
A PageRank Based Recommender System for
Identifying Key Classes in Software Systems

Ioana Şora
Department of Computer and Software Engineering,

Politehnica University of Timisoara, Romania
ioana.sora@cs.upt.ro

Abstract—Program comprehension is a fundamental prereq-
uisite before software engineers may engage in software main-
tenance or evolution activities and requires the study of large
amounts of documentation - either developer documentation
or reverse engineered. Very often, from this documentation
is missing a short overview document pointing to the most
important classes of the system, these who are essential for
starting the understanding of the systems architecture.

In this work we propose a recommender tool to automatically
identify the most important classes of a system. Our approach
relies on modeling the static dependencies structure of the
system as a graph and applying a graph ranking algorithm. We
empirically identify the optimal way of building the system graph,
identifying how different dependency types should be taken into
account. In experiments performed on a set of open source real
life systems, we compare the sets of classes recommended by our
tool with these included in the architectural overviews provided
by the system developers.

I. I NTRODUCTION

Program comprehension [1] is the first step in any activity
of software maintenance or evolution. It is supported by
documentation, either developer documentation or reverseen-
gineered documentation. Reverse engineering a large software
system often produces a huge amount of information, whose
comprehension or further processing would take a long time.A
class diagram, reverse engineered from a system with hundreds
or even thousands of classes is of little use when trying to
understand the system in absence of any other documentation.
Even when documentation is available, it may be too detailed
and scattered, such as the one generated byjavadoc from all
the classes and packages of the system.

These kinds of documentation mentioned above do not pro-
vide the information structured in such a way that is easying
the initial effort of the maintainer working with a system
which is new and unknown to him. In order to manage the
complexity of all the details one would need a short document
giving an architectural overview. Architectural overviews may
be given either as abstractive summaries, introducing higher-
level abstractions, or as extractive summaries, pointing directly
to a small number of important classes of the system. An
architectural overview given in the form of an extractive
summary is the more useful form for getting started with
program comprehension as a preparation for maintenance
activities.

In this paper we propose a recommender tool for finding the
most important classes of a software system. It can be used

either as a stand-alone tool or as a plugin in IDE’s or software
visualization tools, in order to help software engineers intasks
related to incipient program comprehension.

Our approach of identifying the most important classes of
a software project is based on ranking them with a graph-
ranking algorithm which adapts PageRank [2]. We model the
software system as a graph having classes as nodes and use
PageRank to rank them. A cut threshold is later used to delimit
the top ranked classes which are the recommended summary.

PageRank is a graph-based ranking algorithm well known
for its key contribution to the Web search technology, by
providing a Web page ranking mechanism. The basic idea
of the algorithm is that ofvoting or recommendation. When
one node links to another one, it is considered that it gives
a recommendation (a vote) for that other node. A node is
important if it receives votes from many other nodes. Also, the
importance of the vote is determined by the importance of the
node giving the vote. It results that the importance of a node
is determined by both the number of votes that it receives and
the importance of the nodes giving these votes. Although the
original PageRank definition [2] works on unweighted graphs,
there are versions that have been adapted to work on weighted
graphs.

The PageRank algorithm and different versions of it have
also been used in many other application domains: citation
ranking and journal impact factors [3], in various recom-
mender systems such as [4], and in the field of natural
language processing for automatic text summarization. [5], [6].

In software engineering, there have been studies that have
applied PageRank to software entities: Coderank [7] introduces
the idea of computing PageRank values for software artifacts
such as classes or functions of a project. Componentrank [8]
uses PageRank values for retrieving the most useful software
components for reuse from multiple software libraries. Al-
though showing some similarities, this problem is different
from that of identifying the key classes of a software system.
There is no experimental validation with identifying key
components of real software systems. However, for a practical
usable tool for program comprehension, it is crucial to find out
which is the best way to model the software system as a graph
in order to obtain good results for this kind of application.Also
it must be experimentally proved on real life case studies that
the results produced by the tool are similar with the opinions
of human experts.

In Section II we introduce our approach of modeling the
structure of object oriented software systems by static de-
pendencies and our hypothesis on using this information for
identification of most important classes. Section III presents
experimental results of applying our approach to a set of
relevant open-source projects and finetuning the model pa-
rameters. Section IV discusses our results by comparing with
related work. Section V draws the conclusions of this paper.

