
Extracting Behavioral Models From
Service Implementations

Ioana Şora 1,2 and Doru-Thom Popovici 1,2

1 Department of Computing, “Politehnica” University of Timisoara, RO
2 IeAT, Timisoara, RO

ioana.sora@cs.upt.ro

Motivation
Formal techniques such as model checking and model based

testing take as input a model of the system under validation,

written in a specific formalism. Usually, such models are written

by hand, based on the system’s specifications.

It would be a big step towards extending the use of formal

techniques in practice if such models could be generated with

help of tools directly from the implementations of real systems.

From (abstract) Control Flow Graph
to Extended Finite State Machine
Preliminary assumptions:

• The CFG is complete and interprocedural

• There are explicit statements, corresponding to a node in the

CFG, for receiving and sending messages of a specified message

type and having message parameters.

Transformation principles, in summary:

•Aspects which are relevant for the model are those related (data

or control) to sent or received messages

•“Essential” nodes in CFG -> states in EFSM

• a path between CFG nodes which contains at least one

“relevant” node -> a transition in the corresponding EFSM, with

path conditions becoming guards of the transition

Example: Abstract CFG (here represented as pseudocode !) of a

Shop Server, and its EFSM model

Getting the abstract CFG from real
service implementations
In practice, web applications and services are developed with

the help of special frameworks and APIs. Consequences:

• Instead of explicit statements for sending and receiving

messages, frameworks offer complex APIs to describe the

interactions of the communicating entities.

• Most often, by analyzing only the application code written by

the application developer one cannot obtain the whole CFG of

the real system (for example server loops are in frameworks)

We implemented technology specific preprocessing

frontends (until now, for Java RMI, JSP, servlets) which: (1)

identify and abstract the equivalent of send/receive message

operations and (2) complete the partial CFG extracted from

application code to a complete abstract CFG

Acknowledgements
This work has been supported by the FP7-ICT-2009-5 project no. 257876
SPaCIoS (”Secure Provision and Consumption in the Internet of Services”)

Proposed approach
We extract behavioral models from the implementation code of

real systems, by applying specific white box techniques based

on the analysis of their control flow graph.

The systems to be analyzed are web applications and

services, which can be implemented using many different

technologies, making code analysis and modeling difficult.

We represent the models as Extended Finite State Machines.

1: orders:={}

2: payments:={}

3: while(true)

4: switch ReceiveMesssage():

5: case:(orderType, name)

6: add name to orders

7: case:(payType, name)

8: if (name in orders)

9: add name to payments

10: case:(deliveryType, name)

11: if (name in payments)

12 remove name from payments

13: remove name from orders

14: SendMessage deliveryResp, goods

15: else SendMessage deliveryResp, error

16: endwhile

Conclusion
In order to cope with the diversity of technologies and APIs

which can be used by service implementations, we propose an

approach for model extraction in two steps: a technology

dependent preprocessing step, followed by a core step that

implements a general method of transforming the abstracted

control flow graph into an EFSM.

The kind of inferred EFSM is suitable for automatic translation

into an entity description in a formal security specification

language (such as Aslan++) for distributed systems.

