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Abstract—This article proposes an approach for including
user preferences and quality of service characteristics in the
selection process of services. Our approach consists of a Domain
ontology for the service description vocabulary, and a trader that
facilitates user-preference-based service selection, combining im-
perfect service matching and ranking algorithms. The novelty of
our approach lies in the fact that we automatically generate fuzzy
rules starting from individual user preferences and use them
in a fuzzy inference process that ranks the service candidates.
We present our experiments to evaluate our approach using a
prototype implementation of a service broker.

I. INTRODUCTION

Service Oriented Architectures are based on the notion
that programs can be constructed by composing independent
services. A service is defined as “a loosely-coupled, reusable
software component that encapsulates discrete functionality
which may be distributed and programmatically accessed” [1],
[2]. The standard approach in Service Oriented Computing
is that Service Providers host network-accessible software
modules (implementation of given services) and define service
descriptions that are published in Service Registries. Clients
or Service Requesters use the published service descriptions
in order to find services appropriate to their needs. After
finding the service, the requester uses the service description
to bind to the provider and invoke the service. A service can
be both a provider and in the same time a client for other
services. Service compositions can act as services as well and
be published as such.

In the field of service discovery and selection, the major
research challenges include enhancing service discovery and
selection with semantic and non-functional aspects. [3]. The
main challenge of service discovery is to use tools to auto-
matically (with minimum user involvement) and accurately
discover and select services. Achieving automated service
discovery and selection requires adding semantic annotations
and descriptions of QoS characteristics to service definitions
on one side, and using a formal request language able to
precisely describe the requester’s needs or desired services on
the other side.

Current practices have defined standards for Service Reg-
istries like UDDI (the Universal Description Discovery and
Integration specification) that defines how to publish and dis-
cover information about Web services. For the description of
web services, the current standard is WSDL, the Web Services
Description Language [4]. WSDL can be used to describe
functional aspects of services, their ports and messages.

An important research effort is directed toward semantic
matchmaking, that will permit to ensure that functionalities de-
fined in similar syntactics have similar meanings. Description
languages like WSDL-S and OWL-S come in here, making
possible the description of semantic concepts.

Another important research track investigates ways to in-
clude user preferences and quality of service characteristics in
the selection process. These factors should have the final word
in the selection process if multiple Web services provide the
same functionality, but they could also be a decision factor
in the choice between several alternative functionalities. Our
work proposes an approach for dealing with these issues.

We have developed a prototype implementation of a service
broker, and we use fuzzy logic in order to deal with the issue of
selecting the optimal match for each request, according to its
individual QoS preferences, from a set of imperfect candidates.

Our approach starts by proposing a way to complete the QoS
information in domain ontologies with fuzzification categories,
as we describe it in Section II. In Section III we present
how users can describe their requests and preferences in our
service broker tool. Section IV introduces our approach of
automatically generating a set of fuzzy rules for each set of
individual preferences. The ranking of candidates is done by
testing every possible candidate found in the service repository
against this set of generated fuzzy rules. Some experimental
results are presented in Section V. Section VI discusses our
approach in the context of related work.

II. DOMAIN ONTOLOGY

In order to enable automatic matching while keeping a
low degree of formalism in the description of services, most
approaches rely on the concept of domain ontologies [5] [6].
An ontology is an explicit formal specification of how to
describe the concepts that exist in a specific domain and
the relationships between them. Of course, for its practical
success, an ontology must be widely agreed upon, accepted
and promoted by standardizing or professional organizations.

In its simplest form, a domain ontology would specify the
valid vocabulary of describing (naming) functional and non-
functional properties that are allowed to occur in service de-
scriptions (examples: availability, reliability, version stability,
response time, cost, payment method, concurrency capacity,
publisher reputation, etc.)

In order to increase its usability, a good domain ontology
has to be more than a simple taxonomy of domain vocabulary.
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Several approaches of domain ontologies have been proposed,
from simple ones that define simple name-value pairs [7] to
more complex ones [6],[8], [9].

