS Negotiation Service is used to evaluate a

client’s request, negotiate for a QoS commitment, and iden-
tify a service provider that maximizes the client’s global
utility (described in Section 5). A request contains the ser-
vice type, its concurrency level, a utility function, and a cost
constraint. The QoS Negotiation Service delegates the re-
quest to the QoS Request Evaluator that uses the Perfor-
mance Model Solver and the Utility Function Evaluator to
evaluate the service request against each service provider.

Performance Model Solver Utility Function Evaluator

QoS Request Evaluator

Service Providers Clients

QoS Broker

Registration Services
QoS Negotiation and

Business Domain Services

Service
Provider
Metadata

Table of
Commitments/

SLAs

QB Service Bus

Figure 1. Extended QoS Broker Architecture

The PerformanceModel Solver implements a multi-class
closed-QNmodel, as discussed in more detail in [11, 12], to
predict QoS metrics such as response time and throughput
of participating service providers taking into account their
current workload intensities and commitments. Each class
in the model corresponds to an already committed session
plus one for the new service request being considered. The
Performance Model Solver computes response time (R),
throughput (X), and probability of rejection (Prej) for each
committed session as well as for the new request. Using the
computed values of R and X for each class corresponding
to the committed sessions and new request, the QB via the
QoS Request Evaluator ensures that the previous commit-
ments made on behalf of SPs are not violated. Using the
output of the model (i.e., computed values of R, X , and
Prej), the QB evaluates the global utility function with the
help of the Utility Function Evaluator. The values of the
global utility function are computed and compared against
each service provider and the service provider that maxi-
mizes the global utility for the client under a cost constraint
is chosen to provide the requested service to the client.

The QB Service Bus serves as a gateway to the QoS
Broker and provides a mediation layer. It also supports a
loosely coupled integration scheme and avoids the need of
a tightly coupled point-to-point integration between clients
and servicer providers. The next section discusses the QoS
interaction protocol used by the QB.

Another extension of the QoS Broker architecture is the
concept of Super QoS Broker (SQB) that provides broker-
age services for service providers to locate a QB that can

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

offer the best QoS brokering services for a cost. The SQB
provides two major services: Registration Service and Dis-
covery Service. The Registration Service is used by the QBs
to register themselves with the SQB by providing their cost
model and QoS level. The Discovery Service is used by
SPs to locate a QB that offers the best QoS level for a given
cost. There could be several QBs with different QoS lev-
els and cost models. A SQB can support one or more QBs.
A QB can manage one or more service providers providing
one or more services that can be consumed by one or more
service consumers.

3 QoS Broker Interaction Protocol

Figure 2 shows a sequence diagram depicting the inter-
action between the SQB, the QB, the SPs, and the clients.

:Client :QoS Broker :Servoce Provider

Register()

Registration Confirmation()

QoS Request()

Evaluate QoS Request()

Service Provider Offer()

Service Request()

Route Service Request()

Service Response()

Route Service Response()

Super QoS Broker

Register()

Negotiate for QB()

QB Info()

Figure 2. QoS Broker Interaction Diagram

1. QBs register their brokerage services, cost models, and
QoS levels with the SQB.

2. SPs negotiate with the SQB for a QB that meets their
QoS requirements and cost constraints.

3. SPs register their services, service descriptions, service
demand matrix, and cost models with a QB

4. A service consumer (client) starts a session by send-
ing to the QB a QoS request indicating the requested
service type, the client’s utility function, its cost con-
straint, and the concurrency level (i.e., maximum num-
ber of simultaneous requests to be sent to the service
provider for that type of service).

5. The QB identifies a service provider that maximizes
the global utility for the client under the given cost and
sends to the client, on behalf of the selected SP, a QoS
offer composed of a digitally signed token. The token
consists of a) the id of the selected service provider,
b) a QoS commitment id which indicates the position
in a Table of Commitments (ToC) maintained by the
QB of the newly accepted request, c) a session id, d)
the id of the service within the service provider, e) the
QoS offer, which consists of the offered response time,
throughput, and concurrency level, and f) an expiration
date and time for the offer. When evaluating a request,
the QB takes into account the current commitments
and workload conditions on the service providers.

