
Automatic extraction of behavioral models from
distributed systems and services

Ioana Şora and Doru-Thom Popovici

Department of Computer and Software Engineering,
Politehnica University of Timisoara, Romania

Abstract. Many techniques used for discovering faults and vulnerabil-
ities in distributed systems and services require as inputs formal behav-
ioral models of the systems under validation. Such models are tradition-
ally written by hand, according to the specifications which are known,
leading to a gap between the real systems which have to be validated
and their abstract models.
A method to bridge this gap is to develop tools that automatically ex-
tract the models directly from the implementations of distributed sys-
tems and services. We propose here a general model extraction solution,
applicable to several service technologies. At the core of our solution
we develop a method for transforming the control flow graph of an ab-
stract communicating system into its corresponding behavioral model
represented as an Extended Finite State Machine. We then illustrate our
method for extracting models from services implemented using different
concrete technologies such as Java RMI, Web services and HTTP Web
applications and servlets.

Keywords: Reverse Engineering; Behavioral Model; EFSM; Distributed
Computing; Service Computing

1 Introduction

Important research efforts aim at improving security in the Internet of Services
by developing a new generation of security analyzers for service deployment,
provision and consumption [16]. The techniques used for discovering faults and
vulnerabilities comprise model checking [3] or model based testing [5]. All these
techniques take as input a model of the system under validation and the expected
security goals, expressed in a specific description formalism. Usually the models
are hand written by the security analyst, based on the service specifications.
This approach has been successfully used in the discovery of protocol errors, of
logical errors which are present in the known models of systems, or the discovery
of errors due to the interaction of known systems.

One of the factors which can promote the use of these validation techniques
is given by how easy it is to produce the models which are required as inputs
by the various validation tools. Also, these models should reflect with accuracy
the real system. It results that relying on hand-written models is not always a

2 Ioana Şora, Doru-Thom Popovici

suitable approach: it is the case of service implementers, who must make sure
that the model reflects the actual implementation, and it is the case of service
consumers who use black-box services from third party providers and need a
reliable model of it.

In this work, we focus on getting service models at service implementation
and deployment time. Service developers could benefit more from the large va-
riety of tools for security analysis and validation, such as the SPaCIoS tool [16],
if they had model-extractor tools able to extract behavioral models from ser-
vice implementations. Currently they have to manually write such models using
the Aslan++ specification language [12]. Our current work [14] addresses this
issue of extracting behavioral models from service implementations, by applying
specific white box techniques based on the analysis of their control flow graph.

The difficulty in analyzing the code of real service implementations comes
from the complexity of the code, which is usually written using different technolo-
gies frameworks and APIs. It is not possible to obtain models of a reasonable
high abstraction level without taking into account the speciffics of each API
which is used by providing special abstractions for them. Doing so, the disad-
vantage is that it leads to dedicated model extraction tools, each designed to
handle systems or services implemented in a given technology.

Our approach handles the different technologies by identifying how they map
onto a set of general abstract communication operations. Then, the problem
of extracting models of systems implemented using different technologies and
frameworks is split into two distinct subproblems: first, the problem of extracting
the model of a system which uses only a set of abstract communication opera-
tions, and second, the problem of mapping these abstract communication oper-
ations onto the operations of different frameworks and APIs for distributed sys-
tems and services development. According to this, the model extractor tool com-
prises a stable, general model extractor core and a set of technology-dependent
preprocessing frontends, like depicted in Figure 1.

The remainder of this article is organized as follows. Section 2 presents back-
ground information about representing behavioral models as extended finite state
machines. Section 3 presents the specific ways of mapping complex constructions
of different frameworks and APIs for the construction of distributed systems
and services into abstract message communication operations. We then define
our method of model extraction in abstract, technology-independent terms in
Section 4. We discuss aspects related to our approach in Section 5.

2 Extended Finite State Machines used for behavioral
modeling

In this work we use a form of Extended Finite State Machines (EFSM) for
representing behavioral models. Our EFSMs are Mealy machine models which
are specifically tailored for white-box modeling of I/O based systems. Further,
such models can be translated into Aslan++ [12] or into another language for
modeling of distributed systems and services.

