
Helping Program Comprehension of Large Software

Systems by Identifying Their Most Important Classes

Ioana Şora

Department of Computer and Software Engineering

University Politehnica of Timisoara, Romania

ioana.sora@cs.upt.ro

Abstract. An essential prerequisite before engaging in any maintenance activ-

ities of complex software systems is the good comprehension of the existing

code. Program comprehension is supported by documentation, which can be ei-

ther developer documentation or documentation obtained by reverse engineering.

In both cases, but especially in the case of reverse engineered documentation,

this means a large amount of detailed documents that have to be carefully stud-

ied. Processing such large and detailed information can be made easier if there is

an executive summary - a short document pointing to the most important elements

of the system.

In our work we propose a tool to automatically extract such a summary, by iden-

tifying the most important classes of the system. Our approach consists of model-

ing the static dependencies of the system as a graph and applying a graph ranking

algorithm. How we build the dependency graph is the key for the success of the

approach. We empirically determine how different dependency types should be

taken into account in building the system graph. The proposed approach has been

validated by experiments on a set of open source real systems.

Keywords: reverse engineering, program comprehension, key classes, recom-

mender tool

1 Introduction

Program comprehension [1] is an important software engineering activity, which is nec-

essary to facilitate reuse, maintenance, reengineering or extension of existing software

systems.

In the case of large software systems, program comprehension has to deal with

the huge amount of code that implements it. When starting with the study of an un-

known system, software engineers are overwhelmed by the amount of information,

which makes it difficult to filter out the important elements from a lot of details.

Documentation can help with program comprehension. Assuming that the docu-

mentation is up-to-date, there are still additional requirements related to the contents

of the documentation such that it is effective for facilitating the early stages of work:

very useful are documents such as architectural overviews, or describing what is called

the core of the system. Detailed and scattered implementation documentation is of little

use, as are large class diagrams that are reverse engineered from the code. This has been

2 Ioana Şora

confirmed by the experiments described in [2], where most subjects did not appreciate

reverse engineered diagrams to be helpful due to the information overload in these class

diagrams.

In our work we help program comprehension of object oriented software systems

by identifying their most important classes [3], [4]. This gives a set of good starting

pointers for studying the system. We consider that the importance of a class is given by

the amount and types of interactions it has with other classes. Thus, a natural approach

of identifying the most important classes is based on ranking them with a graph-ranking

algorithm.

In this work we adapt PageRank [5] to use it for the purpose of ranking classes

of software systems according to their importance for the design of the system. The

key here for obtaining a ranking which is indeed effective for the goal of program

comprehension is to use an adequate graph model of the system.

Section 2 describes our approach of modeling the structure of software systems by

static dependencies and the way we use this for identifying the most important classes

of the system. We define two parameters of the graph model, given by the weights of

dependency types and dependency directions. Section 3 presents experimental results.

We do first an empirical fine-tuning of the parameters of the graph model, then apply

our approach to a set of relevant open-source projects. In Section 4 we will discuss our

results and draw the conclusions of our experiments, while also comparing with related

work. Section 5 draws the conclusions of this paper.

2 Ranking Classes According to Their Importance

2.1 Building the Right Model

We model the software system as a graph having as nodes classes or interfaces. If an

edge exists from node A to node B, this means, in PageRanks terminology, that node

A recommends node B as important. Applying the right strategy for determining where

and how to place the recommendation edges is the crucial element for the effectiveness

of the ranking approach.

In our model, the recommendations derive from the program dependencies identi-

fied by static analysis with help of the model extractors of the ART tool suite [6]. If

A depends on B, this means both that A gives a recommendation to B but also that B

gives a recommendation to A. We call the edge from A to B a forward recommendation,

while the edge from B to A is a back recommendation.

The forward recommendation, resulting directly from a dependency, is obvious: a

class which is used by many other classes has good chances to be an important one,

representing a fundamental data or business model. But also the reverse is true: a class

which is using a lot of other important classes may be an important one, such as a

class containing a lot of control of the application or an important front-end class. If

only the directed dependency would be considered as a recommendation, then library

classes would rank very high while the classes containing the control would remain

unacknowledged. Thus the reason for having back recommendations.

Helping Program Comprehension of Large Software Systems 3

Recommendations may also have weights. A class is not necessarily recommending

all its dependency classes with an equal number of votes. It will give more recommen-

dation votes to those classes that offer it more services. Thus recommendation weights

are derived from the type and amount of dependencies.

Static dependencies in object oriented languages are produced by various situations.

There are different classifications of the mechanisms that constitute dependencies [7].

In accordance with these, we distinguish between following categories of dependencies

between two classes or interfaces A and B :

– inheritance: A extends B

– realization: A implements B

– field: A has at least one member of type B

– member access: A member of B is accessed from code belonging to A

– method call: A calls a method of B. We can further distinguish if it is a static method

call or a method call on a class instance. Every distinct method of B which is called

is counted as a new dependency.

– parameter: A method of A has at least one parameter of type B

– return type: A method of A has the return type B

– local variable: A local variable of type B is declared in code belonging to A

– instantiation: An instance of B is code belonging to A

– cast: A type-cast to B occurs in code belonging to A

Two classes A and B can be at the same time in several dependency relationships:

for example, A can have members of type B, but in the same time it can have a method

with parameters of type B and overall it can call several different methods of B.

The strength of the recommendation is proportional with the strength of the depen-

dency which takes into account both the number of dependency relationships and the

types of dependency relationships between the two classes.