6. If the client accepts the QoS offer, the QB saves it
in the ToC. The client is now able to submit requests
within the session. The requests contain the token pro-
vided to the client by the QB. Since the token con-
tains all information required to identify the service
and QoS commitment, it is easy to design scalable
stateless services.

7. Contrary to the approach described in [9], the QB
routes requests and responses between the service
providers and the clients and performs any required
data transformation.

4 Performance Model

As in [9], the QB uses a predictive analytic performance
model to predict the response time and throughput of ser-
vice providers for the current workload conditions. The re-
sponse time of a service request depends on the amount of
contention for software resources (e.g., software threads)
and for hardware resources (e.g., processors and storage
devices). We use a performance model called SQN-HQN
(for Software Queueing Network - Hardware Queuing Net-
work) described in detail by Menascé in [12]. This model
is an iterative use of two queuing network models, one for
the software queuing network and another for the hardware
queuing network. Details about analytic queuing networks
are outside the scope of this paper. The reader is referred
to [11].

5 Utility Functions

Utility functions have been used for achieving self-
optimization in distributed autonomic systems [7, 14]. Ben-
nani and Menascé [4] used utility functions along with an-
alytical queuing network models to dynamically allocate
servers amongst application environments (AE) to optimize
the global utility of AEs. Utility is a dimensionless quantity

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

and measures the usefulness of a system to a stakeholder in
terms of a set of attributes. Bennani andMenascé (2005) [4]
used response time and throughput as attributes. The utility
functions used in this paper for response time and through-
put are similar to those in [4]. We introduced a utility func-
tion for the probability that requests are rejected. Utility
functions different from the ones adopted here could be
used provided that they are monotonically decreasing for re-
sponse time and probability of rejection and monotonically
increasing for throughput. The monotonicity assumption is
not a severe restriction since it corresponds to rational user
expectations. For example, one would expect a user to see
less utility in a system as its response time increases than
the other way around.
The utility function, UR(r), for response time is :

UR(r) =
KR × e−r+βR

1 + e−r+βR

(1)

where r is the response time, βR is the response time SLA,
and KR is a scaling factor computed so that UR(0) = 100.
Thus, KR = 100 (1 + eβR)/eβR . The response time r is
a function of the workload intensity and the capacity of the
servers used by a SP. An example of UR(r) is shown in
Fig. 3 for βR = 4 sec, 2 sec, and 1 sec, respectively.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Response time (sec)

U
ti

lit
y

SLA = 1 sec SLA = 2 sec SLA = 4 sec

Figure 3. Utility function vs. response time

The utility function, UX(x), for the throughput is:

UX(x) = KX ×

(
1

1 + e−x+βX

−
1

1 + eβX

)
(2)

where x is the throughput, βX , is the throughput SLA, and
KX is a scaling factor computed so that limx→∞ UX(x) =
100. Thus, KX = 100 (1 + eβX)/eβX . The throughput x
is a function of the workload intensity and the capacity of
the servers used by the SP. Figure 4 shows an example of
UX(x) for βX = 1 tps, 2 tps, and 4 tps, respectively.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Throughput (tps)

U
ti

lit
y

SLA = 1 tps SLA = 2 tps SLA = 4 tps

Figure 4. Utility function vs. throughput

We also consider the utility function UP (p) for the prob-
ability, p, that requests are rejected by an SP. This utility
function has its maximum value of 100 when p = 0 and
decreases with p:

UP (p) =
1 − p

1
100

+ βP × p
. (3)

In Eq. (3), βP is the SLA for p. Figure 5 shows an example
of UP (p) for βP = 0.05, 0.1, and 0.2, respectively.

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of Rejection

U
ti

lit
y

SLA = 0.05 SLA = 0.1 SLA = 0.2

Figure 5. Utility vs. the probability of rejec-
tion

A global utility Ug is a function of the individual utility
functions UR(r), UX(x), and UP (p):

Ug = f(UR(r), UX(x), UP (p)). (4)

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

A possible expression for Ug is:

Ug = wR × UR(r) + wX × UX(x) + wP × UP (p) (5)

where wR, wX , and wP represent importance weights as-
signed to each of the three metrics. Each weight is a number
in the range (0,1) and the sum of all weights is equal to one.