II. M ODELING RECOMMENDATION RELATIONSHIPS

BETWEEN CLASSES

A. Static dependencies between classes

Static dependencies in object oriented languages are pro-
duced by various situations. Following categories of depen-
dencies can exist from a class A to a class (or interface) B:

• inheritance: A extends B.
• realization: A implements B.
• field: A has at least one field of type B.
• member access: Code belonging to A accesses a field of

B
• method call: A calls a method of B. Every distinct method

of B which is called is counted as a new dependency.
• parameter: A method of A has at least one parameter of

type B
• return type: A method of A has a return type B
• local variable: A local variable of type B is declared in

code belonging to A
• instantiation: An instance of B is created in code belong-

ing to A
• cast: A type-cast to B occurs in code belonging to A
Several different kinds of dependency relationships may be

summed up between two classes: for example, A can have a
field of type B, instantiate objects of this type, while also have
a method with parameters of type B and call several different
methods of B.

We identify all these categories of dependencies by static
analysis with help of the model extractors of the ART tool
suite [9].

The dependency relationship between two classes is char-
acterized by a dependency strength, which takes into account
both the number of dependency relationships and the types of
dependency relationships between the two classes. We estimate
the strength of a dependency using a summative approach
based on weights which reflect the ordering of dependency
types according to their relative importance. Establishing the
weights (the relative importance of static dependency types)
is a subject of empirical estimation in the context of a certain
goal and different authors use different frameworks for this
[10]. In Section III we will empirically determine the optimal
values of the weights in the context of identification of key
classes.

B. Modeling recommendation relationships between classes

The software system is modeled as a graph having as nodes
classes or interfaces. A directed edge from node A to node B
means that node A recommends node B as important. Finding

where and how to place the recommendation edges is the
enabling element for an effective class ranking approach.

In our model, first introduced in [11], the recommendations
derive from the static program dependencies. If A depends on
B, this means both that A gives a recommendation to B but
also that B gives a recommendation to A. We call the edge
from A to B a forward recommendation, while the edge from
B to A is a back recommendation.

The forward recommendations, resulting directly from de-
pendencies, are motivated by the fact that a class which
is used by many other classes has good chances to be an
important one, representing a fundamental data or business
model. But also back recommendations are needed to reflect
the case when a class which is using a lot of other important
classes is an important one, such as a class containing a lot
of control of the application or an important front-end class.
If only the directed dependency would be considered as a
recommendation, then library classes would rank very high
while the classes containing the control would rank low.

Recommendations also have weights. A class is not rec-
ommending all its dependency classes with an equal number
of votes. It will give more recommendation votes to these
classes that offer it more services. Thus recommendation
weights are derived from the type and amount of dependencies,
and can be different for forward recommendations and back
recommendations.

The weight of the forward recommendation from A to B is
given by the dependency strength of the dependency relation-
ship from A to B. The weight of the back recommendation
from B to A is a fractionF of the weight of the forward
recommendation from A to B. Section III investigates the
optimal value for this fraction, correlated with the optimal
values of the dependency weights.

C. Research questions

The research questions to be empirically answered in
Section III, in order to have the right model for a good
recommender tool, are the following ones:

• Which is the role of dependency directions ?

– Are back-recommendations needed ?
– Which is the relative contribution of back-

recommendations compared to that of forward rec-
ommendations ?

• Which types of dependencies are relevant for the goal of
this recommender tool ? We will explore which one of
the following hypothesis holds:

– All dependency types are equally important ?
– All dependency types are important but in different

proportions and these have to be determined ?
– Some dependency types can be ignored without

affecting the quality of the result or even improving
it ?

• Which parts of the ranking are relevant for the goal of
the recommender tool ?

III. E MPIRICAL DETERMINATION AND VALIDATION OF

MODEL PARAMETERS

A. Experimental setup and approach

We have chosen as case studies a set of relevant open source
systems where design documentation is available such that a
set of key classes can be given as a reference solution to be
compared with the solutions produced by our recommender
tool.