The strength of a dependency can be estimated using an approach based on an order-

ing of dependency types according to their relative importance. Establishing the relative

importance of static dependency types is a subject of empirical estimation and different

authors use different frameworks for this [7]. In this work, we continue to use the order-

ing of dependency types used previously in the context of architectural reconstruction

by clustering in [8]. In summary, we take as reference for the weakest type of depen-

dencies the local variables dependency type and assign it weight 1. On the next level

of importance, level 2, we put the dependency strength given by one distinct method

that is called. Usually several distinct methods of a class are called, thus these weights

will sum up to a significant value. Also on level 2 are dependencies generated from

creating instances. Dependencies due to parameters, return values or having a member

dependency is assigned weight 3 while inheritance and realization have weights 4. We

will empirically validate this assumption of dependency weights in the context of class

ranking in Section 3.

The weight of the forward recommendation from A to B is given by the dependency

strength of the cumulated dependencies from A to B. The weight of the back recommen-

dation from B to A is a fraction F of the weight of the forward recommendation from A

to B. We identified that, while a class is important if it is both used by other classes and

it is also using other classes, the second argument should have a smaller weight in the

4 Ioana Şora

global reasoning, only a fraction F of the dependency strength. We illustrate this idea

with the simple example presented in subsection 2.2 and we also empirically investigate

values for this fraction in Section 3.

2.2 A Simple Example

We illustrate the idea of our approach using as an example a simplified program struc-

ture with four classes A, B, C, D. Class A is the front-end component of the application,

B is the main business component, C a helper, and D some utility or library class.

A

B

member, instantiate, calls 5 methods

C

localvar, instantiate

D

calls 1 methodmember, parameter, calls 2 methods

calls 1 method

Fig. 1. Example: graph of program dependencies.

Figure 1 depicts the dependencies between the 4 classes. Class A has a member

of type B, it instantiates objects of type B and calls five different methods of class B.

Also, class A has a local variable of type C and instantiates an object of type C. Class

B has a member of type C, has member functions with parameters of type C, and calls

2 different methods of C. Both classes A and C call one static method of class D.

We use this simple example to explain the importance of using a weighted depen-

dency graph, taking into account the dependency strengths induced by different depen-

dency types, and also of using back-recommendations.

In a first try, we consider the dependency graph directed and unweighted. If Page-

Rank is applied on the directed graph of figure 1, without back-recommendations, we

obtain the following ranking: D(0.41), C(0.29), B(0.16), A(0.12). This ranking places

the deepest classes on a top level, bringing the utility class D on the top position. The

utility class D can be considered a library class with high reuse potential, however D is

not the most important class of the system and not so important for program compre-

hension. This shows that simply applying PageRank on the directed graph defined by

the dependencies is not a valid method of identifying the classes that are important for

program comprehension.

Helping Program Comprehension of Large Software Systems 5

In a second try, back-recommendations are included and the unweighted graph from

figure 1 will be completed with a reverse edge for every original edge. Applying PageR-

ank on this new graph results in a new ranking: A(0.29) C(0.29) B(0.21) D(0.21). This

order brings on top two classes of medium importance (A and C), while ranking the key

class B as low as the utility class D.

In a third try, we introduce weights reflecting the type and amount of dependencies,

using the empirical values defined in the previous section. Following weights result:

AB=15, AC=3, AD=3, BC=11, CD=2. Back-recommendations are given a fraction F

of the weight of the forward recommendation. We experiment with different values

for F . If F=0 (no back-recommendations) the ranking results D(0.38), C(0.3), B(0.19),

A(0.11), which is wrong since it brings the utility class on top. If F=1, the ranking is

B(0.36), A(0.29), C(0.24), D(0.08). If F=1/2, the ranking is B(0.34), C(0.29), A(0.24),

D(0.11). These last two rankings reflect very well the situation of B being the most

important class, while D plays only a small role as an utility class. A and C are of

medium importance. Since this example is generic and small, we cannot argue whether

A should be ranked above C or not.

More experiments on real-life systems are described in Section 3 and they will show

that PageRank can be used as an effective means to identify key classes for program

comprehension if it is applied to a correct model of recommendations. We argue that this

model has to take into account both the strength of the dependencies and also include

back-recommendations, with a fraction 0 < F < 1 bringing the best results.

3 Experimental Results

3.1 Experimental setup

In order to validate the proposed ranking tool, we apply it on a set of relevant open

source systems. We run our tool that implements the ranking approach described in

section 2, using weighted recommendations, according to the type and amount of de-

pendencies as well as back-recommendations.

In all the experiments, we limit the examination of the tool produced ranking to

the top 30 ranked classes, independent from the size of the system. We consider that a

percentage limit of 15% or even 10% of the system size would result in candidate sets

which are too big for the purpose of the tool, that of facilitating an easy start in program

comprehension.

Thus we have to experimentally prove that the top 30 ranked classes are indeed the

most important classes of the analyzed systems.

Unfortunately, the identification of the most important classes of a system may be,

up to a certain degree, subjective to different opinions of different experts. The refer-

ence solution will be the reduced set resulting from the intersection of different expert

opinions. In order to validate the tool, we could do an experiment asking different soft-

ware experts to judge the top rankings produced by the tool. This scenario requires a

big effort and, in the end, the objectivity of our experts may be questionable.

We chose to rely for the validation of the tool output on the comparison with ref-

erence solutions extracted from developers documentation. The kind of developer doc-

umentation that is useful for our validation is usually found in documents described

6 Ioana Şora

as “architectural overview”, “core of the system”, “introduction for developers”, etc. It

may consist either in pruned diagrams or even free text descriptions. Of course, devel-

opers documentations may be outdated or not accurate. In order to reduce these risks,

we preferred as case studies systems that provide both developers documentation and

documentation from other sources, mainly systems included in the Qualitas Corpus - a

curated collection of software systems intended to be used for empirical studies on code

artifacts. These systems have been also analyzed in other works and their structure has

been discussed by several sources, thus we can define as reference solution an intersec-

tion of different expert opinions. In this way we establish unbiased reference solutions

to compare the solutions produced by our tool.