6 Service Provider Selection

In order for the QB to identify a service provider that
maximizes the global utility Ug for a client, SPs register
their services with the QB and provide their (invertible) cost
functions, and service demand matrices. We first describe
the service provider selection approach for a single met-
ric: response time. We assume that the response time cost
functions are monotonically decreasing functions of the re-
sponse time. Let Ci(r), i = 1, . . . , N be the cost function
for a given service i. A client sends a QoS request to the
QB and provides its utility functions UR(r) along with a
cost constraint Cmax.
Given the client’s cost constraint Cmax and SPs’ cost

functions Ci(r), the QB estimates the best response times
that the client might get from different SPs under Cmax.
These response time estimates are the intersections of the
SP’s cost functions and the client’s cost constraint (see
Fig. 6). Let the response time for which Ci(r) and Cmax

intersect be denoted by Rmin
i and called minimum cost-

constrained response time (MCRT). Consider the example
illustrated by Fig. 6 with three cost functions C1(r), C2(r),
and C3(r). The MCRTs are denoted by R1, R2, and R3,
respectively. LetR1 < R2 < R3 without loss of generality.
The algorithm to select a SP that maximizes the client’s

utility under Cmax is given below.

Step 1 The QB, using analytical performance models, ob-
tains response time estimates Rest

i from each service
provider SPi taking into account the SPs’ current
workload intensities.

Step 2 For each i such thatRest
i < Rmin

i , doRest
i = Rmin

i .
This is done in order to avoid violating the cost con-
straint since Rmin

i is the minimum possible response
time that does not violate the cost constraint.

Step 3 Select the SP j such that Rest
j = mini{R

est
i } and

save Rest
j in the Table of Commitments (ToC). This

step assumes that the utility function UR(r) is mono-
tonically decreasing so the smallest response time pro-
vides the largest possible value for the utility.

We now describe a service provider selection algorithm
for two QoS metrics: response time and throughput. Let
Cost = f(r, x) be a service provider’s cost function of the
response time r and throughput x. We use the following
general procedure to select an SP:

0
10
20
30
40
50
60
70
80
90

100
110
120
130

1 2 3 4 5 6 7 8 9 10

Response Time

C
o

st
/U

ti
lit

y

U(R) C3(R) C2(R) C1(R)

R1 R2 R3

Cmax=40

Figure 6. Utility and Cost Functions of Re-
sponse Time

Step 1 Obtain (Rest
i , Xest

i) for each SPi using the analyti-
cal performance model.

Step 2 Compute Costi = f(Rest
i , Xest

i) for each SPi

Step 3 Eliminate SPi such that Costi > Cmax

Step 4 For each remaining SP j compute the global utility
function as

U j
g = f(UR(Rest

j), UX(Xest
j)) (6)

Step 5 Select the SP such that U j
g is maximum.

Extending the above algorithm to more QoS metrics is
straightforward.

7 Experimental Evaluation

To validate the ideas presented in this paper, we de-
signed and developed a working prototype of the QoS Bro-
ker to solve a QoS problem in the travel-agency domain.
The QB provides QoS brokerage services for service con-
sumers on behalf of service providers. In our example, an
online travel agent uses airline reservation service providers
to provide travel services to customers. There are three ser-
vice providers—SP1, SP2, and SP3—providing the same
type of airline reservation Web service at different QoS and
cost levels. The Web service of each SP supports two op-
erations: 1) checkFlightAvailability and 2) makeReserva-
tion. The experiment was conducted using the Weblogic

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

8.1 Web/Application server running on a Windows XP plat-
form with 2 GB RAM and a 1.5GHz Intel Pentium pro-
cessor. The Web services were deployed on a Weblogic
Web/Application server that hosts Web services as Web ap-
plications and uses the Servlet multi-threaded model with
five threads per Web service.
The service providers register their services and respec-

tive service demands and the cost functions with the QB.
Table 1 shows the service demands, DCPU and DI/O for
the CPU and I/O, respectively, for each SP. As can be seen
from the table, SP1 is the fastest and most expensive SP and
SP3 is the slowest and cheapest. The table also shows the
cost function as a function of the response time r for each
service provider. When making a QoS request, the client
sends its utility function (see below) representing an SLA
of 3 sec and cost constraint to the QB.

UR(r) =
105 × e−r+3

1 + e−r+3
. (7)

Upon receiving a QoS request for a service from a client,
the QB identifies the service provider that maximizes the
global utility for the client under the given cost as described
in section 6.