None of these approaches is fully appropriate for our goal
of facilitating imprecise (fuzzy) matching, where we need a
domain ontology that can help in defining categories through
linguistic variables. For example, the response time could be
described with the terms very fast, fast, slow, very slow. If
the domain of the variable is known, then a domain expert
can trace the membership functions for the linguistic terms. In
our work, we use triangular/trapezoidal shapes of membership
functions. For example, in order to characterize the response
time of a TravelScheduler service, the terms can be described
like in Figure 1.
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Fig. 1. Membership functions for fuzzy terms defining the response time of
a TravelScheduler service

These terms, however, in their number, shape and mar-
gin values, are valid only for the class of services of type
TravelScheduler. For another type of service, for example
WeatherForecast, the response time expectations are different
and the membership functions for the response time look
very different, like in Figure 2. This is because the expected
response times vary depending on the type of the requested
service: while 200 seconds is considered a normal amount
of time to receive a personalized travel schedule, the same
amount of time is considered to be a bad performance (very
slow) if it is the response time of a service broadcasting
weather forecasts.
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Fig. 2. Membership functions for fuzzy terms defining the response time of
a WeatherForecast service

Thus, we consider that it is very important that the do-
main ontology distinguishes between general valuable non-
functional properties (i.e., availability) and context-dependent
non-functional properties, that can be defined only in the con-
text of specific functional properties (i.e. response time, cost).
We also consider that non-functional properties can be either
of a value-type (as in the case of availability, average response
time or other measurable quantities), or of a description-type,

(as in the case of publisher-reputation, that cannot be described
by measured quantities but only by descriptions like excellent,
good, fair, poor).

For each non-functional property (general valuable or
context-dependent), following description items have to be
provided:

• domain: the range of values for measurable quantities, or
a default range 0-100 for description-only properties.

• optimization direction: specifies what is better, for the
current property, a bigger value (as for availability) or a
smaller value (as for response time)

• fuzzy terms: the fuzzy terms which can be used to
describe this property have to be enumerated, for each
term providing its name and the shape of its membership
function as defined by a domain expert.

We do not include in our ontology prototype aspects related
to metrics and measurement units (for example, if clients
requests and provider descriptions use different time units -
minutes vs seconds, then appropriate conversions should be
done). These are treated in complex approaches of ontologies
like QoSOnt [6], [8] and are definitely needed in a real-life
implementation, but in this work where we keep the focus on
the imprecise matching issues they are not relevant for our
main purpose.

Service descriptions must be augmented with a description
of their non-functional properties. This can be done either
by their publisher (for example, the publisher may specify
the average response time and the cost of the service) or by
specialized external monitoring or rating agents (for example,
the availability or reputation). Independent of the source, the
non-functional description must use ontology-terms in order to
specify the service properties. Properties can be specified in
service descriptions either as crisp values, or as fuzzy terms. It
is not mandatory for a service description to specify all possi-
ble non-functional properties classified in the ontology for its
corresponding functionality, but in the evaluation process the
unspecified properties are considered to be in the worst fuzzy
category from their domain ontology.

Our implementation uses an XML schema for the non-
functional properties description, and examples of service
descriptions in a repository is shown in Figure 3.

The examples in Figure 3 show four service descriptions,
two implementing the functionality of a TravelScheduler and
two implementing the functionality of a WeatherForecast. All
service descriptions specify the response time property. For
services S0001 and S0002 (of type TravelScheduler) their
response time is categorized according to the fuzzy terms
described in Figure 1, while for services S0003 and S0004
(of type WeatherForecast) the response time is categorized
according to the fuzzy terms described in Figure 2.

III. SPECIFICATION OF CLIENT REQUIREMENTS

The Client requirement has to specify both functional and
non-functional requirements. The functional requirements are
always considered non-negotiable. The non-functional require-
ments can be of several types: non-negotiable (exact value or
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<service id="S0001" name="Happy Camper"
functionality="TravelScheduler">

<prop name="Availability" fuzzy="High" />
<prop name="ResponseTime" crisp="500" />
<prop name="PublReputation" fuzzy="Medium" />
</service>

<service id="S0002" name="De Luxe Tours"
functionality="TravelScheduler">

<prop name="Availability" crisp="90.7" />
<prop name="ResponseTime" crisp="100" />
<prop name="Cost" crisp="10" />
</service>

<service id="S0003" name="LocalWeather"
functionality="WeatherForecast">

<prop name="Availability" crisp="80.8" />
<prop name="ResponseTime" crisp="200" />
<prop name="PublReputation" fuzzy="good" />
</service>

<service id="S0004" name="WeatherToday"
functionality="WeatherForecast">
<prop name="Availability" crisp="90.3" />
<prop name="ResponseTime" fuzzy="Fast" />
<prop name="PublisherReputation" fuzzy="bad" />
<prop name="Cost" crisp="0" />
</service>

Fig. 3. Example: service descriptions in a repository

sharp interval) or negotiable (around a value or around an
interval) or best-possible.