In the next subsection 3.2 we present the detailed analysis and discussion of one

system. We use this system to perform the empirical validation of the value of fraction

F representing the back-recommendations and to show the importance of choosing the

weights that quantify dependency strengths.

Some more systems are then analyzed and presented in subsection 3.3.

In chapter 4 we will discuss our results and draw the conclusions of our experiments,

while also comparing with related work.

3.2 Detailed Analysis of the First Case Study

In this subsection we present the detailed analysis and discussion of a system, Apache

Ant. Apache Ant1 is a Java library and command-line tool to compile, build, test and run

Java applications. We analyze release 1.6.1, feeding as input ant.jar containing the core

part of ant. It contains 524 classes. A developer tutorial2 indicates the following key

classes to understand the design of the Ant core: Project, Target, UnknownElement,

RuntimeConfigurable, Task, as depicted in Figure 2. Besides these main classes,

IntrospectionHelper, ProjectHelper2 and ProjectHelperImpl are mentioned in

the documentation as important.

The Project class is instantiated whenever Ant starts and, with the help of helper

classes, the Project instance parses the build.xml file. The Target class represents

the targets specified in the build.xml file. Once parsing finishes, the build model con-

sists of a project, containing multiple targets. A target is a container of tasks, represented

by specializations of the Task class.

Each task in Ant has a reference to its RuntimeConfigurable instance. Prior to the

task being executed, it would need to be configured from its RuntimeConfigurable

instance.

The class UnknownElement was introduced to allow the model to support storing

information about tasks whose classes were not known at parse-time. UnknownElement

extends Task, allowing it to be stored in the Ant object model.

We consider the following set of 8 classes as the reference solution: Project,

Target, UnknownElement, RuntimeConfigurable, Task, IntrospectionHelper,

ProjectHelper2 and ProjectHelperImpl. Ant has been also analyzed for the de-

1 http://ant.apache.org/
2 http://codefeed.com/tutorial/ant config.html

Helping Program Comprehension of Large Software Systems 7

RuntimeConfigurable

UnknownElement

Task

Target

Project

Fig. 2. Core classes of Ant described in the developers tutorial.

tection of key classes in [9], and the same set of classes has been used as a reference

solution.

We perform an empirical fine-tuning of our recommender tool in order to get its

ranking results as close as possible to the reference solution.

We use the detailed analysis of this case study to answer following questions, for

the fine-tuning of the recommender tool:

Q1. Which is the role of dependency directions? More specifically, are back-recommendations

needed? If yes, then which is the relative contribution of back-recommendations com-

pared to that of forward recommendations?

In our experiments, we will consider the following possibilities for dependency di-

rections:

– F=0: no back recommendation, only forward recommendation determined by the

dependency relationship.
– F=1: back-recommendations have the same weight as forward recommendations.
– F=1/2, F=1/4: back-recommendations have a smaller weight than forward recom-

mendations

Q2. Which types of dependencies are relevant for the goal of this recommender

tool? We will investigate whether all dependency types are equally important or if there

are some dependency types that can be ignored without affecting the quality of the result

or even improving it.

For dependency types and weights, we consider the following profiles:

– AllDep: dependencies of all types are considered and summed up, with equal con-

tributions
– CallsOnly: only method calls are considered, ignoring all other types of depen-

dencies. The number of distinct methods called is taken into account in the global

dependency strength.
– InterfOnly: only dependency relationships induced by elements visible from the

interface are counted (inheritance, implementation, method parameters), ignoring

all details such as local variables, member accesses and method calls.

8 Ioana Şora

– AllWeighted: all dependency types, but weighted such that interface elements have

a higher weight than method calls while local variables use brings the smallest

weights. This weighting schema is the one mentioned in subsection 2.1.

In our experiments we will generate and study all the possible combinations result-

ing from values for dependency weights and the fraction F of back-recommendations.

We want to find out which combination favors the retrieval of most of the classes of the

reference set. The summary of these experiments is depicted in Table 1. The values in

the table represent the percentage of the classes of the reference set that are retrieved in

the top N(where N=10, 15, 20, 30 and 50) ranked classes.

Table 1. Experimental results summary for Ant

F=0 F=1 F=1/2 F=1/4

AllDep Top 10 0.38 0.38 0.25 0.38

Top 15 0.63 0.63 0.63 0.63

Top 20 0.63 0.88 1.00 0.88

Top 30 0.75 1.00 1.00 1.00

Top 50 0.75 1.00 1.00 1.00

AllWeight Top 10 0.38 0.38 0.25 0.38

Top 15 0.50 0.63 0.63 0.75

Top 20 0.63 0.88 1.00 0.88

Top 30 0.75 1.00 1.00 1.00

Top 50 0.75 1.00 1.00 1.00

CallsOnly Top 10 0.38 0.38 0.25 0.25

Top 15 0.44 0.38 0.50 0.50

Top 20 0.75 0.63 0.88 0.88

Top 30 0.75 0.89 0.89 1.00

Top 50 0.75 1.00 1.00 1.00

InterfOnly Top 10 0.50 0.25 0.25 0.38

Top 15 0.63 0.25 0.38 0.38

Top 20 0.75 0.38 0.38 0.50

Top 30 0.75 0.63 0.63 0.75

Top 50 0.75 0.75 0.75 0.88

A first conclusion that can be drawn from Table 1 is that all dependency types have

to be considered, because ignoring certain dependency types (as in the profiles Calls-

Only and InterfOnly) has a negative impact. While both the AllDeps and AllWeighted

profiles allow for combinations leading to the retrieval of all the classes of the reference

solution in the top 20 ranked classes, this is not possible in any combination with the

CallsOnly and InterfOnly profiles.