Automatic extraction of behavioral models 3

Preprocessr 1

Preprocessr 2 Model
Extractor

Core
Preprocessr 3

Preprocessr n

Intermediate

Representation
(Abstract

CFG)

Model
(EFSM)

Web
service

RMI

Servlet

Different types
of source code

Technology-dependent
preprocessing
frontends

Fig. 1. The two steps of the model extraction approach

We consider as I/O the messages exchanged by the system with its environ-
ment. Each message is characterized by a message type and a set of message
parameters which may have different values. The input alphabet of the EFSM
is the set RM of all message types rm, which may be received by the system.
The output alphabet of the EFSM is the set SM of all message types sm, which
may be sent by the system. For each message type m, m ∈ RM or m ∈ SM ,
the set of parameter types P (m) is known.

Since the model is extracted through white-box techniques, it may also con-
tain and use without restrictions state variables v ∈ V which are not directly
observable from the exterior but they can be extracted from the code.

An EFSM model consists of S, the set of all states s, with only one state
being the initial state s0, a set T of all transitions t between states, and V the
set of all state variables v.

A transition t is defined by six components: its origin state si ∈ S, its desti-
nation state sj ∈ S, the received message rm ∈ RM , the guard predicate g, the
action list al, the sent message sm ∈ SM .

A transition t between two states si and sj occurs when a message rm is
received and a guard condition predicate g is true. In this case, the list of actions
associated with the transition al is executed and a message sm is sent.

If (ReceiveMsg (rm) and isTrue(g)) then

doActions(al);

SendMsg (sm);

It is possible that some of the following components of a transition are missing:
rm, g, al, sm.

State variables and parameters may be scalar variables or sets.
A guard condition predicate g is a boolean expression. The operands of the

guard predicate g on a transition fired by a received message rm with a set of

4 Ioana Şora, Doru-Thom Popovici

parameters P (rm) can be both state variables v ∈ V and parameters of the
received message p ∈ P (rm). The operators can be boolean operators (and, or,
not), relational operators, or set operators (contains).

A list of actions al is an ordered sequence of actions ai. An action ai on
a transition fired by a received message rm with a set of parameters P (rm),
which sends a message sm with a set of parameters P (sm) is an assignment.
The left value of the assignment is a state variable v ∈ V or a parameter of
the sent message p ∈ P (sm). The right value of the assignment is an expression
which can have as operands state variables v ∈ V , or parameters of the received
message p ∈ P (rm). Operators are boolean, relational and set operators (add
to, remove from).

3 Modeling services of different technologies

Our work aims at modeling distributed systems and services in form of EFSMs as
presented in section 2. An application or service can be implemented in different
ways using different technologies, but still be described by the same behavioral
model. In the next subsection we introduce a system which will be used as a run-
ning example, together with the EFSM representing its behavioral model, while
next subsections use different technologies to implement the same system. This
helps identifying how the specific constructs of different APIs can be mapped
into a set of abstract message sending operations and leads to defining the tasks
that have to be performed by the technology-dependent frontends of the model
extractor tool in order to produce an intermediate system representation as an
abstract control flow graph.

3.1 A running example

We introduce the following Online Shop as a running example. The Online Shop
acts as a server which may receive commands for ordering goods, paying for
them, and requesting that the payed products are delivered.

We assume that the server receives and sends messages, by explicit mes-
saging operations such SendMessage and ReceiveMessage. The input alpha-
bet (the set of received message types RM) comprises: orderType, payType,
deliveryType, while the output alphabet (the set of sent mesage types SM)
comprises deliveryResp. The received messages of all types take one parameter
name which serves as the identifyer of orders, payments and deliveries. The func-
tioning of the shop assumes that for a name, an order has to be placed first, then
it can be payed and only after that it can be delivered. In order to keep track of
the state of orders which have been submitted and payments which have been
done, the model employs two state variables, orders and payments, which are
sets of names. The Online Shop is modeled as an EFSM with two states, the ini-
tial state and the state corresponding to the server loop state. Initially, the sets
orders and payments are initialized as empty sets. In the server loop state, the
system may receive messages of the types orderType, payType, deliveryType.

