A PageRank Based Recommender System for
ldentifying Key Classes in Software Systems

loana Sora
Department of Computer and Software Engineering,
Politehnica University of Timisoara, Romania
ioana.sora@cs.upt.ro

Abstract—Program comprehension is a fundamental prereq- either as a stand-alone tool or as a plugin in IDE’s or soféwar

uisite before software engineers may engage in software main-yisualization tools, in order to help software engineertasks
tenance or evolution activities and requires the study of large related to incipient program comprehension.

amounts of documentation - either developer documentation o h of identifving th ti tant cl f
or reverse engineered. Very often, from this documentation ur approach of identifying the most important classes o

is missing a short overview document pointing to the most @ software project is based on ranking them with a graph-

important classes of the system, these who are essential forranking algorithm which adapts PageRank [2]. We model the

starting the understanding of the systems architecture. software system as a graph having classes as nodes and use
In this work we propose a recommender tool to automatically - pageRank to rank them. A cut threshold is later used to delimi

identify the most important classes of a system. Our approach .
relies on modeling the static dependencies structure of the the top ranked classes which are the recommended summary.

system as a graph and applying a graph ranking algorithm. We ~ PageRank is a graph-based ranking algorithm well known
empirically identify the optimal way of building the system graph, ~ for its key contribution to the Web search technology, by
identifying how different dependency types should be taken into providing a Web page ranking mechanism. The basic idea

account. In experiments performed on a set of open source real of the algorithm is that ofoting or recommendation. When
life systems, we compare the sets of classes recommended by our de links t th it i idered that it ai
tool with these included in the architectural overviews provided ©N€ NOUE IINKS 1o another one, 1t 1S considered that It gives

by the system developers. a recommendation (a vote) for that other node. A node is
important if it receives votes from many other nodes. Alke, t
l. INTRODUCTION importance of the vote is determined by the importance of the

Program comprehension [1] is the first step in any activityode giving the vote. It results that the importance of a node
of software maintenance or evolution. It is supported kg determined by both the number of votes that it receives and
documentation, either developer documentation or revamnse the importance of the nodes giving these votes. Although the
gineered documentation. Reverse engineering a large a@ftworiginal PageRank definition [2] works on unweighted graphs
system often produces a huge amount of information, whodesre are versions that have been adapted to work on weighted
comprehension or further processing would take a long tAne.graphs.
class diagram, reverse engineered from a system with hdsidre The PageRank algorithm and different versions of it have
or even thousands of classes is of litle use when trying &so been used in many other application domains: citation
understand the system in absence of any other documentatranking and journal impact factors [3], in various recom-
Even when documentation is available, it may be too detailetender systems such as [4], and in the field of natural
and scattered, such as the one generateghdadoc from all language processing for automatic text summarization|[¢h]
the classes and packages of the system. In software engineering, there have been studies that have

These kinds of documentation mentioned above do not prpplied PageRank to software entities: Coderank [7] intced
vide the information structured in such a way that is easyire idea of computing PageRank values for software arsifact
the initial effort of the maintainer working with a systemsuch as classes or functions of a project. Componentrank [8]
which is new and unknown to him. In order to manage theses PageRank values for retrieving the most useful saftwar
complexity of all the details one would need a short documeadmponents for reuse from multiple software libraries. Al-
giving an architectural overview. Architectural overvieway though showing some similarities, this problem is différen
be given either as abstractive summaries, introducingdnighfrom that of identifying the key classes of a software system
level abstractions, or as extractive summaries, pointiregtly There is no experimental validation with identifying key
to a small number of important classes of the system. Aromponents of real software systems. However, for a pidctic
architectural overview given in the form of an extractivaisable tool for program comprehension, it is crucial to fint o
summary is the more useful form for getting started witlvhich is the best way to model the software system as a graph
program comprehension as a preparation for maintenancerder to obtain good results for this kind of applicatiéiso
activities. it must be experimentally proved on real life case studias th

In this paper we propose a recommender tool for finding thiee results produced by the tool are similar with the opigion
most important classes of a software system. It can be us#chuman experts.

In Section Il we introduce our approach of modeling thethere and how to place the recommendation edges is the
structure of object oriented software systems by static derabling element for an effective class ranking approach.
pendencies and our hypothesis on using this information forin our model, first introduced in [11], the recommendations
identification of most important classes. Section Il prése derive from the static program dependencies. If A depends on
experimental results of applying our approach to a set Bf this means both that A gives a recommendation to B but
relevant open-source projects and finetuning the model pdso that B gives a recommendation to A. We call the edge
rameters. Section IV discusses our results by compariny witom A to B aforward recommendation, while the edge from
related work. Section V draws the conclusions of this papeB to A is a back recommendation.

