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Abstract: Formal behavioral models of software services are used as input byanalysis tools which check their properties
on hand of the given models. However, there is a gap between the real systems which have to be validated and
their abstract models. This work proposes to bridge this gap by tools whichextract behavioral models from
software services implementations. The method proposed here aims at ensuring a general solution, applicable
to several service technologies. The core of this solution consists of transforming the control flow graph of
a communicating system into its corresponding behavioral model represented as an EFSM (Extended Finite
State Machine). The extracted EFSM model can be automatically translated into an entity description in a
formal security specification language for distributed systems. This will enable the use of formal analysis
tools for real service implementations.

1 INTRODUCTION

Important research efforts aim at improving security
in the Internet of Services by developing a new gen-
eration of security analyzers for service deployment,
provision and consumption (Vigano, 2012). The tech-
niques used for discovering faults and vulnerabilities
comprise model checking or model based testing. All
these techniques take as input a model of the system
under validation and the expected security goals, ex-
pressed in a specific description formalism. Usually
the models are hand written by the security analyst,
based on the service specifications. This approach has
been successfully used in the discovery of protocol er-
rors, of logical errors which are present in the known
models of systems, or the discovery of errors due to
the interaction of known systems.

However, relying on hand-written models is not a
suitable approach in following situations:

At service consumption time, services are black-
boxes that come without (trusted) models and their
code is not available. A model can be inferred from
I/O sequences. There is a large field of research of
learning behavioral models by combining black-box
testing and automata learning (Lorenzoli et al., 2008),
and it begins to be used for inferring models of web
applications (Bertolino et al., 2009), (Hossen et al.,

2011), (Merten et al., 2012).

At service implementation and deployment time,
service developers could benefit more from the large
variety of tools for security analysis and validation,
such as the SPaCIoS tool (Vigano, 2012), if they
had model-extractor tools able to extract behavioral
models from service implementations. Currently
they have to manually write such models using the
Aslan++ specification language (Oheimb and Moder-
sheim, 2012). These model extraction tools are dif-
ferent from the ones used in the service consumption
use case, since they should take advantage of having
full access to the code of the implementation. Our
current work addresses this issue of extracting behav-
ioral models from service implementations, by apply-
ing specific white box techniques based on the analy-
sis of their control flow graph.

The remainder of this article is organized as fol-
lows. Section 2 presents background information
about representing behavioral models as extended fi-
nite state machines. Since services come in a variety
of technologies, their implementation using different
frameworks, we first define our method of model ex-
traction in abstract, technology-independent terms in
Section 3. Section 4 presents specific issues of partic-
ularizing our method for extracting models from ser-
vices implemented using different technologies .



2 EXTENDED FINITE STATE
MACHINES USED FOR
BEHAVIORAL MODELING

In this work we use a form of Extended Finite
State Machines (EFSM) for representing behavioral
models. Our EFSMs are Mealy machine models
which are specifically tailored for white-box model-
ing of I/O based systems.

We consider as I/O the messages exchanged by the
system with its environment. Each message is char-
acterized by a message type and a set of message pa-
rameters which may have different values. The input
alphabet of the EFSM is the setRM of all message
typesrm, which may be received by the system. The
output alphabet of the EFSM is the setSMof all mes-
sage typessm, which may be sent by the system. For
each message typem, m∈ RM or m∈ SM, the set of
parameter typesP(m) is known.

An EFSM model consists ofS, the set of all states
s, with only one state being the initial states0, a setT
of all transitionst between states, andV the set of all
state variablesv.

A transition t is defined by six components: its
origin statesi ∈ S, its destination statesj ∈ S, the re-
ceived messagerm ∈ RM, the guard predicateg, the
action listal, the sent messagesm∈ SM.

A transitiont between two statessi andsj occurs
when a messagerm is received and a guard condition
predicateg is true. In this case, the list of actions asso-
ciated with the transitional is executed and a message
sm is sent. It is possible that some of the following
components of a transition are missing:rm, g, al, sm.

State variables and parameters may be scalar vari-
ables or sets.

A guard condition predicateg is a boolean expres-
sion. The operands of the guard predicateg on a tran-
sition fired by a received messagerm with a set of
parametersP(rm) can be both state variablesv ∈ V
and parameters of the received messagep ∈ P(rm).
The operators can be boolean operators (and, or, not),
relational operators, or set operators (contains).

A list of actionsal is a ordered sequence of actions
ai . An actionai on a transition fired by a received
messagerm with a set of parametersP(rm), which
sends a messagesmwith a set of parametersP(sm) is
an assignment. The left value of the assignment is a
state variablev ∈ V or a parameter of the sent mes-
sagep∈ P(sm). The right value of the assignment is
an expression which can have as operands state vari-
ablesv ∈ V, or parameters of the received message
p∈ P(rm). Operators are boolean, relational and set
operators (add to, remove from).