Automatic extraction of behavioral models 5

These determine transitions which go into the same server loop state, but the
actions and mesages sent are different, according to the message received and a
set of guard conditions.

init

loop

os:={}, ps:={}

 Recv o(n), true | os:=os+{n}

 Recv p(n), n in os | ps:=ps+{n}

 Recv p(n), not (n in os) |

 Recv d(n), n in ps |
 ps:=ps-{n}, os:=os-{n},

 Send dR(good)

Recv d(n), not (n in ps) |
 Send dR(error)

Fig. 2. Example: EFSM model of simple Shop server

Figure 2 presents the EFSM of the simple Shop server. In this figure we
shortened for presentation purposes the names: the message types are denoted
by o, p, d, and dR (for orderType, payType, deliveryType, and deliveryResp),
the parameter name is denoted n, the state variables orders and payments are
named os and ps.

3.2 Technologies used for implementation of distributed systems

and services

In practice, such an Online Shop server corresponding to the above model can be
implemented using a large variety of different technologies, frameworks and APIs
for distributed systems and services. These help the application developer to cope
with the complexity of such systems, but performing code analysis becomes more
difficult for the following two reasons:

– Instead of explicit SendMessage and ReceiveMessage instructions, frame-
works offer complex APIs to describe the interactions of a server.

The first step towards applying our model extraction method is to identify for
each API the constructions which are equivalent with sending and receiving
messages and define abstractions for them.

– Frameworks also provide infrastructure support for the execution of devel-
oped applications. Most often, by analyzing only the application code written
by the application developer one cannot obtain the whole control flow graph
(CFG) of the real system. For example, in all frameworks the application

6 Ioana Şora, Doru-Thom Popovici

developer does not explicitly provide the server loop, which is something
that is added by default through the framework.
The particularities of each framework have to be known and the partial CFG
or CFGs extracted from the application code must be completed or combined
in order to obtain the complete CFG.

These issues (identifying and abstracting send/receive message operations,
completing the partial CFG from application code) have to be solved by tech-
nology specific preprocessing frontends before the generic model construction
method presented in 4.2 may proceed.

Our current work considers modeling servers which are implemented in Java
and according to a set of specific technologies. The limitation to analyzing only
Java code is a temporary one, due to the fact that we need specific support
for static code analysis for each new programming language. The basics of our
method are set by building blocks for static code analysis such as: call graph
construction, inter-procedural control flow graph construction, and data flow
analysis. For implementation we focused on systems implemented in the Java
programming language because we can rely on these building blocks offered by
the Watson Libraries for Analysis (WALA) [8].

We categorize these technologies as being with or without explicit interfaces.
Technologies such as WSDL Web Services, Java RMI, and CORBA, make the
interfaces of the services explicit, either as language interfaces or as interfaces
described in a special interface description language. Other technologies such as
Servlets or JSP do not make the interfaces explicit. The following subsections de-
tail how the explicit constructions of these technologies are mapped into abstract
SendMessage and ReceiveMessage operations and how the corresponding pre-
processing frontends produce the abstract control flow graph.

3.3 Preprocessing frontend for interface-explicit technologies

In the case of Java RMI, but also in case of other interface-explicit technologies
such as WSDL Java Web services, a server is a special kind of object, imple-
menting the methods described in an explicit interface. The interface description
contains the list of possible operations, with their full signature (method name,
number and types of parameters, return type). Clients can interact with a server
invoking these methods. These are the entrypoints of the server application.

The Online Shop can be implemented as a RMI server, by first defining its
interface as a Java interface which extends the rmi.Remoteinterface and then
defining a Java class which implements this interface:

public class ShopImpl

extends UnicastRemoteObject

implements ShopInterface {

private Set<String> orders = new HashSet<String>();

Automatic extraction of behavioral models 7

private Set<String> payments = new HashSet<String>();

public synchronized void order(String name)

throws RemoteException {

orders.add(name);

}

public synchronized void pay(String name)

throws RemoteException {

if (orders.contains(name)) {

orders.remove(name);

payments.add(name);

}

}

public synchronized String get(String name)

throws RemoteException {

if (payments.contains(name)) {

payments.remove(name);

return new String("YourProduct");

}

else return new String("NotPayed");

}

}

The entry points for a RMI application are those methods declared in an
interface that extends the rmi.Remote interface. When analyzing an application
that uses RMI, the preprocessing frontend looks for this kind of methods as
entrypoints.