The forward recommendations, resulting directly from de-
pendencies, are motivated by the fact that a class which
. . is used by many other classes has good chances to be an
A. Satic dependencies between classes important one, representing a fundamental data or business

Static dependencies in object oriented languages are piifodel. But also back recommendations are needed to reflect
duced by various situations. Following categories of depethe case when a class which is using a lot of other important
dencies can exist from a class A to a class (or interface) Bglasses is an important one, such as a class containing a lot

II. M ODELING RECOMMENDATION RELATIONSHIPS
BETWEEN CLASSES

« inheritance: A extends B. of control of the application or an important front-end slas
« realization: A implements B. If only the directed dependency would be considered as a
« field: A has at least one field of type B. recommendation, then library classes would rank very high
« member access: Code belonging to A accesses a fieldndfile the classes containing the control would rank low.

B Recommendations also have weights. A class is not rec-

» method call: A calls a method of B. Every distinct methodmmending all its dependency classes with an equal number
of B which is called is counted as a new dependency. of votes. It will give more recommendation votes to these
« parameter: A method of A has at least one parameter dfsses that offer it more services. Thus recommendation

type B weights are derived from the type and amount of dependencies
« return type: A method of A has a return type B and can be different for forward recommendations and back
« local variable: A local variable of type B is declared inecommendations.

code belonging to A The weight of the forward recommendation from A to B is
« instantiation: An instance of B is created in code belongjiven by the dependency strength of the dependency relation

ing to A ship from A to B. The weight of the back recommendation

o cast: A type-cast to B occurs in code belonging to A from B to A is a fraction F' of the weight of the forward
Several different kinds of dependency relationships may becommendation from A to B. Section Ill investigates the
summed up between two classes: for example, A can havemimal value for this fraction, correlated with the optima
field of type B, instantiate objects of this type, while alswé values of the dependency weights.
a method with parameters of type B and call several different
methods of B. C. Research questions

We identify all these categories of dependencies by statlc_l_he research questions to be empirically answered in

analysis with help of the model extractors of the ART tooéection I, in order to have the right model for a good

suite [9]. recommender tool, are the following ones:
The dependency relationship between two classes is char- ' '

acterized by a dependency strength, which takes into atcoune Which is the role of dependency directions ?

both the number of dependency relationships and the types of — Are back-recommendations needed ?

dependency relationships between the two classes. Weadstim — Which is the relative contribution of back-
the strength of a dependency using a summative approach recommendations compared to that of forward rec-
based on weights which reflect the ordering of dependency ommendations ?

types according to their relative importance. Establightiie | \whjch types of dependencies are relevant for the goal of
weights (the relative importance of static dependencysype this recommender tool ? We will explore which one of
is a subject of empirical estimation in the context of a éarta the following hypothesis holds:

goal and different authors use different frameworks fos thi
[10]. In Section Il we will empirically determine the optanh
values of the weights in the context of identification of key
classes.

— All dependency types are equally important ?

— All dependency types are important but in different
proportions and these have to be determined ?

— Some dependency types can be ignored without

B. Modeling recommendation relationships between classes affecting the quality of the result or even improving

The software system is modeled as a graph having as nodes it ?
classes or interfaces. A directed edge from node A to node B. Which parts of the ranking are relevant for the goal of
means that node A recommends node B as important. Finding the recommender tool ?

I1l. EMPIRICAL DETERMINATION AND VALIDATION OF JHotDraw is a highly customizable graphic framework
MODEL PARAMETERS for structured drawing editors, and we analyze here release
A. Experimental setup and approach 6.0b.1. Its core has 398 classes. We consider that the set

of key classes of JHotDraw is formed by these pointed out

We have chosen as case studies a set of relevant open Soki{/cﬁwe developers, completed with the some classes added

systems where design docu_mentatlon is available suph thalln e study of [13]:Fi gur e, Dr awi ng, Dr awi ngVi ew,
set of key classes can be given as a reference solution t(()ge

compared with the solutions produced by our recommen raWAppI I cation, Tool, Handl e, Dr awi ngEdi tor,
tool P P y t andar dDr awi ngVi ew, Conposi t eFi gure. This set

L - , . f
For this kind of tool, recall and precision are defined in [12? o , i . .