For this kind of tool, recall and precision are defined in [12]
as follows: Therecall, showing the techniques retrieval power,
is computed as the percentage of key classes retrieved by the
technique versus the total number of key classes present in the
reference set. Theprecision, showing the techniques retrieval
quality, is computed as the percentage of key classes retrieved
versus the total size of the result set.

We run our tool that implements the ranking approach
described in section II, using weighted recommendations,
according to the type and amount of dependencies as well
as back-recommendations.

Our goal is to fine-tune the values for the model parameters
(dependency types and weights and dependency directions),
such that our tool achieves its best recall and precision. We
experiment with following sets of values:

For dependency types and weights, we consider the follow-
ing variants:

• AllDep: all dependency types, with equal contributions
• CallsOnly: only method calls are considered, ignoring

all other types of dependencies. The number of distinct
methods called is taken into account in the global depen-
dency strength.

• InterfOnly: only relationships induced by elements visible
from the interface are counted (inheritance, implemen-
tation, method parameters), ignoring all details such as
local variables, member accesses and method calls.

• AllWeighted: all dependency types, but weighted such that
interface elements have a higher weight than method calls
while local variables use brings the smallest weights.

For dependency directions, we consider the following vari-
ants:

• F=0: no back recommendation, only forward recommen-
dation determined by the dependency relationship.

• F=1: back-recommendations have the same weight as
forward recommendations.

• F=1/2, F=1/4: back-recommendations have a smaller
weight than forward recommendations

We study all the combinations of resulting from val-
ues for dependency weights and the fraction F of back-
recommendations.

B. Case studies

We chose as case studies for this work four open source real
life systems: JHotDraw, jEdit, Ant and JMeter. The choice
of these case studies was guided by the requirement that
design documentation is available, from their developers and
if possible also documented in other independent studies.

JHotDraw1 is a highly customizable graphic framework
for structured drawing editors, and we analyze here release
6.0b.1. Its core has 398 classes. We consider that the set
of key classes of JHotDraw is formed by these pointed out
by the developers, completed with the some classes added
in the study of [13]:Figure, Drawing, DrawingView,
DrawApplication, Tool, Handle, DrawingEditor,
StandardDrawingView, CompositeFigure. This set
of 9 classes is further considered the reference solution.

JEdit2 is a cross platform programmer’s text editor written in
Java. We analyze the code of release 5.1.0, with 1266 classes.
Developer documentation is available3 and it points out the
following classes of interest:jEdit, View, EditPane,
Buffer, JEditTextArea, Log, EBMessage.

Apache Ant4 is a Java library and command-line tool
to compile, build, test and run Java applications. We
analyze release 1.6.1, feeding as input ant.jar containing
the core part of ant. It contains 524 classes. Design
documentation5 and other works that analyzed this system
[12] mention following important classes:Project,
Target, UnknownElement, RuntimeConfigurable,
Task, IntrospectionHelper, ProjectHelper2,
ProjectHelperImpl.

Jakarta JMeter6 is a Java application for testing of Web
Applications. We analyze version 2.0.1, its core found in
ApacheJMetercore.jar which contains 280 classes. Design
documentation7 and other works that analyzed this system
[12] mentions following classes:AbstractAction,
JMeterEngine, JMeterTreeModel, JMeterThread,
JMeterGUIComponent, Sampler, SampleResult,
TestCompiler, TestElement, TestListener,
TestPlan, TestPlanGUI, ThreadGroup.

C. Identifying the optimal values for model parameters

We have run our tool on all the four software systems,
for combining four sets of dependency weights (AllDep,
AllWeights, CallsOnly, InterfOnly) and four values for F, the
fraction of back-recommendations. The results are summarized
in Figure 1.

For every system and every combination of tool parameters,
we count the percentage of classes from the reference set that
have been retrieved (the recall of the tool) in the first 10 up
to the first 50 ranked classes. We establish these threshold
independent from the size of the analyzed system: for a large
system, even a small percentage threshold such as 10% would
corespond to about 100 classes, and such a large recomended
set would be of no practical utility in the scope of this work.
Also we record the index (ranking) where the last class of the
reference set has been found.