We can define the needed SendMessage and ReceiveMessage abstractions
in RMI code in the following way: A RMI object receives a message when one
of its remote methods is invoked. Thus the entrypoint of every remote method
is modeled as an abstract ReceiveMessage operation. A RMI object sends a
message when returning from a remote method invocation or when raising an
exception.

Names for message types are derived automatically from method names.
The type of the sent message differs from the type of the received message
corresponding to the method invocation (it is a return-methodname type of
message). The parameters of the received message correspond to the arguments
of the method. The parameters of the sent message correspond to the returned
values or exceptions raised.

For example, a method with following signature:

String deliver(String name) {

... // some statements

}

will be abstracted to:

8 Ioana Şora, Doru-Thom Popovici

ReceiveMessage deliverType, name

... // some statements

SendMessage deliverResp, aString

By analyzing the RMI application code, the CFGs of each entrypoint method
can be built. In order to get the whole CFG of the RMI server, all these partial
CFGs have to be framed by a server loop and preceded by the initialization code.
After these preprocessing are done, the core model construction algorithm can
be applied on the adjusted CFG.

3.4 Preprocessing frontend for servlets and JSP

Web applications are dynamic extensions of web or application servers, which
may generate interactive web pages with dynamic content in response to re-
quests. In the Java EE platform, the web components which provide these dy-
namic extension capabilities are either Java servlets or Java Server Pages (JSP).

A servlet is a Java class that conforms to the Java Servlet API, which es-
tablishes the protocol by which it responds to HTTP requests, and generates
dynamic web content as response. The popular JSP technology, which embeds
Java code into HTML, relies on Servlets, as these are automatically generated
by the application server from JSP pages. When analyzing JSP pages, we first
explicitly call the JSP compiler in order to obtain the source code of their cor-
responding servlet classes.

In the code analysis, we identify Java Servlets as the classes that extend the
javax.servlet.HttpServlet class. Their entrypoints are the methods: doGet,
doDelete, doHead, doOptions, doPost, doPut, doTrace, service. The servlets
generated from JSP are classes which extend org.apache.jasper.runtime.

HttpJspBase and their entrypoints are methods jspInit() and jspService().
When analyzing an application that uses servlets, the preprocessing frontend

looks for this kind of methods as entrypoints. Similarly to the RMI preprocessor,
the CFGs of each entrypoint can be built and in order to get the whole CFG
all these partial CFGs have to be framed by a server loop and preceded by the
initialization code.

All entrypoint methods have as parameters HttpServletRequest and
HttpServletResponse, which correspond to the types of the messages which
are sent and received.

The HttpServletRequest allows access to all incoming data. The class has
methods for retrieving form (query) data, HTTP request headers, and client
information. The HttpServletResponse specifies all outgoing information, such
as HTTP status codes, response headers, cookies, and also has a method of
retrieving a PrintWriter used to create the HTML document which is sent to
the client.

What is different and more difficult in this case is abstracting the parameters
of the SendMessage and ReceiveMessage statements. Message parameters cannot
be identified directly in this case, since incoming and outgoing data are handled
through a large number of specific methods on the request and response objects.

Automatic extraction of behavioral models 9

As an example, we consider below an excerpt of the Online Shop example,
this time in an implementation with servlets:

public class Shop extends HttpServlet {

// ... omitted parts

protected void doGet(HttpServletRequest req,

HttpServletResponse resp)

// ... parts are omitted or simplified

String op = req.getParameter("operation");

if (op.equals("deliver")) {

String name=req.getParameter("name");

if (payments.contains(name))

delivResp=doService();

else delivResp=error();

Writer w=response.getWriter();

w.write(delivResp);

}

else if (op.equals("pay"))

// ...

Abstracting send and receive operations with parameters from the code of
each entry point method is a complex task which must take into account every
method that can be called on a HttpServletRequest or HttpServletResponse
object.