Table 1. Service Demands (in sec) and Cost
Functions

SP1 SP2 SP3
DCPU 0.0679 0.1763 0.3044
DI/O 0.0174 0.0252 0.0338
Cost(r) 20/r + 4 20/r + 2 20/r

The workload used for the experiment is composed of
random requests for checking flight availability or booking
a flight based on a relational database of 2,400 city-pair and
date-time options.
In this experiment, we assume that the clients have ac-

cess to the WSDL of the services provided by the QB. Al-
ternatively, the QB could publish its services with a UDDI
compliant service registry. Service providers providing air-
line reservation services may search the service registry and
discover brokerage service interfaces offered by the QB.
Additionally, the client (the travel agency) could also search
the service registry and access the business service proxies
that the client uses to bind and invoke requests.
The experimental configuration consists of 20 consecu-

tive sessions running on a client machine separate from that
of the SPs. Each session runs 30 concurrent client threads
and each thread executes 9 requests in sequence. These
requests could either be for checking flight availability or
for booking flights. Thus, 5,400 requests are submitted by
all sessions during the experiment. Average response times

(Rs) are computed for each session and subsequently utili-
ties are computed using UR(Rs).
Figure 7 shows the average response time per request

for each of the 20 sessions for different values of the cost
constraint Cmax: 10, 30, 50, 100, and 150. The figure
also shows 95% confidence intervals for the averages. The
average values of the response times over all sessions for
Cmax = 10, 30, 50, 100 and 150 are 7.98 sec, 5.96 sec, 4.44
sec, 2.42 sec, and 2.10 sec, respectively. It can be seen that
as the cost constraint decreases, the response time increases
because the QB has less flexibility of submitting requests to
faster SPs because the client cannot afford it. For higher val-
ues of the cost constraint, the selection is essentially driven
by the SP that has a better predicted response time.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Session Number

R
es

p
o

n
se

 T
im

e(
se

c)

Cmax=10 Cmax=30 Cmax=50 Cmax=100 Cmax=150

Figure 7. Average Response Time (in sec) for
20 sessions and for various values of Cmax.

Figure 8 shows the resulting utility seen by the clients
based on the response time values shown in the curves of
Fig. 7 for each of the 20 sessions and for various values of
Cmax. The curves show, as expected, that higher values of
the cost constraint increase the utility because the QB has
more flexibility to select among the three SPs. When the
cost is very constrained, i.e., Cmax = 10, the utility is very
low.
Figure 9 shows the number of requests sent to each SP

for the same different values of Cmax. Note that SP1 is the
fastest and most expensive and SP3 the slowest and cheap-
est. The figure shows that as the cost constraint changes,
the distribution of requests sent to each SP will change ac-
cordingly. For a very tight cost constraint, i.e., Cmax = 10,
all requests go to SP3, the cheapest. As the cost constraint
is relaxed, more requests move to SP2 and then to SP1.
The results presented in this section show that the QB is

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Session Number

U
ti

lit
y

Cmax = 10 Cmax = 30 Cmax = 50 Cmax = 100 Cmax = 150

Figure 8. Utility for 20 sessions and for vari-
ous values of Cmax

able to adapt to the cost constraints when making SP selec-
tions.

8 Related Work

Besides the work by one of the authors [9], there are
other research activities related to the work reported here.
Serhani et. al. [13] propose broker-based verification and
certification of Web services for their functional and QoS
claims and thus support clients to find Web services based
on their QoS requirements. The authors, however, do not
demonstrate what mechanisms are in place to guarantee that
the QoS claims will be met at runtime under varying load
conditions and do not elaborate on how the broker is in-
volved in QoS negotiation, monitoring, and adaptation.
Fung et. al. [6] propose a SOAP message tracking model

for supporting end-to-end management of QoS in the con-
text ofWSBPEL and SLA and aims to motivate the study of
QoS management in the Web Services composition frame-
work. The idea is that the client should be able to specify
QoS requirements in the SOAP message header and the ser-
vice provider should enforce the client’s QoS requirement.
The authors do not demonstrate how SLAs are negotiated
and whether QoS requirements specified by a client are re-
ally met.
Jaeger et. al. [8] discuss algorithms for the selection of

the most suitable candidate services to optimize the over-
all QoS of a composition. To select Web services for the
individual tasks in the composition, the authors calculate
the QoS of a composition by aggregating the QoS of indi-
vidual services based on a previous work on QoS aggrega-
tion for Web services composition using workflow patterns.