3 FROM (ABSTRACT) CONTROL
FLOW GRAPH TO EXTENDED
FINITE STATE MACHINE

3.1 Preliminary assumptions

We present the principles of our model inference al-
gorithm starting from the following assumptions:

• The system is described by a complete, inter-
procedural Control Flow Graph (CFG).

• There are explicit statements, corresponding to a
node in the CFG, for receiving and sending mes-
sages of a specified message type and having mes-
sage parameters.

In our approach, we choose to determine the set
of states in the EFSM model corresponding to a set
of essentialprogram counter values (a set ofessen-
tial nodes in the CFG). A transition between two
EFSM states corresponds to a path between CFG
nodes which contains at least onerelevantnode. (We
will detail the concepts ofrelevantandessentialCFG
nodes in Section 3.2).

This is different from the classical approach of
defining the states as corresponding to predicates over
the state variables, as done in the related approaches
in the context of specification mining by static anal-
ysis for classes (Shoham et al., 2008), (Alur et al.,
2005). We have chosen this approach because in real
applications all the state variables can be complex
data structures and it may be a complex task to de-
termine predicate abstractions in this case.

3.2 Building the EFSM

3.2.1 Relevant nodes

An important preliminary step consists in identifying
therelevantnodes of the CFG.

In principle, an aspect is considered to be relevant
for our model if it influences the external observable
behavior which consists of the messages received or
sent by the system.

A variable is marked asrelevantif one of the fol-
lowing occurs:

• it is on a downstream dataflow from a parameter
of a received message

• it is on an upstream dataflow ending in a parame-
ter of a sent message

A CFG node is marked asrelevant if one of the
following occurs:

• it corresponds to a message receive or message
send instruction



• it handles a relevant variable

A CFG path isrelevantif it contains at least one
relevant node. Determining the relevant paths is actu-
ally a form of program slicing.

3.2.2 Essential nodes, EFSM states and
transitions

It is not necessary that all relevant CFG nodes (which
may be far too many) become states in the EFSM
model. We callessentialnodes only the CFG nodes
which correspond to nodes of the EFSM.

We propose the following algorithm to identify the
essential nodes and the transitions between them:

• The start node is an essential node, and it corre-
sponds to the initial state of the EFSM.

• Any CFG node containing a ReceiveMesage
statement is an essential node. It introduces a
new EFSM state. The relevant outgoing paths will
correspond to outgoing transitions enabled by the
received message. Each of these transitions will
end in the next state which will be identified as
essential on the respective outgoing path. The
relevant path conditions are collected as guard
predicates for the corresponding transition, while
assignments involving relevant variables are col-
lected as list of actions for the corresponding tran-
sition.

• A conditional branching node in the CFG is an
essential node only if it uses a relevant variable
which has been defined in a node preceding it on
an incoming path (this includes also the case of
loops). It introduces a new EFSM state which
has an incoming transition corresponding to the
incoming path with the definition node and outgo-
ing transitions corresponding to the outgoing con-
ditional paths.

After determining the essential nodes and iden-
tifying the paths between them which correspond to
transitions, for each transition we determine its re-
ceived messages, guard predicates, actions, sent mes-
sages. The guard predicate of a transition is composed
of all relevant conditions that are on the correspond-
ing path between the two nodes. The action list of
a transition contains all assignment or set operations
executed on relevant variables on the corresponding
path between the two nodes.

An EFSM is deterministic if from any states,
when any messagerm is received, there is at most one
transition possible. The EFSM built according to the
method presented above is deterministic, since transi-
tions outgoing from a state, in the case that they are la-
beled with the same received message, they have mu-

tually exclusive guard predicates, since they resulted
from different paths of the CFG .

3.3 Example

We consider as example the control flow graph of a
typical server. For presentation purpose, we use pseu-
docode to describe the abstract control flow of a sim-
ple online Shop. It manages orders, their payment
and their delivery. As we will discuss in Section 4,
the actual code implementing this simple online Shop
may look very different, depending on the particular
technologies or APIs used.

1: orders:={}
2: payments:={}
3: while(true)
4: switch ReceiveMesssage():
5: case:(orderType, name)
6: add name to orders
7: case:(payType, name)
8: if (name in orders)
9: add name to payments
10: case:(deliveryType, name)
11: if (name in payments)
12 remove name from payments
13: remove name from orders
14: SendMessage

deliveryResp, goods
15: else SendMessage

deliveryResp, error
16: endwhile

We determine the nodes (pseudocode statements)
1 and 4 as being the essential nodes, according to
the method outlined before. The five possible execu-
tion paths below this node correspond to five self-loop
transitions.