1http://www.jhotdraw.org/
2http://jedit.org/
3http://community.jedit.org/cgi-bin/TWiki/view/Main/JEditSourceCodeIntro
4http://ant.apache.org/
5http://codefeed.com/tutorial/antconfig.html
6http://jmeter.apache.org/
7http://wiki.apache.org/jmeter/

 JHotDraw Ant

 F=0 F=1 F=1/2 F=1/4 F=0 F=1 F=1/2 F=1/4

AllDep Top 10 0.22 0.56 0.56 0.44 Top 10 0.38 0.38 0.25 0.38
 Top 15 0.44 0.67 0.78 0.78 Top 15 0.63 0.63 0.63 0.63
 Top 20 0.56 0.89 0.89 0.89 Top 20 0.63 0.88 1.00 1.00
 Top 30 0.67 0.89 0.89 1.00 Top 30 0.75 1.00 1.00 1.00
 Top 50 0.67 1.00 1.00 1.00 Top 50 0.75 1.00 1.00 1.00
 LastAt 92 43 33 27 LastAt 201 29 19 19

AllWeigh Top 10 0.22 0.56 0.44 0.44 Top 10 0.38 0.38 0.25 0.38
 Top 15 0.22 0.44 0.78 0.78 Top 15 0.50 0.63 0.63 0.75
 Top 20 0.56 0.89 0.89 0.89 Top 20 0.63 0.88 1.00 1.00
 Top 30 0.67 0.89 0.89 1.00 Top 30 0.75 1.00 1.00 1.00
 Top 50 0.67 1.00 1.00 1.00 Top 50 0.75 1.00 1.00 1.00
 LastAt 87 31 25 21 LastAt 256 26 17 20

CallsOnly Top 10 0.33 0.56 0.56 0.44 Top 10 0.38 0.38 0.25 0.25
 Top 15 0.44 0.67 0.67 0.67 Top 15 0.44 0.38 0.50 0.50
 Top 20 0.56 0.78 0.89 0.89 Top 20 0.75 0.63 0.88 0.88
 Top 30 0.78 0.89 0.89 0.89 Top 30 0.67 0.89 0.89 1.00
 Top 50 0.89 1.00 1.00 1.00 Top 50 0.75 1.00 1.00 1.00
 LastAt 64 46 48 50 LastAt 230 48 50 28

InterfOnly Top 10 0.33 0.67 0.67 0.56 Top 10 0.50 0.25 0.25 0.38
 Top 15 0.56 0.78 0.67 0.67 Top 15 0.63 0.25 0.38 0.38
 Top 20 0.67 0.78 0.78 0.89 Top 20 0.75 0.38 0.38 0.50
 Top 30 0.67 1.00 1.00 1.00 Top 30 0.75 0.63 0.63 0.75
 Top 50 0.78 1.00 1.00 1.00 Top 50 0.75 0.75 0.75 0.88
 LastAt 76 27 28 29 LastAt 252 253 248 249

 jEdit jMeter

 F=0 F=1 F=1/2 F=1/4 F=0 F=1 F=1/2 F=1/4
AllDep Top 10 0.71 0.86 0.86 0.71 Top 10 0.15 0.31 0.31 0.31
 Top 15 0.86 0.86 0.86 0.86 Top 15 0.31 0.46 0.46 0.38
 Top 20 1.00 0.86 0.86 0.86 Top 20 0.38 0.46 0.54 0.46
 Top 30 1.00 0.86 0.86 0.86 Top 30 0.46 0.54 0.69 0.69
 Top 50 1.00 0.86 0.86 1.00 Top 50 0.62 0.85 0.77 0.77
 LastAt 19 160 97 50 LastAt 140 84 91 102

AllWeigh Top 10 0.86 0.71 0.71 0.71 Top 10 0.15 0.31 0.31 0.23
 Top 15 0.86 0.86 0.86 0.86 Top 15 0.31 0.38 0.38 0.38
 Top 20 1.00 0.86 0.86 0.86 Top 20 0.38 0.46 0.54 0.54
 Top 30 1.00 0.86 0.86 1.00 Top 30 0.38 0.62 0.62 0.62
 Top 50 1.00 0.86 1.00 1.00 Top 50 0.69 0.85 0.69 0.69
 LastAt 18 93 53 29 LastAt 121 75 88 77