The way the user may specify its requirements is the
following:

• crisp value: the user specifies a crisp value (i.e, 90 for
availability) or a crisp interval, and wether it is negotiable
or not. If it is negotiable, it can be described in following
terms: about, at least about, at most about. In this case,
a fuzzification of the value is done automatically, with a
slope that is percentually specified by the client.

• fuzzy value: the user specifies a fuzzy value, either a
term from the domain ontology for the corresponding
property (i.e., the user may request medium availability if
he considers that a medium-effort solution is satisfactory
for his request) or an advanced user can edit a customized
form of a fuzzy value.

Figure 4 presents an example of how a client specifies its
non-functional preferences for finding a service with Stock-
Market functionality. For availability, the client specifies the
condition at least about 90, with a fuzzification slope of 10%.
This user defined shape is comprised of the term high in
its entirety and a slice of the term medium referring to the
availability property from the domain ontology.

IV. RULE GENERATION STRATEGIES

The client requirements are automatically processed and
transformed into fuzzy rules. The premises of the fuzzy rules
specify possible combinations of values for the attributes,
and the corresponding conclusion specifies the degree of
acceptability for such a candidate service. The conclusion is
the variable SelectionDecision, and has terms such as Stron-
gReject, WeakReject, WeakAccept, StrongAccept, that cover
the range [0,1]. The ranking of candidates is done by testing

 
 
 

 
 

Fig. 4. Example of specifying individual user preferences

every possible candidate found in the service repository against
the set of generated fuzzy rules, using a fuzzy inference
machine. For each candidate, the value of SelectionDecision
in conclusion gives its ranking score.

We investigated different strategies for the generation of
these rules. First, we used an approach where attributes in
client requirements were mapped to terms existing in the
domain ontology, and second we developed an approach where
each client requirement generates a specific neighborhood
ontology.

A. Strategy A: based on mapping to existing domain ontology

This strategy is similar to the one in our previous work
described in [10]. The request uses fuzzy terms from the
domain ontology to specify the requested values. For example,
property Availability is described in the domain ontology
with the terms Low, Medium, High, VeryHigh and property
ResponseTime is described in the domain ontology with the
terms VerySlow, Slow, Medium, Fast, VeryFast. These are the
terms used in the rules premises. A client that requires at least
medium availability and fast response time will be translated
into a set of rules like:

RA1: If Availability=Medium and ResponseTime=Fast
then SelectionDecision = StrongAccept

All combinations containing better values of these attribute
will generate rules with the same strength in conclusion, as
they have an equal value for the user, for example:
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RA2: If Availability=High and ResponseTime=Fast
then SelectionDecision = StrongAccept

RA3: If Availability=VeryHigh and ResponseTime=VeryFast
then SelectionDecision = StrongAccept

For the less good values, the strength of the conclusion will
be diminished proportionally with the distance from the ideal
situation. For a match with a direct neighbor, the conclusion
strength goes one term down, for a match with a second
neighbor the conclusion strength goes two terms down, etc.

RA4: If Availability=Low and ResponseTime=Fast
then SelectionDecision= WeakAccept

RA5: If Availability=Low and ResponseTime=Medium
then SelectionDecision= WeakReject

RA6: If Availability=VeryLow and ResponseTime=Fast
then SelectionDecision=WeakReject

The above listed rules are only a few examples from the
complete set. The automatic rule generation system produces,
in a similar way, the complete set of rules for all possible
combinations of terms in premises and corresponding terms
in conclusions. In this case, where we have two variables in
the premise, with 4, respectively 5 terms, the total number of
generated rules is 20.