The entrypoiny of the method corresponds to a ReceiveMessage state-
ment, receiving a message of type HttpRequest. The parameters of this re-
ceived message may contain: a set of name - value pairs, corresponding to the
ParameterMap, and a set corresponding to the Session attributes. The parame-
ters will be added to the ReceiveMessage statement only if they are used in the
method body: the first parameter will be added only if the method body contains
statements for retrieving the ParameterMap or specific parameters from the re-
quest object. The second parameter will be added only if there are statements
retrieving a Session from the request object and getting values from there.

In our example, we have only calls of method getParameter on the request
object, no Session object has been retrieved and used, thus the received abstract
message is:

ReceiveMessage HttpRequest (

("operation", op), ("name", name))

Each path leading to an exit point of the method will end in a SendMessage

statement, sending a message of type HttpResponse. The parameters of this
sent message are: all the variables which are written by the output Writer along
this path, and session attributes if they have been retrieved and handled in the
method body.

In our example, following SendMessage statements are abstracted on the
different paths:

10 Ioana Şora, Doru-Thom Popovici

SendMessage HttpResponse (delivResp)

SendMessage HttpResponse ("Order finished")

SendMessage HttpResponse ("Pay finished")

4 From (abstract) Control Flow Graph to Extended
Finite State Machine

4.1 Preliminary assumptions

We present the principles of our model inference algorithm starting from the
following assumptions:

– The system is described by a complete, inter-procedural Control Flow Graph
(CFG).

– There are explicit statements, corresponding to a node in the CFG, for re-
ceiving and sending messages of a specified message type and having message
parameters.

These assumptions are fulfilled if the code has been preprocessed by a fron-
tend like the ones discussed in subsections 3.3 and 3.4.

In our approach, we choose to determine the set of states in the EFSM model
corresponding to a set of essential program counter values (a set of essential
nodes in the CFG). A transition between two EFSM states corresponds to a
path between CFG nodes which contains at least one relevant node. (We will
detail the concepts of relevant and essential CFG nodes in Section 4.2).

This is different from the classical approach of defining the states as corre-
sponding to predicates over the state variables, as done in the related approaches
in the context of specification mining by static analysis for classes [13], [2]. We
have chosen this approach because in real applications all the state variables can
be complex data structures and it may be a complex task to determine predicate
abstractions in this case.

4.2 Building the EFSM

Relevant nodes An important preliminary step consists in identifying the
relevant nodes of the CFG.

In principle, an aspect is considered to be relevant for our model if it influ-
ences the external observable behavior which consists of the messages received
or sent by the system.

A variable is marked as relevant if one of the following occurs:

– it is on a downstream dataflow from a parameter of a received message
– it is on an upstream dataflow ending in a parameter of a sent message

A CFG node is marked as relevant if one of the following occurs:

– it corresponds to a message receive or message send instruction
– it handles a relevant variable

A CFG path is relevant if it contains at least one relevant node. Determining
the relevant paths is actually a form of program slicing.

Automatic extraction of behavioral models 11

Essential nodes, EFSM states and transitions It is not necessary that all
relevant CFG nodes (which may be far too many) become states in the EFSM
model. We call essential nodes only the CFG nodes which correspond to nodes
of the EFSM.

We propose the following algorithm to identify the essential nodes and the
transitions between them:

– The start node is an essential node, and it corresponds to the initial state of
the EFSM.

– Any CFG node containing a ReceiveMesage statement is an essential node.
It introduces a new EFSM state. The relevant outgoing paths will correspond
to outgoing transitions enabled by the received message. Each of these tran-
sitions will end in the next state which will be identified as essential on
the respective outgoing path. The relevant path conditions are collected as
guard predicates for the corresponding transition, while assignments involv-
ing relevant variables are collected as list of actions for the corresponding
transition.

– A conditional branching node in the CFG is an essential node only if it
uses a relevant variable which has been defined in a node preceding it on
an incoming path (this includes also the case of loops). It introduces a new
EFSM state which has an incoming transition corresponding to the incoming
path with the definition node and outgoing transitions corresponding to the
outgoing conditional paths.