) . . . JEdif is a cross platform programmer’s text editor written in
as follows: Therecall, showing the techniques retrieval power .
. \ va. We analyze the code of release 5.1.0, with 1266 classes
is computed as the percentage of key classes retrieved by 1he SN : : .

. > Developer documentation is availabland it points out the
technique versus the total number of key classes presem¢in . : o .
. i i . ollowing classes of interestj Edit, Vi ew, Edit Pane,

reference set. Thprecision, showing the techniques retrieval

uality, is computed as the percentage of ke classeS\ne:tlrieBUf fer, JEdi t Text Area, Log, EBVBssage.
qualty, P P 9 y Apache Ant is a Java library and command-line tool

versus the total size of the result set. compile, build, test and run Java applications. We
We run our tool that implements the ranking approactlﬁ) prie, ' pp :

}‘nalyze release 1.6.1, feeding as input ant.jar containing

9 classes is further considered the reference solution.

described in section Il, using weighted recommendatior;{, core part of ant. It contains 524 classes. Design

according to the type and amount of dependencies as w . .
as back-recommendations. ocumentation and other works that analyzed this system

Our goal is to fine-tune the values for the model parametél&z] mention _following |mportanF cIasse;:Pr oj ect,
(dependency types and weights and dependency directio rget, UnknownEl gment , Runti rreCpnﬂ gurable,
such that our tool achieves its best recall and precision. S!(’ I ntrospectiontel per, ProjectHel per2,
experiment with following sets of values: roj ect Hel perl npl .

For dependency types and weights, we consider the follo _Ja}<art_a IMetéris a Java apphcaﬂon for. testing of Wep
ing variants: Applications. We analyze version 2.0.1, its core found in

AllDen: all d d i ith | tributi ApacheJMetercore.jar which contains 280 classes. Design
* Callseg la_ e{:)en etr;]c;:j yp?ls, w eq“"?‘d condrl'u I0NS 4ocumentatioh and other works that analyzed this system
* niy- only method calls are considered, ignorin 12] mentions following classes:Abstract Acti on,

all other types of dependencies. The number of distin ‘\/Et er Engi ne, JMet er Tr eeNbdel , JNet er Thr ead
methods called is taken into account in the global depe51|—v|9t er GU Corr;)onent Sanpl er ' Sanpl eResul t '

dency strength. . L TestConpiler, TestEl ement, TestListener,
« InterfOnly: only relationships induced by elements V|S|blel.est Pl an, Test Pl anGUl , Thr eadG oup

from the interface are counted (inheritance, implemen-
tation, method parameters), ignoring all details such as |dentifying the optimal values for model parameters
local variables, member accesses and method calls.

« AllWeighted: all dependency types, but weighted such that We have run our tool on all the four software systems,

interface elements have a higher weight than method cdff§ combining four sets of dependency weight&liDep,
while local variables use brings the smallest weights. “1/V\eights, CallsOnly, InterfOnly) and four values for F, the
Lo . . fraction of back-recommendations. The results are sunzexdri
For dependency directions, we consider the following varl- Figure 1.
ants:) For every system and every combination of tool parameters,
« F=0: no back recommendation, only forward recommetye ount the percentage of classes from the reference set tha
dation determined by the_ dependency relatlonsh|p_. have been retrieved (the recall of the tool) in the first 10 up
« F=1: back-recommendations have the same weight @Sine first 50 ranked classes. We establish these threshold
forward recommendations. , independent from the size of the analyzed system: for a large
« F=1/2, F=1/4: back-recommendations have a smallgfsiem even a small percentage threshold such as 10% would
weight than forward recommendations corespond to about 100 classes, and such a large recomended
We study all the combinations of resulting from valset would be of no practical utility in the scope of this work.
ues for dependency weights and the fraction F of backiso we record the index (ranking) where the last class of the
recommendations. reference set has been found.