B. Strategy B: based on a generated neighborhood ontology

Strategy A does not allow a request to differentiate between
values that belong to the same categories in the domain
ontology. Often it is the case that a request specifies more
differentiated values (a range of values) for a property, for
example a range of “at least about 75” or “at least about
85” for availability, both values being in the standard medium
category. Thus we implemented a second strategy for the rule
generation, that starts with creating a neighborhood ontology
for the required value or range of values. A new neighborhood
ontology is generated, describing for each property the mean-
ing of exactly matching the target, or being near or far away
from the target. The new linguistic variables in premises are
MatchingAvailability and MatchingResponseTime. For each
property, the limits of the given range of values are fuzzified
(using a percentual approach for smoothing the limits) and
this results in the Exactly term of the corresponding linguistic
variable, and has a trapezoidal shape. Then, terms like Near-
Left, FarLeft, VeryFarLeft, NearRight, FarRight, VeryFarRight
are generated, with trapezoidal shapes automatically calculated
considering a percentually distance from the center in Exactly.
There is also the option that the client starts by specifying di-
rectly a custom shape for Exactly, and the other neighborhood
terms are generated as described above.

The rules will have in their premises variables from the gen-
erated neighborhood ontology, instead of the fixed variables
from the domain ontology. The strategy of rule generation
is similar as described above for strategy A. The first rule
corresponds to the situation when all properties match the
fuzzy term of Exactly:

RB1: If Availability=Exactly and ResponseTime=Exactly
then SelectionDecision= StrongAccept

For the less good values, the strength of the conclusion will
be diminished proportionally with the distance from the ideal
situation, similar with strategy A.

RB2: If Availability=NearLeft and ResponseTime=Exactly
then SelectionDecision = WeakAccept

RB3: If Availability=NearLeft and ResponseTime=
NearRight then SelectionDecision = WeakReject

The rule generation strategy can be configured with pa-
rameters like: number of terms in conclusions (how many
degrees of acceptance are defined) and number of generated
neighborhoods (how many categories there are to describe an
inexact match for a property).

V. RESULTS

We have studied the influence of the rule generation strategy
over the overall quality of the ranking result. We consider the
following criteria in order to appreciate the quality of a ranking
strategy:

1) Ranking hierarchy of solutions: is it the same hierarchy
as the ideal one or some inversions appear ?

2) The average ranking step (the distance between can-
didates ranked on consecutive positions): We prefer a
ranking strategy that produces a clear hierarchy, with
significant distances between the scores of consecutive
ranked candidates

3) The range covered by the ranking scores: We consider
that, for the same ordering of the candidates, it is
desirable that their scores are spread over a wider range,
as this simplifies the automatic defuzzification in order
to take the final select/reject conclusion.

4) The number of distinct ranks: We consider that a good
strategy differentiates as much as possible between all
candidates, and does not repeatedly rank several candi-
dates on similar scores

The tests described here refer to 26 candidates that had
to be ranked. The user preferences can specify values for
5 properties (there are 5 linguistic variables in premises of
rules). We compare strategies A and B for the generation
of rules, as well as the influence of the number of fuzzy
terms in conclusion. The number of terms for the variable
SelectionDecision in the conclusion varied from 2 (accept,
reject) to 8 (very strong accept, strong accept, weak accept,
weak reject, strong reject, very strong reject). For the variables
in the premises, the number of neighbors counted in the rule
generation process was (up to) 2 neighbors on each side.

Figure 5 presents our results. The values are averages
obtained from solving 3 different requests with different
combinations of preferences.

From this Figure, it results that the solution Strategy B with
a medium number of terms (4-5) for SelectionDecision is an
optimal solution, from point of view of all the criteria 2-4:
the average ranking step, the range of ranking scores and the
number of distinct ranks.

Strategy A fails on the 4th criteria regarding the number
of distinct ranks, it does not differentiate enough between
candidates, as it ranks many of them on the same positions.
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Fig. 5. Experimental comparison of ranking strategies

This was expected, as this strategy unifies user preferences in
terms of the predefined categories in the domain ontology.

For small values (2-3) of the number of outcomes, strategy
B establishes a relatively small number of distinct ranks,
and tends to score too many candidates as unacceptable, the
range of scores does not pass much over the final acceptance
threshold of 0.5. For bigger values (6-8) of the number of
outcomes, strategy B tends to classify too many candidates as
acceptable.

Small inversions in rankings have been counted across the
different strategies. As it was difficult to establish an indepen-
dent absolute reference hierarchy, we took as a reference the
hierarchy produced by strategy B in its optimal form B(4).
We computed the cumulated ranking inversions for a pair of
ranking hierarchies as the sum of position differences for all
candidates.