A second conclusion that can be observed by analyzing the columns of Table 1

is that the worst results are obtained when no back-recommendations are used (F=0).

Using back-recommendations (F=1) improves the results, but the improvement is bigger

when F < 1 (with F=1/2 and F=1/4).

Figure 3 presents the top 30 ranked classes when analyzing Ant with our tool con-

figured with the AllWeighted profile.

Helping Program Comprehension of Large Software Systems 9

 F=0 F=1 F=1/2 F=1/4

1 Project Project Project Project

2 FileUtils Task Task Task

3 Location Path BuildException BuildException

4 BuildException BuildException Path Path

5 Task FileUtils FileUtils FileUtils

6 FilterSet Commandline Commandline Parameter

7 Target AbstractFileSet Parameter Commandline

8 ChainReaderHelper Execute AbstractFileSet Reference

9 ProjectComponent Parameter Execute Target

10 BuildEvent ProjectHelper2 Reference AbstractFileSet

11 RuntimeConfigurable Java Target Execute

12 Path Zip UnknownElement UnknownElement

13 Reference UnknownElement DirectoryScanner RuntimeConfigurable

14 FilterSetCollection DirectoryScanner ComponentHelper ComponentHelper

15 ComponentHelper ProjectHelperImpl ProjectHelper2 IntrospectionHelper

16 PropertyHelper Target IntrospectionHelper ProjectComponent

17 DataType DefaultCompilerAdapter ProjectHelperImpl DirectoryScanner

18 UnknownElement Reference RuntimeConfigurable ProjectHelperImpl

19 Parameter ComponentHelper ProjectComponent Location

20 Os Javadoc Zip BuildEvent

21 BuildListener IntrospectionHelper TokenFilter ProjectHelper2

22 Condition TokenFilter ModifiedSelector TarEntry

23 IntrospectionHelper Ant Javadoc ModifiedSelector

24 LineTokenizer Javac Javac Condition

25 JavaEnvUtils CommandlineJava DefaultCompilerAdapter EnumeratedAttribute

26 Watchdog MatchingTask Ant ZipShort

27 Commandline Rmic EnumeratedAttribute Resource

28 InputRequest FilterChain BuildEvent MailMessage

29 TimeoutObserver ModifiedSelector Java TokenFilter

30 AbstractFileSet ExecTask Rmic FileSelector

Found: 6/8 7/8 8/8 8/8

Fig. 3. Top fragment of the ranking of Ant classes using the AllWeighted profile.

We can see that with F=0, only 6 out of the 8 classes of the reference set are found.

Introducing back-recommendations brings an improvement: with F=1, 7 out of 8 classes

are found, while with F=1/2 and F=1/4, all the 8 classes are found in the top 30 rank-

ing. The detailed analysis of Ant validates our assumption, described with help of the

simple example in Section 2.2, that back-recommendations are needed but they should

be assigned weaker strengths than their forward recommendation counterparts. Taking

F=1/2 and F=1/4, all classes of the reference set are found in the top 30 ranking for the

analyzed system. Using the value F=1/4 enables to get the last hit on position 21 com-

pared to F=1/2 where the last hit is found earlier, at position 18. In future work, more

experiments could be done to fine-tune the value of the back-recommendation fraction

F. In this work, the following experiments use the value F=1/2.

By examining the classes that occupy top positions in all rankings, we notice the

constant presence of certain classes that were not included in the reference solution,

so we manually analyzed them in order to decide if their high ranking can be con-

sidered dangerous false positives or if they should be rightfully included in the set of

key classes. Among these classes, Path, Parameter, Reference, Commandline, and

BuildEception represent some fundamental data structures that are very much used

10 Ioana Şora

and this is the reason that they are ranked on top positions. The classes ComponentHel-

per, AbstractFileset, DirectoryScanner have a controlling function which makes

them interesting to be studied. It is interesting to notice that these 3 classes are also

found in top positions in the ranking obtained in [9]. The top ranked classes obtained

for Ant in [10] and [11] have also similarities with our ranking.

3.3 More Experimental Results

We completed a series of experiments on an additional set of systems. In the experi-

ments described in this section we use the value F=1/2 for the back-recommendations,

as it resulted from the set of experiments described in the previous subsection.

The analyzed systems are: JHotDraw, JEdit, ArgoUML, Wro4j and JMeter.

Analysis of JHotDraw JHotDraw3 is a highly customizable graphic framework for

structured drawing editors. Its source code and binaries are freely available.

We analyze here JHotDraw, release 6.0b.1. We take advantage of the capabilities of

our ART model extractor tools [6] that can handle compiled code, and directly feed it as

input the jhotdraw.jar file from the binary distribution, which proves to contain 398

implementation classes. The architecture of the system is documented by its develop-

ers, the documentation provides a short description of the core architectural classes and

interfaces, enumerating the most important artifacts in the opinion of the system devel-

opers. The case study of JHotDraw has been analyzed also in [12], in order to produce

a more precise class diagram, in terms of relationships, than the one provided by the au-

thors of JHotDraw. We noticed a couple of classes considered important and added to

the diagram: DrawingEditor, StandardDrawingView, CompositeFigure. Thus we

conclude that the set of important artifacts (classes and interfaces) for an executive

summary of JHotDraw is formed by these pointed out by the developers, completed

with the three classes added in the study of [12]: Figure, Drawing, DrawingView,

DrawApplication, Tool, Handle, DrawingEditor, StandardDrawingView, Compo-

siteFigure. This set of 9 classes is further considered the reference summary of the

whole system comprising 398 classes.