After determining the essential nodes and identifying the paths between them
which correspond to transitions, for each transition we determine its received
messages, guard predicates, actions, sent messages. The guard predicate of a
transition is composed of all relevant conditions that are on the corresponding
path between the two nodes. The action list of a transition contains all assign-
ment or set operations executed on relevant variables on the corresponding path
between the two nodes.

An EFSM is deterministic if from any state s, when any message rm is
received, there is at most one transition possible. The EFSM built according to
the method presented above is deterministic, since transitions outgoing from a
state, in the case that they are labeled with the same received message, they have
mutually exclusive guard predicates, since they resulted from different paths of
the CFG .

4.3 Example

We consider the Online Shop example. By applying technology speciffic pre-
processings, its abstract control flow graph has been obtained. For presentation
purpose, we use here pseudocode to describe the abstract control flow.

1: orders:={}

2: payments:={}

12 Ioana Şora, Doru-Thom Popovici

3: while(true)

4: switch ReceiveMesssage():

5: case:(orderType, name)

6: add name to orders

7: case:(payType, name)

8: if (name in orders)

9: add name to payments

10: case:(deliveryType, name)

11: if (name in payments)

12 remove name from payments

13: remove name from orders

14: SendMessage

deliveryResp, goods

15: else SendMessage

deliveryResp, error

16: endwhile

We determine the nodes (pseudocode statements) 1 and 4 as being the essen-
tial nodes, according to the method outlined before. The five possible execution
paths below this node correspond to five self-loop transitions. The resulting
EFSM is the one which has been depicted in Figure 2.

5 Related Work

As mentioned in the introductive section, the need to infer models occurs at two
different scenarios: at service consumption time, and at service deployment time.

At service consumption time, services are black-boxes that come without
(trusted) models and their code is not available. A model can be inferred from
I/O sequences. There is a large field of research of learning behavioral models
by combining black-box testing and automata learning [9], and it begins to be
used for inferring models of web applications [4], [7], [11].

At service deployment time, the implementation code is available and model
extraction tools should take advantage of having full access to the code of the
implementation. Thus, in this case another category of white-box model inference
is needed.

The core of our model extraction approach relates with the work on static
analysis in the context of specification mining for classes, such as [13], [2], [6].
Automata-based abstractions are used for behavioral modeling, but, as we men-
tioned in subsection 4.1, they use predicate abstraction in order to determine
the states.

Extracting models of web applications through code analysis has been done
only on particular technologies or cases such as in [1], [15], [10], focusing on the
detection of concrete problems, not on the extraction of a transferable model to
be passed for analysis to existing tools.

Extracting models is the main goal of black-box approaches such as [9], [7].
The focus of these works is mainly on developing learning algorithms, in the

Automatic extraction of behavioral models 13

context of abstract input and output traces. Most relevant from our perspective
are the works of [4], [11] which identified the need of automatizing the learning-
setup in order to enable learners to interact directly with real applications. These
works propose solutions and tools for abstractizing the input and output alpha-
bet from WSDL web services, based on principles which are similar with the
ones presented in Section 3.3.

6 Conclusions

The goal of our work is to build a tool for the automatic extraction of behavioral
models from service implementations. In order to cope with the diversity of tech-
nologies and APIs which can be used by service implementations, we propose an
approach for model extraction in two steps: a technology-dependent preprocess-
ing step, followed by the stable core step that implements a general method of
transforming the abstracted control flow graph into an EFSM.

The kind of EFSM inferred by our approach is suitable to be automatically
translated into an entity description in a formal security specification language
for distributed systems such as Aslan++, the language used by the SPaCIoS
tool. The security analyst will have to add manually only the security-related
properties of the communication channels, which cannot be known from the
implementation code, and to specify the desired properties to be checked.

Having tools which extract behavioral models from actual service implemen-
tations is an important step towards enabling formal security validation tech-
niques to be applied on real systems at their implementation and deployment
time.