Figure 1 presents the corresponding EFSM of the
simple Shop server. In this figure we shortened for
presentation purposes the names: the message types
are denoted byo, p, d, and dR (for orderType,
payType, deliveryType, and deliveryResp), the
parametername is denotedn, the state variables
orders andpayments are namedos andps.

4 MODELING SERVICES OF
DIFFERENT TECHNOLOGIES

In section 3.2 we have outlined our model con-
struction algorithm assuming as starting point an ab-
stract CFG (i.e., a complete CFG of the whole system,
having special explicit instructions for sending and re-
ceiving messages).

The basics of our method are set by building
blocks for static code analysis such as call graph



init

loop

os:={}, ps:={} 
        

                                       Recv o(n), true | os:=os+{n}

 Recv p(n), n in os | ps:=ps+{n}

                               Recv p(n), not (n in os) |    

 Recv d(n), n in ps |                                                   
 ps:=ps-{n}, os:=os-{n},                                       

        Send dR(good)                                                          

Recv d(n), not (n in ps) |                                      
 Send dR(error)                                               

Figure 1: Example: EFSM model of simple Shop server

construction, inter-procedural control flow graph con-
struction, and data flow analysis. For implementation
we focused on systems implemented in the Java pro-
gramming language and we used the Watson Libraries
for Analysis (WALA) (IBM, 2010).

In practice, only analyzing the application code
of real distributed or service-oriented systems will
not directly produce a CFG such as the abstract one
needed by the model construction algorithm. This is
because real applications are usually developed with
the help of special frameworks and APIs that help
the application developer cope with the complexity of
such systems. Two immediate consequences are:

• Instead of explicit SendMessage and
ReceiveMessage instructions, frameworks
offer complex APIs to describe the interactions of
a server.
The first step towards applying our model ex-
traction method is to identify for each API the
constructions which are equivalent with sending
and receiving messages and define abstractions
for them.

• Frameworks also provide infrastructure support
for the execution of developed applications. Most
often, by analyzing only the application code writ-
ten by the application developer one cannot obtain
the whole CFG of the real system. For example, in
all frameworks the application developer does not
explicitly provide the server loop, which is added
by default through the framework.
The particularities of each framework have to be
known and the partial CFG or CFGs extracted
from the application code must be completed or
combined in order to obtain the complete CFG.

These issues (identifying and abstracting
send/receive message operations, completing the par-
tial CFG from application code) have to be solved by
technology specific preprocessing frontends before

the generic model construction method presented in
3.2 may proceed.

We consider modeling servers which are imple-
mented in Java and according to a set of specific tech-
nologies. We categorize these technologies as being
with or without explicit interfaces. Technologies such
as WSDL Web Services, Java RMI, and CORBA,
make the interfaces of the services explicit, either as
language interfaces or as interfaces described in a spe-
cial interface description language. Other technolo-
gies such as Servlets or JSP do not make the interfaces
explicit.

4.1 Preprocessing frontend for
interface-explicit technologies

In the case of Java RMI, but also in case of other
interface-explicit technologies, a server is a special
kind of object, implementing the methods described
in an explicit interface. The interface description con-
tains the list of possible operations, with their full sig-
nature (method name, number and types of parame-
ters, return type). Clients can interact with a server
invoking these methods. These are the entrypoints of
the server application.

The entry points for a RMI application are those
methods declared in an interface that extends the
rmi.Remote interface. When analyzing an applica-
tion that uses RMI, the preprocessing frontend looks
for this kind of methods as entrypoints.

We can define the neededSendMessageand
ReceiveMessageabstractions in RMI code in the fol-
lowing way: A RMI object receives a message when
one of its remote methods is invoked. Thus the en-
trypoint of every remote method is modeled as an ab-
stractReceiveMessageoperation. A RMI object sends
a message when returning from a remote method in-
vocation or when raising an exception.



Names for message types are derived automati-
cally from method names. The type of the sent mes-
sage differs from the type of the received message
corresponding to the method invocation (it is a return-
methodname type of message). The parameters of the
received message correspond to the arguments of the
method. The parameters of the sent message corre-
spond to the returned values or exceptions raised.

For example, a method with following signature:

String deliver(String name) {
... // some statements

}

will be abstracted to:

ReceiveMessage deliverType, name
... // some statements
SendMessage deliverResp, aString

By analyzing the RMI application code, the CFGs
of each entrypoint method can be built. In order to
get the whole CFG of the RMI server, all these partial
CFGs have to be framed by a server loop and pre-
ceded by the initialization code. After these prepro-
cessing are done, the core model construction algo-
rithm can be applied on the adjusted CFG.

4.2 Preprocessing frontend for servlets
and JSP

Web applications are dynamic extensions of web or
application servers, which may generate interactive
web pages with dynamic content in response to re-
quests. In the Java EE platform, the web components
which provide these dynamic extension capabilities
are either Java servlets or Java Server Pages (JSP).