VI. RELATED WORK

QoS-aware selection of services is a hot topic in today’s
research. There are many approaches dealing with it, including
approaches that rely on artificial intelligence.

Several works start with proposing models of QoS attributes
and QoS ontologies. In [7], the authors propose an QoS model
that includes generic and domain or business specific criteria,
concentrating on criteria that can be collected and measured
objectively. A more complex ontology is proposed in [5],
which defines metrics and introduces the concept of derivation
of different QoS parameters. Another hierarchic modeling
approach is described in [11] - Analytic Hierarchy Process
(AHP) serves as decision making model, the authors build a
QoS Meta-model.

What we were missing in this domain of QoS modeling,
was the possibility of defining and using categories for the
different attributes. Our approach has the main goal to fill this
gap in the domain of QoS modeling by permitting to define
semantic categories (low, big, fast, slow, cheap, expensive,
etc), further used as terms of fuzzy linguistic variables, for
each QoS attribute and in the specific context of different
functionalities.

For selection and ranking, different approaches are used:
In [7], the authors use a normalized m*n Quality matrix to
evaluate n candidate services for m criteria. [12] uses Singular
Value Decomposition SVD, based on decomposing the Quality
and Web Services matrix (similar as in MCDM) in order to
identify groups of Services with similar qualities and rank
them accordingly. [13] considers service selection based on
maximizing a utility function under cost constraints. Utility
functions reflect the importance of different attributes in a
request. These approaches perform the ranking of services
according to a specific user request.

Some approaches include also a form of feedback for updat-
ing measured QoS informations. In [14], the authors propose
an adaptive framework to measure and update availability
and rank services on availability. Other approaches use con-
straint programming to check QoS conformance [9], or hybrid
approaches like [15], which combine Integer Programming,
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genetic algorithms, and case-based reasoning to tackle the
QoS-aware service composition problem.

In the above mentioned approaches, trade-offs between
attributes required by client and provided by candidate services
are usually limited to a certain strategy for assigning scores
to candidates, usually weighted by the relative importance of
the attribute. Improvements in the selection algorithm tackle
the problem of reducing the computational complexity of the
NP-hard selection problem. Fuzzy logic is a solution for both
the computational complexity and the matching with imprecise
QoS constraints. An overview of fuzzy approaches is presented
in [16].

Most of the fuzzy approaches are variants of Fuzzy Multi
Criteria Decision Making ([17], [18], [19]) or a version of
Fuzzy decision by a committee of evaluators [20]. These
approaches are similar in a way that they can be assimilated
with different types of fuzzy decision matrices. Also, each ap-
proach may use different types of fuzzy parameters (forms of
fuzzy terms, inference strategies, fuzzification/defuzzification
strategies), but no comparison is done among these.

A few approaches are based on Fuzzy Rules. The work
described in [21], [22] uses fuzzy rules to express user
preferences. Intuitively fuzzy rules express which combination
of attributes is the user willing to accept to which degree.
Attribute values and degrees of acceptance are fuzzy sets,
but no specification of how these linguistic variables are
mapped to crisp values is given. This approach resembles
strategy A in our work. The user is limited to specify as
values for its preferences the predefined terms that describe
the attribute in the domain ontology. Our approach is more
complete, defining the meaning of fuzzy terms in context of
individual functionalities in the domain ontology. Also, in our
approach additional rules are also generated (automatically
and gradually diminishing acceptance degree when attributes
match only some neighboring categories).

Besides this strategy, we also developed strategy B for rule
generation, when fuzzy categories are automatically generated
from a precise user requirement and also ranking rules are
generated in order to describe the automatically and gradually
diminishing acceptance degree. This strategy is a generaliza-
tion of the FMCDM algorithms, and we intend to prove in
our future work that it is more flexible and has a bigger and
more controllable expressive power than FMCDM, especially
in the case when several properties with different importance
degrees are considered.

VII. CONCLUSION

In this work we use fuzzy logic for selecting the optimal
match for each individual combination of QoS preferences,
from a set of imperfect candidates. Our approach starts by
proposing a way to complete the QoS information in domain
ontologies with fuzzification categories. The novelty of our
approach lies in using fuzzy inference for ranking the can-
didates, but based on sets of automatically generated fuzzy
rules for each set of individual preferences. Fuzzy rules have

a big expressive power, and the fact that they are generated
automatically makes this approach user-friendly.
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