CallsOnly Top 10 0.57 0.86 0.86 0.71 Top 10 0.23 0.31 0.31 0.31
 Top 15 0.57 0.86 0.86 0.86 Top 15 0.31 0.31 0.31 0.38
 Top 20 0.71 0.86 0.86 0.86 Top 20 0.38 0.31 0.31 0.46
 Top 30 0.71 0.86 0.86 0.86 Top 30 0.46 0.54 0.54 0.54
 Top 50 0.71 0.86 0.86 0.86 Top 50 0.69 0.77 0.69 0.62
 LastAt 137 454 427 364 LastAt 121 114 94 94

InterfOnly Top 10 0.43 0.57 0.43 0.43 Top 10 0.23 0.31 0.31 0.23
 Top 15 0.43 0.86 0.71 0.71 Top 15 0.23 0.38 0.31 0.31
 Top 20 0.57 0.86 0.71 0.86 Top 20 0.46 0.54 0.38 0.38
 Top 30 0.57 0.86 0.86 0.86 Top 30 0.54 0.62 0.62 0.54
 Top 50 0.86 0.86 0.86 0.86 Top 50 0.85 0.85 0.85 0.85
 LastAt 1264 1263 1263 1263 LastAt 118 95 110 129

Fig. 1. Recall measured when varying the values for the dependency types weights and the fraction of back-recommendations.

Analyzing the results in Figure 1, we can give following
answers to the research questions stated in subsection II-C:

• Back-recommendations are certainly needed. With the
exception of the system jEdit, less classes from the key
set are found when F=0(without back-recommendations).
Regarding the optimal value of F, it appears however that
it is the smaller values (F=1/4 or F=1/2) that will bring
an overall positive result in all cases, better than the case
F=1. It is however difficult to decide, on hand of the
current set of experiments, which one of the values F=1/4
or F=1/2 is better.

• The dependency types that bring the best results may
differ from system to system, depending whether more
key classes are fundamental data models or whether they
contain a lot of control. This set of experiment shows that
the best approach is to take into account all dependency
types (AllDeps or AllWeighted) since it brings overall the
best results. More experimental investigation and fine-
tuning of the caseAllWeighted, as we have it intuitively
proposed initially in [11], could bring further optimiza-
tions.

• From all the experiments, it results that it is reasonable
to limit the tool recommended set to the top 20 or top 30
ranked classes, independent from the size of the system.
For all systems we noticed that a couple of classes, the
most important ones, always appear among the top 10,
almost independent from the parameters of the tool. The
majority of the other classes from the reference sets are
found in the top 20 or top 30, in different orders for
different parameters. A very few classes from certain
case studies could not be found within the considered
cut thresholds, but their individual examination showed
that their presence in the top summary is indeed arguable.

D. Tool evaluation

According to the conclusion drawn in the previous sub-
section, we set the parameters of our tool such that we take
into account all dependency types, with different weights (the
AllWeighted case) and back-recommendations are assigned a
fraction F=1/4. The cut threshold is set at the top 20 ranked
classes. With these values, we obtain following evaluationof
our tool, summarized in table I:

TABLE I
EXPERIMENTAL RESULTS SUMMARY

JHotDraw jEdit Ant JMeter
System size 398 1266 524 280

Reference size 9 7 8 13
Hits in Top 20 8 6 8 7
Execution time 1 min 3 min 2 min 1 min

From all test cases, we can compute the average values for
precision and recall, which are 0.35 respectively 0.82.

We consider that the recall is the relevant metric for the
evaluation of the tool. The precision metrics is not so relevant
in this case since it considers true positives only classes from
a fixed reference set which has an average size of 10 classes.

However, when examining the top 20 ranked classes, we can
observe that there are among them other classes which are
certainly not unimportant. Another approach of validationof
the tool results would be to show the output of the tool to a set
of experts that know well the systems under analysis and ask
them to identify the classes that rightfully belong to the top
summary. However, this experiment can be hardly carried out
in practice in an objective and accurate way, thus we remained
with the unfavorable but more objective way of comparing
with a fixed reference solution.