The top 30 classes in the ranking produced by our tool are: Figure, DrawingView,

FigureEnumeration, DrawingEditor, Undoable, StorableInput, StorableOut-

put, CollectionsFactory, Drawing, DrawApplication, StandardDrawingView,

ConnectionFigure, CommandTool, AbstractCommand, CompositeFigure, DrawApp-

let, AbstractTool, Connector, HTMLTextAreaFigure, TextFigure, Connection-

Tool, HandleEnumeration, PolyLineFigure, Handle, RelativeLocator, Locator,

FigureChangeListener, DesktopEventService, DecoratorFigure.

We can see that all the nine classes which are in the reference are ranked in the top

30. This means that our tool finds all the classes of the reference solution, ranking them

in the top 7.5% classes of the 398 examined. Eight classes from the reference set are

actually ranked in the top 20, while five of them are in the top 10. The first places of the

ranking are also taken by the most important classes.

3 http://www.jhotdraw.org/

Helping Program Comprehension of Large Software Systems 11

Analysis of JEdit JEdit4 is a cross platform programmer’s text editor written in Java.

We analyze the code of release 5.1.0, with 1266 classes.

Developer documentation is available5 and it gives the following introductory over-

view of jEdit implementation: The main class of jEdit is jEdit, which is the starting

point for accessing various components and changing preferences. Each window in

jEdit is an instance of the View class. Each text area you see in a View is an instance of

JEditTextArea, each of which is contained in its own EditPane. Files are represented

by the Buffer class. The Log class is used to print out debugging messages to the

activity log. Plugin developers have to extend EBPlugin.

In summary, the developers documentation point out the following classes of inter-

est: jEdit, View, EditPane, Buffer, JEditTextArea, Log, EBMessage. We take this

set of 7 classes as the reference solution.

The top 30 classes in the ranking produced by our tool are: jEdit, View, JEdit-

Buffer, Buffer, TextArea, Log, Interpreter, NameSpace, SimpleNode, GUIUtili-

ties, EditPane, TokenMarker, CallStack, ParserRuleSet, MiscUtilities, VFS,

VFSBrowser PluginJAR, JEditTextArea, TextAreaPainter, VFSFile, Selection,

Mode, Primitive, DisplayManager, Gutter, SearchAndReplace, EditBus, EBMes-

sage, Parser.

We can see that all the seven classes which are in the reference are ranked in the

top 30. This means that our tool finds all the classes of the reference solution, ranking

them in the top 2.5% classes of the 1266 examined. Out of these, six classes from the

reference set are ranked in the top 20. Actually, the only class which did not make it

into the top 20, class EBMessage, is not so much a core class but it is mentioned in the

summary as important for plugin developers, being important only in this context. Four

of the classes in the reference set are found in the top 10. The first places of the ranking

are also taken by the most important classes.

Analysis of ArgoUML ArgoUML6 is a well-known open source UML modeling tool.

In this work we analyze its release 0.9.5, having detailed architectural descriptions in

Jason Robbins’s dissertation7 which created the fundamental layer for ArgoUML. The

analyzed jar contains a total of 852 classes.

The set of key classes as identified from the architectural description is composed by

the following 12 classes: Designer, Critic, CrUML, ToDoItem, ToDoList, History,

ControlMech, ProjectBrowser, Project, Wizard, Configuration, Argo.

Our analysis resulted in the following top 30 ranked classes: ProjectBrowser, De-

signer, ToDoItem, ColumnDescriptor, CrUML, Project, UMLUserInterfaceCon-

tainer, TreeModelPrereqs, Critic, UMLAction, MMUtil, FigNodeModelElement,

NavPerspective, Notation, Wizard, UMLModelElementListModel, PropPanel,

Configuration, TableModelComposite, ToDoList, Argo, PropPanelModelElement,

ParserDisplay, CodePiece, FigEdgeModelElement, UMLChecklist, ModuleLoader,

SelectionWButtons, ArgoEventPump, NotationName.

4 http://jedit.org/
5 http://community.jedit.org/cgi-bin/TWiki/view/Main/JEditSourceCodeIntro
6 http://argouml.tigris.org
7 http://argouml.tigris.org/docs/robbins dissertation

12 Ioana Şora

We notice that 6 out of the 12 classes in the reference solution are ranked in the top

10, while 9 classes are found in the top 20 and 10 classes are found in the top 30.

Analysis of Wro4j Wro4j8 is an open source web resource optimizer for Java. We have

used release 1.6.3, containing 337 classes.

The classes that are mentioned in the design overview 9 as important for understand-

ing the design of the system, and which are further considered as the reference solution

in our experiment, are the following 12 classes: WroModel, WroModelFactory, Group,

Resource, WroManager, WroManagerfactory, ResourcePreProcessor, Resource-

PostProcessor, uriLocator, uriLocatorFactory, WroFilter, resourceType.

The first 30 classes as ranked by our tool are, in order: WroManager, Resource,

WroConfiguration, BaseWroManagerFactory, ResourcePreProcessor, WroTest-

Utils, WroUtil, WroModelFactory, InjectorBuilder, ResourceType, Context,

HashStrategy, ResourcePostProcessor, WroModel, WroFilter, WroRuntimeEx-

ception, ProcessorDecorator, UriLocatorFactory, WroManagerFactory, Cache-

Strategy, PreProcessorExecutor, ReadOnlyContext, LifecycleCallbackRegis-

try, Injector, LifecycleCallback, WildcardExpanderModelTransformer, Re-

sourceWatcher, DefaultWroModelFactoryDecorator, Group, UriLocator.

We observe that 5 out of the 12 classes in the reference solution are found in the top

10 ranked, while 10 classes are found in the top 20 and all 12 classes are found in the

top 30.

Analysis of JMeter Jakarta JMeter10 is a Java application for testing of Web Applica-

tions. We analyze version 2.0.1, its core found in ApacheJMeter core.jar which contains

280 classes. Design documentation11 and other works that analyzed this system [13]

mentions following classes: AbstractAction, JMeterEngine, JMeterTreeModel,

JMeterThread, JMeterGUIComponent, Sampler, SampleResult, TestCompiler,

TestElement, TestListener, TestPlan, TestPlanGUI, ThreadGroup.