A servlet is a Java class that conforms to the Java
Servlet API, which establishes the protocol by which
it responds to HTTP requests, and generates dynamic
web content as response. The popular JSP technol-
ogy, which embeds Java code into HTML, relies on
Servlets, as these are automatically generated by the
application server from JSP pages. When analyzing
JSP pages, we first explicitly call the JSP compiler in
order to obtain the source code of their corresponding
servlet classes.

In the code analysis, we identify Java
Servlets as the classes that extend the
javax.servlet.HttpServlet class. Their entry-
points are the methods:doGet, doDelete, doHead,
doOptions, doPost, doPut, doTrace, service. The
servlets generated from JSP are classes which ex-
tend org.apache.jasper.runtime.HttpJspBase
and their entrypoints are methodsjspInit() and
jspService().

When analyzing an application that uses servlets,
the preprocessing frontend looks for this kind of

methods as entrypoints. Similarly to the RMI prepro-
cessor, the CFGs of each entrypoint can be built and
in order to get the whole CFG all these partial CFGs
have to be framed by a server loop and preceded by
the initialization code.

All entrypoint methods have as parameters
HttpServletRequest and HttpServletResponse,
which correspond to the types of the messages which
are sent and received.

TheHttpServletRequest allows access to all in-
coming data. The class has methods for retrieving
form (query) data, HTTP request headers, and client
information. TheHttpServletResponse specifies
all outgoing information, such as HTTP status codes,
response headers, cookies, and also has a method of
retrieving aPrintWriter used to create the HTML
document which is sent to the client.

What is different and more difficult in this case
is abstracting the parameters of the SendMessage
and ReceiveMessage statements. Message parame-
ters cannot be identified directly in this case, since
incoming and outgoing data are handled through a
large number of specific methods on the request and
response objects.

As an example, we consider below an excerpt of
the simple Shop, whose abstract control flow has been
described in Section 3.3, this time in an implementa-
tion with servlets:

public class Shop extends HttpServlet {
// ... omitted parts
protected void doGet(HttpServletRequest req,

HttpServletResponse resp)
// ... parts are omitted or simplified
String op = req.getParameter("operation");
if (op.equals("deliver")) {

String name=req.getParameter("name");
if (payments.contains(name))

delivResp=doService();
else delivResp=error();
Writer w=response.getWriter();
w.write(delivResp);
}

else if (op.equals("pay"))
// ...

Abstracting send and receive operations with pa-
rameters from the code of each entry point method
is a complex task which must take into account every
method that can be called on aHttpServletRequest
or HttpServletResponse object.

The entrypoiny of the method corresponds to a
ReceiveMessagestatement, receiving a message of
type Htt pRequest. The parameters of this received
message may contain: a set of name - value pairs,
corresponding to theParameterMap, and a set cor-
responding to the Session attributes. The parameters
will be added to the ReceiveMessage statement only



if they are used in the method body: the first param-
eter will be added only if the method body contains
statements for retrieving the ParameterMap or spe-
cific parameters from the request object. The second
parameter will be added only if there are statements
retrieving a Session from the request object and get-
ting values from there.

In our example, we have only calls of method
getParameter on therequest object, noSession
object has been retrieved and used, thus the received
abstract message is:

ReceiveMessage HttpRequest (
("operation", op), ("name", name))

Each path leading to an exit point of the method
will end in aSendMessagestatement, sending a mes-
sage of typeHtt pResponse. The parameters of this
sent message are: all the variables which are written
by the output Writer along this path, and session at-
tributes if they have been retrieved and handled in the
method body.

In our example, followingSendMessagestate-
ments are abstracted on the different paths:

SendMessage HttpResponse (delivResp)
SendMessage HttpResponse ("Order finished")
SendMessage HttpResponse ("Pay finished")

5 CONCLUSIONS

The goal of our work is to build a tool for the auto-
matic extraction of behavioral models from service
implementations. In order to cope with the diver-
sity of technologies and APIs which can be used
by service implementations, we propose an approach
for model extraction in two steps: a technology-
dependent preprocessing step, followed by the sta-
ble core step that implements a general method of
transforming the abstracted control flow graph into an
EFSM.

The kind of EFSM inferred by our approach is
suitable to be automatically translated into an entity
description in a formal security specification language
for distributed systems such as Aslan++, the language
used by the SPaCIoS tool. The security analyst will
have to add manually only the security-related proper-
ties of the communication channels, which cannot be
known from the implementation code, and to specify
the desired properties to be checked.

Having tools which extract behavioral models
from actual service implementations is an important
step towards enabling formal security validation tech-
niques to be applied on real systems at their imple-
mentation and deployment time.
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