Program comprehension is effectively supported by our tool,
which recommends a small number of classes identified as
key classes that can be used as starting points for further
analysis. For practical effectiveness, it is not worth to lower
the cut threshold. Also, a general ranking of all the classes
of a system is not possible, since in the median region of
the ranking there are classes which are important for certain
features of the system but not for the system as a whole. It
makes no sense to try to rank these classes with each other in
a general ranking, their analysis is better done with techniques
such as feature localization [14].

IV. RELATED WORK

There are a few approaches trying to identify the most
important classes from a software system. They use as input
information extracted either by static analysis [15], [16]or
by dynamic analysis [17]. The techniques that have been
applied for identifying the key classes are based on webmining
techniques [12], network analysis [16], and machine learning
[15], [18].

Zaidman et al [12], [19], [17], uses another graph-ranking
algorithm known from webmining, HITS, in order to detect
key classes of a software system. They apply HITS on models
built by dynamic and static analysis, and perform experiments
on two case studies. Using dynamic analysis they obtain an
average recall of 92% and precision 46%. The major drawback
of their method is that dynamic analysis relies very much
on the user finding good execution scenarios. It also has
scalability issues and a high execution time (1h45). For this
reason, they trace only a small number of classes (for Ant
only 127 classes were traced, preselected by the user for this
role). Zaidman also combined this webmining technique with
static analysis but concluded that the static analysis was not
able to achieve a reasonable precision and recall. Here their
best results were a recall of 50% and precision of 8%, while
the execution time is still high (over 1 hour).

In this work we prove that static analysis can be used to
successfully and efficiently identify key classes. Our results
near the values obtained by [12] with dynamic analysis,
while the execution time in our case is only 1-2 minutes.
Also, the user is not required to know execution scenarios,
he just provides the code to be analyzed without any other
intervention, even as jars from the binary distribution. This
makes our tool really usable in practice. We consider that
our positive result is mainly due to our recommendation
model, which takes into account all possible types of static

dependencies with appropriate weights, while Zaidman uses
coupling metrics that are built from method calls only. We
also appreciate in the work of [12] the extensive description
of their result sets in case of Ant and JMeter, which allowed
us to compare with our result sets for these two systems.

Steidl et al describe another approach that starts from
static analysis in [16]. The importance of classes is given
by their centrality index computed on the the dependency
graph. They found that using the Markov centrality leads to
the best results, reporting a precision between 60% and 80%,
but only in the top 10 recommendation set, while this precision
drops dramatically in the top 50 set. Their experiments were
performed on a set of 4 systems. From the data presented,
the reference solutions were the reunions of different expert
opinion instead of intersection of such. Theses larger baseline
solutions may have favored the count of hits in the top 10,
as opposed to the smaller and fixed reference solutions used
in our experiments. From the results presented, we globally
appreciate the retrieval power of this technique is similarwith
ours.

A different approach, based on machine learning, for iden-
tifying the important classes of a system with the goal of
condensing reverse engineered class diagrams is presented
in [15] and [18]. Available forward design diagrams are
used to learn and then to validate the quality of a set of
prediction algorithms. In [18], design metrics and network
metrics are independently computed and used as attributes
by the learning algorithms. In our approach, we combine the
pagerank network metric and the design metrics, by computing
pagerank on the weighted graph resulting from dependency-
based design metrics.

V. CONCLUSIONS

In this paper, we propose a method for identifying the key
classes of a software system by modeling the system as a graph
built by static analysis of program dependencies and applying
the PageRank algorithm for ranking its nodes.

The key for the effectiveness of our approach is how the
graph is built: it takes into account all types of static depen-
dencies between classes, weighted according to the relative
importance given by the dependency type and number of
occurrences. Also, it is important to have edges for both
forward and backward recommendations. We have empirically
determined and validated the values for these parameters.

The experiments done on real systems show good results,
proving the practical effectiveness of our tool, which gives the
user a good start for program comprehension, providing him
easy and quickly with a trustworthy and short recommenda-
tion set including the key classes which form the executive
summary of the system.