Acknowledgements

This work has been supported by the FP7-ICT-2009-5 project no. 257876 SPa-
CIoS (”Secure Provision and Consumption in the Internet of Services”)

References

1. Elvira Albert, BjarteM. stvold, and JosMiguel Rojas. Automated extraction of
abstract behavioural models from jms applications. In Marille Stoelinga and Ralf
Pinger, editors, Formal Methods for Industrial Critical Systems, volume 7437 of
Lecture Notes in Computer Science, pages 16–31. Springer Berlin Heidelberg, 2012.

2. Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthesis of in-
terface specifications for Java classes. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’05, pages
98–109, New York, NY, USA, 2005. ACM.

3. A. Armando, R. Carbone, L. Compagna, Keqin Li, and G. Pellegrino. Model-
checking driven security testing of web-based applications. In Software Testing,
Verification, and Validation Workshops (ICSTW), 2010 Third International Con-
ference on, pages 361–370, 2010.

14 Ioana Şora, Doru-Thom Popovici

4. Antonia Bertolino, Paola Inverardi, Patrizio Pelliccione, and Massimo Tivoli. Au-
tomatic synthesis of behavior protocols for composable web-services. In Proceed-
ings of the the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering,
ESEC/FSE ’09, pages 141–150, New York, NY, USA, 2009. ACM.

5. M. Buchler, J. Oudinet, and A. Pretschner. Semi-automatic security testing of web
applications from a secure model. In Software Security and Reliability (SERE),
2012 IEEE Sixth International Conference on, pages 253–262, 2012.

6. J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby, and
Hongjun Zheng. Bandera: extracting finite-state models from java source code. In
Software Engineering, 2000. Proceedings of the 2000 International Conference on,
pages 439–448, 2000.

7. K. Hossen, R. Groz, and J.L. Richier. Security vulnerabilities detection using model
inference for applications and security protocols. In IEEE 4th International Confer-
ence on Software Testing, Verification and Validation Workshops, pages 534–536,
2011.

8. IBM. T.J.Watson Libraries for Analysis (WALA). Technical report, IBM
T.J.Watson Research Centre, 2010.

9. D. Lorenzoli, L. Mariani, and M. Pezze. Automatic generation of software behav-
ioral models. In Software Engineering, 2008. ICSE ’08. ACM/IEEE 30th Interna-
tional Conference on, pages 501–510, 2008.

10. Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. SEIM:
static extraction of interaction models. In Proceedings of the 2nd International
Workshop on Principles of Engineering Service-Oriented Systems, PESOS ’10,
pages 22–28, New York, NY, USA, 2010. ACM.

11. Maik Merten, Falk Howar, Bernhard Steffen, Patrizio Pellicione, and Massimo
Tivoli. Automated inference of models for black box systems based on interface
descriptions. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Appli-
cations of Formal Methods, Verification and Validation. Technologies for Mastering
Change, volume 7609 of Lecture Notes in Computer Science, pages 79–96. Springer
Berlin Heidelberg, 2012.

12. David Oheimb and Sebastian Modersheim. Aslan++ a formal security specifi-
cation language for distributed systems. In BernhardK. Aichernig, FrankS. Boer,
and MarcelloM. Bonsangue, editors, Formal Methods for Components and Objects,
volume 6957 of Lecture Notes in Computer Science, pages 1–22. Springer Berlin
Heidelberg, 2012.

13. S. Shoham, E. Yahav, S.J. Fink, and M. Pistoia. Static specification mining us-
ing automata-based abstractions. Software Engineering, IEEE Transactions on,
34(5):651–666, 2008.

14. Ioana Sora and Doru-Thom Popovici. Extracting behavioral models from service
implementations. In Proceedings of 8th International Conference on Evaluation of
Novel Software Approaches to Software Engineering (ENASE 2013), pages 226–
231. SciTePress, 2013.

15. Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.
TAJ: effective taint analysis of web applications. In Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and implementation, PLDI
’09, pages 87–97, New York, NY, USA, 2009. ACM.

16. Luca Vigano. Towards the secure provision and consumption in the internet of
services. In Simone Fischer-Hobner, Sokratis Katsikas, and Gerald Quirchmayr,
editors, Trust, Privacy and Security in Digital Business, volume 7449 of Lecture
Notes in Computer Science, pages 214–215. Springer Berlin Heidelberg, 2012.