The first 30 classes as ranked by our tool are, in order: JMeterUtils, JMeter-

Property, GuiPackage, SampleResult, JMeterTreeNode, JMeterThread, SaveSer-

vice, AbstractTestElement, JMeterTreeModel, MainFrame, JMeterContext, Pro-

pertyIterator, JMeter, Sampler, CompoundVariable, ThreadGroup, JMeterTree-

Listener, TestCompiler, MenuFactory, ThreadGroupGui, AbstractJMeterGui-

Component, Arguments, CollectionProperty, SampleEvent, ValueReplacer, JMe-

terGUIComponent, StandardJMeterEngine, ResultCollector, GenericControl-

ler.

We observe that 3 out of the 13 classes in the reference solution are found in the top

10 ranked, while 7 classes are found in the top 20 and 8 classes are found in the top 30.

8 https://code.google.com/p/wro4j/
9 https://code.google.com/p/wro4j/wiki/DesignOverview

10 http://jmeter.apache.org/
11 http://wiki.apache.org/jmeter/

Helping Program Comprehension of Large Software Systems 13

4 Discussion and Comparison With Related Work

4.1 Summary of Experimental Results

In Table 2 we summarize the results obtained in our experiments. For each one of the

five analyzed systems, we represent in this table the raw data describing it: its size, the

size of the reference solution, the number of classes found if the cut threshold is placed

after the first 10, 15, 20 or respectively the first 30 ranked classes. The execution time

includes both the analysis of dependencies and building the model of the system and

the applying of the ranking.

Table 2. Experimental results summary

JHotDraw Ant jEdit ArgoUML Wro4j JMeter Avg.Precis. Avg.Recall

System size 398 524 1266 852 337 280

Execution time 1 min 2 min 3 min 2.5 min 1 min 1 min

Reference set 9 8 7 12 12 13

Hits in Top 10 5 2 4 6 5 3 42% 42%

Hits in Top 15 7 5 5 6 8 5 40% 61%

Hits in Top 20 8 8 6 9 10 7 40% 81%

Hits in Top 30 9 8 7 10 12 8 30% 90%

We compute the recall and precision for our approach, defined as in [13]:

The recall, showing the techniques retrieval power, is computed as the percentage

of key classes retrieved by the technique versus the total number of key classes present

in the reference set.

The precision, showing the techniques retrieval quality, is computed as the percent-

age of key classes retrieved versus the total size of the result set.

The last columns of Table 2 present the average values of recall and precision com-

puted from our experimental data concerning the six analyzed systems.

We consider this a good result, since the measured recall guarantees the user a good

start for program comprehension, having assured two thirds of the relevant classes by

examining a very small number of classes (only 10-15 classes), independently on the

size of the whole system. Also, in case of 4 systems out of the six analyzed, all the

relevant classes have been found in the top 30.

The precision values in our experiments are disadvantaged by the very small size

of the reference solution, which is in average 10 classes. However, we did not add

further classes to these reference sets, in order to keep them fair by avoiding subjectivity.

Also, while in most systems it would be difficult to rank with precision all classes, this

reduced top set is that which is unanimously agreed as the most important. On the other

hand, a user which uses our tool to analyze a new system does not know the exact size

of this top set. He or she will use the tool with the expectation to find the top 10 or

top 20 classes. If we examine the top fragments of the rankings produced by the tool,

we notice there several classes that are certainly not irrelevant, although they were not

included in the reference top set.

14 Ioana Şora

In our opinion, program comprehension is effectively supported by the tool in the

following scenario: the tool identifies a small number of classes as key classes. These

classes give the starting points for the examination of the system by a software engineer

doing maintenance or evolution activities. For practical effectiveness, most often is not

worth to move the cut threshold below the top 20 ranked classes, due to the increased

effort of manual investigation. The very short and general executive summary of the

system is quickly and easy retrieved in this top set. After getting this executive summary,

the user can continue the analysis tasks either by parsing the documentation, beginning

from the discovered key classes, or he/she may apply other techniques such as feature

localization [14] to track more localized areas of interest.

4.2 Comparison with Related Work

There are several approaches trying to identify the most important software artifacts

(classes, packages, functions) from a software system. They present differences in fol-

lowing aspects:

– the primary information that is extracted and analyzed: the majority uses static

analysis [15], [16] but there are also approaches based on dynamic analysis [9],

[11].

– the criteria used to define the importance of a class: the majority derives the im-

portance of a class from the ways it interacts with other classes, given by design

metrics (such as coupling), network metrics of the topology of the interactions be-

tween the classes, or a combination of these. Other approaches use the number of

changes recorded by the versioning system [17] as an indicator of the importance

of a class. There were also attempts to use textual information such as class names

[18] as hints for the importance of a class.

– the techniques for identifying the key classes are mostly based on network analysis

[16], including here also webmining techniques [13], and more recently machine

learning [15], [19]. Also interactive tools for pruning of reverse engineered class

diagrams are developed [20].

Comparing the results obtained by all these different approaches is difficult, because

they are using different software systems as case studies and not all publications de-

scribe the raw data of their experiments such as the rankings that they obtained. Where

such data was available we compared the results with our results for the same systems.

Coderank [21] was one of the first works to introduce the concept of calculating

PageRank values for a graph resulting from static dependencies between the software

artifacts such as classes of a project. However, there is little experimental validation that

supports the claims about their ability to help program comprehension by identifying

relevant components of real software systems.