REFERENCES

[1] A. von Mayrhauser and A. Vans, “Program comprehension during
software maintenance and evolution,”Computer, vol. 28, no. 8, pp. 44–
55, Aug 1995.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999, previous number = SIDL-WP-1999-0120.
[Online]. Available: http://ilpubs.stanford.edu:8090/422/

[3] N. Ma, J. Guan, and Y. Zhao, “Bringing pagerank to the citation
analysis,”Information Processing & Management, vol. 44, no. 2, pp. 800
– 810, 2008, evaluating Exploratory Search Systems Digital Libraries
in the Context of Users Broader Activities.

[4] L. Zhang, K. Zhang, and C. Li, “A topical pagerank based algorithm for
recommender systems,” inProceedings of the 31st Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’08. New York, NY, USA: ACM, 2008, pp. 713–
714.

[5] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexical centrality
as salience in text summarization,”J. Artif. Intell. Res.(JAIR), vol. 22,
no. 1, pp. 457–479, 2004.

[6] R. Mihalcea and P. Tarau, “Textrank: Bringing order intotexts,” in
Proceedings of EMNLP 2004, D. Lin and D. Wu, Eds. Barcelona,
Spain: Association for Computational Linguistics, July 2004, pp. 404–
411.

[7] B. Neate, W. Irwin, and N. Churcher, “Coderank: a new family of soft-
ware metrics,” inSoftware Engineering Conference, 2006. Australian,
April 2006, pp. 10 pp.–378.

[8] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto,
“Ranking significance of software components based on use relations,”
Software Engineering, IEEE Transactions on, vol. 31, no. 3, pp. 213–
225, March 2005.

[9] I. Şora, “Unified modeling of static relationships between program ele-
ments,” inEvaluation of Novel Approaches to Software Engineering, ser.
Communications in Computer and Information Science, L. Maciaszek
and J. Filipe, Eds. Springer Berlin Heidelberg, 2013, vol. 410, pp.
95–109.

[10] L. Briand, J. Daly, and J. Wust, “A unified framework for coupling
measurement in object-oriented systems,”Software Engineering, IEEE
Transactions on, vol. 25, no. 1, pp. 91–121, Jan 1999.

[11] I. Şora, “Finding the right needles in hay - helping program compre-
hension of large software systems,” inProceedings of 10th International
Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE), 2015.

[12] A. Zaidman and S. Demeyer, “Automatic identification of keyclasses
in a software system using webmining techniques,”Journal of Software
Maintenance and Evolution: Research and Practice, vol. 20, no. 6, pp.
387–417, 2008.

[13] Y.-G. Gúeh́eneuc, “A reverse engineering tool for precise class di-
agrams,” in Proceedings of the 2004 Conference of the Centre for
Advanced Studies on Collaborative Research, ser. CASCON ’04. IBM
Press, 2004, pp. 28–41.

[14] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,”Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[15] M. H. Osman, M. R. V. Chaudron, and P. v. d. Putten, “An analysis
of machine learning algorithms for condensing reverse engineered class
diagrams,” inProceedings of the 2013 IEEE International Conference
on Software Maintenance, ser. ICSM ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 140–149.

[16] D. Steidl, B. Hummel, and E. Juergens, “Using network analysis for rec-
ommendation of central software classes,” in19th Working Conference
on Reverse Engineering (WCRE), Oct 2012, pp. 93–102.

[17] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens, “Applying
webmining techniques to execution traces to support the program
comprehension process,” inNinth European Conference on Software
Maintenance and Reengineering, CSMR 2005., March 2005, pp. 134–
142.

[18] F. Thung, D. Lo, M. H. Osman, and M. R. V. Chaudron, “Condensing
class diagrams by analyzing design and network metrics using
optimistic classification,” inProceedings of the 22Nd International
Conference on Program Comprehension, ser. ICPC 2014. New
York, NY, USA: ACM, 2014, pp. 110–121. [Online]. Available:
http://doi.acm.org/10.1145/2597008.2597157

[19] A. Zaidman, B. Du Bois, and S. Demeyer, “How webmining and
coupling metrics improve early program comprehension,” inProgram
Comprehension, 2006. ICPC 2006. 14th IEEE International Conference
on, 2006, pp. 74–78.