0

1000

2000

3000

4000

5000

6000

Cmax=10 Cmax=30 Cmax=50 Cmax=100 Cmax=150

S
er

vi
ce

 P
ro

vi
d

er
 C

o
u

n
ts

SP1 SP2 SP3

Figure 9. Number of requests sent to each SP
for different values of Cmax.

In that paper, the authors identify composition patterns that
represent basic structural elements of a composition like a
sequence, loop, or parallel executions. They demonstrate
that the pattern-wise selection algorithms that leverages the
composition patterns determines the best assignment based
on best possible QoS, considering each composition pattern
in isolation. However, the optimal composition achieved
through the composition patterns does not meet the end-to-
end QoS constraint for the process.
Canfora et. al. [5] discuss genetic algorithms as an ap-

proach for solving an optimization problem for Web ser-
vice composition. The approach aims to determine a set of
concrete services to be bound to the abstract services com-
posing the workflow of a composite service in such a way
that the selected set meets QoS constraints established in
the SLA and optimize a function of some other QoS param-
eters. That paper presents an interesting approach to the ser-
vice composition optimization problem. The authors do not
show whether the QoS guarantees of the optimized solution
could be met at runtime under varying workload conditions.
Berbner et. al. [2] propose the use of heuristics to solve

the QoS-aware service composition optimization problem,
especially for business processes with sequential execution.
Each task of the business process may be supported by dif-
ferent candidate web services. The goal is to compute an
execution plan by selecting one service from each cate-
gory to support the individual tasks (of the business pro-
cess) in a way that optimizes an objective function under
some QoS constraint. The objective function considered is
the weighted sum of the overall QoS attributes. The sim-
ulated evaluation of the heuristic reveals that this heuris-
tic is extremely fast and outperforms linear programming
based solutions with regard to computation time, especially

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

with increasing number of candidate Web services and pro-
cess tasks. That paper considers business processes with
sequential execution only and not the ones with more com-
plex flows such as loop and parallelism. Additionally, the
authors do not elaborate on how they combine different
QoS attributes with different units to construct the objective
function used in this paper.
A number of authors have tried to solve the service com-

position optimization problem using linear integer program-
ming. The focus was on workflows with sequential execu-
tion. The linear integer programming approach discussed
by Zeng et. al. [16], and as confirmed by Canfora et. al. [5]
and Yu and Lin [15] suggests that the approach is not scal-
able with increasing number of candidate services and activ-
ities in the business process. Genetic algorithms proposed
by Canfora et. al. [5] and a heuristic based approach pre-
sented by Bernber [2] for service composition with sequen-
tial execution is an improvement over the linear integer pro-
gramming approach.
D’Ambrogio [1] proposes a WSDL extension to desribe

QoS characteristics of Web services as a metamodel trans-
formation. Mei and Meeuwissen [3] introduce the concept
of SLA negotiation space that may span multiple domains
to realize end-to-end QoS requirements.

9 Concluding Remarks

This work considers service provider selection based on
maximizing a utility function under cost constraints. The
paper described the architecture and implementation of a
QoS broker that selects service providers based on a client-
provided utility function and on cost constraints also pro-
vided by the client. The broker uses a predictive analytic
queuing network model to estimate the values of perfor-
mance metrics such as response time and throughput for
each possible service provider. Service selection is then
based on maximizing a utility function under cost con-
straints. The selection of service providers performed by
the QoS broker is optimal at session initiation time. Us-
ing the admission control mechanism described by one of
the authors in [9], negotiated QoS levels are maintained
throughout a session even if the workload conditions change
with time. In order to validate the ideas presented in the
paper, the QoS broker was implemented and experiments
conducted to assess its behavior.
The performance and high-availability of the broker is

absolutely critical to the continuity of operations and the
success of service consumers, especially if the number of
services, SPs, and consumers is large. There are a number
of ways to enhance the availability and performance of the
broker. One of them consists in the use of clustering [10],
which allows a group of servers to work together and pro-
vide a unified front-end to the services offered by the servers

in the cluster. Clustering facilitates high availability through
server redundancy by replicating services across the servers.
When a server in the cluster fails, another can take over
without impacting the clients. Performance and scalability
in a clustered environment can be achieved by adding more
servers, if needed, and by using load balancing techniques.
We propose to use a cluster architecture to improve the

performance and availability of the QoS Broker and use a
cluster of Web/Application servers and database servers to
achieve this goal. Such a fail-over technique requires per-
sistence and replication of state information, such as the
service demand matrix, SLAs, Table of Commitments, and
service registration information. This information can be
stored in a persistent storage such as relational database.
Clustered databases and database replication techniques can
be used to replicate the state information across all servers
of the cluster.