An important work in detecting key classes of software systems belong to Zaidman

et al [13], [22], [9]. They uses a graph-ranking algorithm, HITS, in order to detect key

classes of a software system. They combine this webmining technique with dynamic

and static analysis, and perform experiments on two systems. With dynamic analysis

they attain an average recall of 92% and precision 46%. However, a major drawback of

Helping Program Comprehension of Large Software Systems 15

this approach is that dynamic analysis relies very much on the user finding good execu-

tion scenarios. It also presents scalability issues and has a high execution time (1h45).

Zaidman also combined this webmining technique with static analysis but concluded

that the static analysis was not able to achieve a reasonable precision and recall. Here

their best reported results were an average recall of 50% and precision 8%, while the

execution time is still high (over 1 hour).

In our work we have proven that static analysis can be used to successfully and ef-

ficiently identify key classes, our results near the values obtained by [13] with dynamic

analysis, while the execution time in our case is just a couple of minutes. We think that a

major enabling factor for our positive result here is our recommendation model, which

takes into account all possible types of static dependencies with appropriate weights,

while Zaidman uses coupling metrics that take into account only method calls. We also

appreciate in the work of [13] the extensive description of their result sets in case of Ant

and JMeter, which allowed us to compare with our result sets for these two systems. We

retrieved a couple of classes from outside the reference set that appear both in their and

our top ranking result set, leading to a future reconsideration of the reference sets.

Kamran et al [11] develop their own version of a dynamic coupling metric. Their

results, obtained on analysing the Ant system, compete with those obtained in [13] but

significantly reduce the execution time. It is interesting to note that the some classes

present in the top ranking of Ant, while not included in the reference set, are the same

in our approach and in [11].

Steidl et al [16] start from static analysis to retrieve important classes of a system.

Their approach calculates a centrality index for the nodes of the dependency graph

obtained by static analysis. They performed an empirical study to find the best combi-

nation of centrality measurement of dependency graph. They used as baseline for vali-

dation of results opinions of several software developers. They found out that centrality

indices work best on an undirected dependency graph including information about in-

heritance, parameter and return dependencies. Using the Markov centrality leads to the

best results, with a precision between 60% and 80% in the top 10 recommendation set.

Their experiments were performed on a set of 4 systems. However, they do not compute

the recall of their method, nor do they mention the members or the sizes of the reference

sets. From the data presented, one could conclude that the baseline sets for each system

were larger, being reunions of different expert opinion instead of intersection of such,

resulting in more that 10 classes in the baseline. Theses larger baseline solutions may

have favored the count of hits in the top 10, as opposed to the smaller reference solu-

tions used in our experiments. We appreciate that the retrieval power of this technique

is similar with ours.

Meyer et al [10] propose an automated way to identify the important classes of a

software system based on K-core decomposition. They show that the classes in the high-

est K-cores are the ones that are the most important, but in order to reduce the number

of classes k-core values should be used in conjunction with other network metrics as

centralities. They discuss their results on 3 systems, two of the systems being Ant and

JHotDraw and obtaining rankings that have many similarities with the ones obtained in

our work. Pan et al [23] use K-core decomposition to find the most important packages

of a software system.

16 Ioana Şora

Perin et al [24] use PageRank on the graph of static dependencies. They report

experiments on several systems, including Ant, Jmeter and Jedit. However, the set of

top ranked classes is very different from the sets of top ranked classes reported for these

systems in our work, and is different as well from those reported in [9], [11], [10].

Osman et al worked on condensing class diagrams by including only the important

classes. They used a very different approach, based on machine learning [15]. They use

design metrics extracted from available forward design diagrams to learn and then to

validate the quality of prediction algorithms. Nine small to medium size open source

case studies are analyzed, taking as baseline available forward design diagrams which

contain from 11 to 57 classes, representing between 4% and 47% of the project size. In

a follow-up, Osman et. al. [18] built a classifier that is based on the names of classes in

addition to design metrics, but the results show that combining text metrics with design

metrics leads to modest improvements over using design metrics only.

Thung et al [19] uses machine learning combining design metrics and network met-

rics in the learning process. Introducing network metrics besides the design metrics

improves the results of [15] by almost 10%. However, in [19] network metrics and de-

sign metrics are computed as distinct and independent attributes and used in the learning

process. In our approach, the network metric (PageRank) is adapted to be computed on

the weighted graph resulting after the design metrics (measuring dependency strengths

and coupling) are applied, and thus we believe that the concept of recommendation is

better adapted to its particular purpose.

The work of Hammad [17] starts from another point of view regarding the impor-

tance of classes: they consider that the classes that were important to the design of

the system are these often impacted by design changes. They measure the design im-

portance of a class as the number of commits that impact the class, and this is also

measured for the sets of classes that collaborate.

5 Conclusions

In this work, we develop a method and tool for automatically identifying the most im-

portant classes of a software system, in order to facilitate the start of program compre-

hension activities.

Our approach is based on static analysis, used to build a graph model of the system,

and the PageRang graph ranking algorithm.

In order to obtain a ranking that is relevant for our goal, the graph model of the

system has to be carefully built for this purpose. We define two parameters of the graph

model: the weights of dependency types and the dependency directions, which we call

forward recommendations and back recommendations. We have experimentally deter-

mined that all types of static dependencies between classes have to be taken into ac-

count, weighted according to the relative importance given by the dependency type and

number of occurrences. Also, experiments have shown that back-recommendations are

necessary, but should be assigned only a fraction 0 < F < 1 of the weight of their cor-

responding forward recommendations.

We have validated our approach by analyzing six open source systems and compar-

ing the top ranked classes with these described as important in developers documenta-

Helping Program Comprehension of Large Software Systems 17

tion. The results have shown our techniques retrieval power, which is able to find an

average of 90% of the classes of the reference sets indicated in the developers docu-

mentation as ranked in the top 30 by our tool.

References

1. von Mayrhauser, A., Vans, A.: Program comprehension during software maintenance and

evolution. Computer 28(8) (Aug 1995) 44–55

2. Fernández-Sáez, A.M., Chaudron, M.R.V., Genero, M., Ramos, I.: Are forward designed or

reverse-engineered UML diagrams more helpful for code maintenance?: A controlled exper-

iment. In: Proceedings of the 17th International Conference on Evaluation and Assessment

in Software Engineering. EASE ’13, New York, NY, USA, ACM (2013) 60–71

3. Sora, I.: Finding the right needles in hay - helping program comprehension of large software

systems. In: ENASE 2015 - Proceedings of the 10th International Conference on Evaluation

of Novel Approaches to Software Engineering, Barcelona, Spain, 29-30 April, 2015. (2015)

129–140

4. Sora, I.: A PageRank based recommender system for identifying key classes in software

systems. In: 10th IEEE Jubilee International Symposium on Applied Computational Intelli-

gence and Informatics, SACI 2015, Timisoara, Romania, May 21-23, 2015. (2015) 495–500

5. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing

order to the web. Technical Report 1999-66, Stanford InfoLab (November 1999) Previous

number = SIDL-WP-1999-0120.

6. Sora, I.: Unified modeling of static relationships between program elements. In Maciaszek,

L., Filipe, J., eds.: Evaluation of Novel Approaches to Software Engineering. Volume 410 of

Communications in Computer and Information Science. Springer Berlin Heidelberg (2013)

95–109

7. Briand, L., Daly, J., Wust, J.: A unified framework for coupling measurement in object-

oriented systems. Software Engineering, IEEE Transactions on 25(1) (Jan 1999) 91–121

8. Sora, I., Glodean, G., Gligor, M.: Software architecture reconstruction: An approach based

on combining graph clustering and partitioning. In: Computational Cybernetics and Techni-

cal Informatics (ICCC-CONTI), 2010 International Joint Conference on. (May 2010) 259–

264

9. Zaidman, A., Calders, T., Demeyer, S., Paredaens, J.: Applying webmining techniques to

execution traces to support the program comprehension process. In: Software Maintenance

and Reengineering, 2005. CSMR 2005. Ninth European Conference on. (March 2005) 134–

142

10. Meyer, P., Siy, H., Bhomwick, S.: Identifying important classes of large software systems

through k-core decomposition. Advances in Complex Systems 17(07n08) (2014) 1550004

11. Kamran, M., Azam, F., Khanum, A.: Discovering core architecture classes to assist initial

program comprehension. In Lu, W., Cai, G., Liu, W., Xing, W., eds.: Proceedings of the 2012

International Conference on Information Technology and Software Engineering. Volume 211

of Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg (2013) 3–10

12. Guéhéneuc, Y.G.: A reverse engineering tool for precise class diagrams. In: Proceedings of

the 2004 Conference of the Centre for Advanced Studies on Collaborative Research. CAS-

CON ’04, IBM Press (2004) 28–41

13. Zaidman, A., Demeyer, S.: Automatic identification of key classes in a software system

using webmining techniques. Journal of Software Maintenance and Evolution: Research

and Practice 20(6) (2008) 387–417

18 Ioana Şora

14. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code: a taxon-

omy and survey. Journal of Software: Evolution and Process 25(1) (2013) 53–95

15. Osman, M.H., Chaudron, M.R.V., Putten, P.v.d.: An analysis of machine learning algorithms

for condensing reverse engineered class diagrams. In: Proceedings of the 2013 IEEE In-

ternational Conference on Software Maintenance. ICSM ’13, Washington, DC, USA, IEEE

Computer Society (2013) 140–149

16. Steidl, D., Hummel, B., Juergens, E.: Using network analysis for recommendation of central

software classes. In: Reverse Engineering (WCRE), 2012 19th Working Conference on. (Oct

2012) 93–102

17. Hammad, M., Collard, M., Maletic, J.: Measuring class importance in the context of design

evolution. In: Program Comprehension (ICPC), 2010 IEEE 18th International Conference

on. (June 2010) 148–151

18. Osman, M., Chaudron, M., Van Der Putten, P., Ho-Quang, T.: Condensing reverse engineered

class diagrams through class name based abstraction. In: Information and Communication

Technologies (WICT), 2014 Fourth World Congress on. (Dec 2014) 158–163

19. Thung, F., Lo, D., Osman, M.H., Chaudron, M.R.V.: Condensing class diagrams by analyz-

ing design and network metrics using optimistic classification. In: Proceedings of the 22Nd

International Conference on Program Comprehension. ICPC 2014, New York, NY, USA,

ACM (2014) 110–121

20. Osman, M., Chaudron, M., Van Der Putten, P.: Interactive scalable abstraction of reverse

engineered uml class diagrams. In: Software Engineering Conference (APSEC), 2014 21st

Asia-Pacific. Volume 1. (Dec 2014) 159–166

21. Neate, B., Irwin, W., Churcher, N.: Coderank: a new family of software metrics. In: Software

Engineering Conference, 2006. Australian. (April 2006) 10 pp.–378

22. Zaidman, A., Du Bois, B., Demeyer, S.: How webmining and coupling metrics improve

early program comprehension. In: Program Comprehension, 2006. ICPC 2006. 14th IEEE

International Conference on. (2006) 74–78

23. Pan, W., Hu, B., Jiang, B., Xie, B.: Identifying important packages of object-oriented soft-

ware using weighted k-core decomposition. Journal of Intelligent Systems 23(4) (2014)

461–476

24. Perin, F., Renggli, L., Ressia, J.: Ranking software artifacts. In: 4th Workshop on FAMIX

and Moose in Reengineering (FAMOOSr 2010). (2010) 120