References

[1] Andrea D’Ambrogio, “A Model-driven WSDL Extension
for Desribing the QoS of Web Services,” Proc. 2006
IEEE International Conference on Web Services (ICWS06),
2006.

[2] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R.
Steinmetz, “Heuristics for QoS-aware Web Service Com-
position,” Proc. 2006 IEEE International Conference on
Web Services (ICWS06), 2006.

[3] R.D. van der Mei and H.B. Meeuwissen, “Modeling End-
to-end Quality-of-Service for Transaction-based Services
in Multi-Domain Environments,” Proc. 2006 IEEE Inter-
national Conference on Web Services (ICWS05), 2006.

[4] M.N. Bennani and D.A. Menascé, “Resource Allocation
for Autonomic Data Centers Using Analytic Performance
Models,” Proc. 2005 IEEE International Conference on
Autonomic Computing, Seattle, WA, June 13-16, 2005.

[5] G. Canfora, M.D. Penta, R. Esposito, and M.L. Villani, “An
approach for QoS-aware service composition based on ge-
netic algorithms,” Genetic and Evolutionary Computation
Conference (GECCO 2005), Washington DC, USA, 2005.

[6] C.K. Fung, P.C.K. Hung, G. Wang, R.C. Linger, and G.H.
Walton, “A Study of Service Composition with QoS Man-
agement,” Proc. 2005 IEEE International Conference on
Web Services (ICWS05), 2005.

[7] J. O. Kephart and R. Das, “Achieving Self-Management via
Utility Functions,” IEEE Internet Computing, vol. 11, pp.
40–48, January/February, 2007.

[8] M.C. Jaeger, G. Muhl, and S. Golze, “QoS-aware Com-
position of Web Services: A Look at Selection Algorithm,”
Proc. 2005 IEEE International Conference onWeb Services
(ICWS05), 2005.

[9] D.A. Menascé, H. Ruan, and H. Gomma, “QoS Man-
agement in Service Oriented Architectures,” Performance

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Evaluation Journal, North-Holland, Elsevier Science, Vol.
64, Nos. 7-8, August 2007, pp. 646-663.

[10] D.A. Menascé, “Trade-offs in Designing Web Clusters,”
IEEE Internet Computing, September/October 2002.

[11] D.A. Menascé, V.A.F. Almeida, and L.W. Dowdy, Perfor-
mance by Design: capacity Planning by Example, Prentice
Hall, Upper Saddle River, 2004.

[12] D.A. Menascé, “Two-level Iterative Queuing Modeling of
Software Contention,” Proc. 10th IEEE Intl. Symp. Mod-
eling, Analysis, and Simulation of Computerand Telecom-
munications Systems (MASCOTS’02), October 11-16, 2002
Fort Worth, Texas, pp. 267-276.

[13] M.A. Serhani, R. Dssouli, A. Hafid, and H.A. Sahraoui, “A
QoS Broker Based Architecture for Efficient Web Service
Selection,” Proc. 2005 IEEE International Conference on
Web Services (ICWS05), 2005.

[14] W.E. Walsh, G. Tesauro, J.O. Kephart, and R. Das, “Util-
ity Functions in Autonomic Systems,” Proc. Intl. Conf. on
Autonomic Computing,, New York, NY, May, 2004.

[15] T. Yu and K.J. Lin, “Service Selection Algorithms for Web
Services with End-to-end QoS constraints,” Proc. 2004
IEEE International Conference on E-Commerce Technol-
ogy, 2004.

[16] L. Zeng, B. Bentallah, A.H.H. Ngu, M. Dumas, J.
Kalagnanam, and H. Chang, “QoS-Aware Middleware for
Web Services Composition,” IEEE Transactions on Soft-
ware Engineering, Vol. 30, No. 5, May 2004.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