B. Case studies Lhttp:/Avww.jhotdraw.org/
We chose as case studies for this work four open source reéhttp:/ljedit-orgl_ o o o _
life systems: JHotDraw, jEdit, Ant and JMeter. The choice http://community.jedit.org/cgi-bin/TWiki/view/Main/XEtSourceCodelntro
. . . “http://ant.apache.org/
of these case studies was guided by the requirement tha ttp-/icodefeed.com/tutorial/antonfig.html
design documentation is available, from their develop@$ a epp:/jmeter.apache.org/ -

if possible also documented in other independent studies. 7http://wiki.apache.org/jmeter/

JHotDraw Ant

F=0 F=1 | F=1/2 | F=1/4 F=0 F=1 | F=1/2 | F=1/4
AllDep Top 10 0.22 | 0.56 0.56 0.44 Top 10 0.38 0.38 | 0.25 | 0.38
Top 15 0.44 | 0.67 0.78 0.78 Top 15 0.63 0.63 | 0.63 | 0.63
Top 20 0.56 | 0.89 0.89 0.89 Top 20 0.63 0.88 | 1.00 | 1.00
Top 30 0.67 | 0.89 0.89 1.00 Top 30 0.75 1.00 | 1.00 | 1.00
Top 50 0.67 1.00 1.00 1.00 Top 50 0.75 1.00 | 1.00 | 1.00
LastAt 92 43 33 27 LastAt 201 29 19 19
AllWeigh | Top 10 0.22 | 0.56 0.44 0.44 Top 10 0.38 0.38 | 0.25 | 0.38
Top 15 0.22 | 0.44 0.78 0.78 Top 15 0.50 0.63 | 0.63 | 0.75
Top 20 0.56 | 0.89 0.89 0.89 Top 20 0.63 0.88 | 1.00 | 1.00
Top 30 0.67 | 0.89 0.89 1.00 Top 30 0.75 1.00 | 1.00 | 1.00
Top 50 0.67 1.00 1.00 1.00 Top 50 0.75 1.00 | 1.00 | 1.00
LastAt 87 31 25 21 LastAt 256 26 17 20
CallsOnly | Top 10 0.33 | 0.56 0.56 0.44 Top 10 0.38 0.38 | 0.25 | 0.25
Top 15 0.44 | 0.67 0.67 0.67 Top 15 0.44 0.38 | 0.50 | 0.50
Top 20 0.56 | 0.78 0.89 0.89 Top 20 0.75 0.63 | 0.88 | 0.88
Top 30 0.78 | 0.89 0.89 0.89 Top 30 0.67 0.89 | 0.89 | 1.00
Top 50 0.89 1.00 1.00 1.00 Top 50 0.75 1.00 | 1.00 | 1.00
LastAt 64 46 48 50 LastAt 230 48 50 28
InterfOnly | Top 10 0.33 | 0.67 0.67 0.56 Top 10 0.50 0.25 | 0.25 | 0.38
Top 15 0.56 | 0.78 0.67 0.67 Top 15 0.63 0.25 | 0.38 | 0.38
Top 20 0.67 | 0.78 0.78 0.89 Top 20 0.75 0.38 | 0.38 | 0.50
Top 30 0.67 1.00 1.00 1.00 Top 30 0.75 0.63 | 0.63 | 0.75
Top 50 0.78 1.00 1.00 1.00 Top 50 0.75 0.75 | 0.75 | 0.88

LastAt 76 27 28 29 LastAt 252 253 248 249
jEdit jMeter
F=0 | F=1 | F=1/2 | F=1/4 F=0 | F=1 |F=1/2 | F=1/4

AllDep Top 10 0.71 0.86 0.86 0.71 Top 10 0.15 0.31 | 031 0.31
Top 15 0.86 0.86 0.86 0.86 Top 15 0.31 0.46 | 0.46 | 0.38
Top 20 1.00 | 0.86 0.86 0.86 Top 20 0.38 046 | 0.54 | 0.46
Top 30 1.00 | 0.86 0.86 0.86 Top 30 0.46 0.54 | 0.69 | 0.69
Top 50 1.00 | 0.86 0.86 1.00 Top 50 0.62 0.85 | 0.77 0.77
LastAt 19 160 97 50 LastAt 140 84 91 102
AllWeigh | Top 10 0.86 0.71 0.71 0.71 Top 10 0.15 0.31 | 0.31 0.23
Top 15 0.86 0.86 0.86 0.86 Top 15 0.31 0.38 | 0.38 | 0.38
Top 20 1.00 | 0.86 0.86 0.86 Top 20 0.38 0.46 | 0.54 | 0.54
Top 30 1.00 | 0.86 0.86 1.00 Top 30 0.38 0.62 | 0.62 0.62
Top 50 1.00 | 0.86 1.00 1.00 Top 50 0.69 0.85 | 0.69 0.69
LastAt 18 93 53 29 LastAt 121 75 88 77

CallsOnly | Top 10 0.57 | 0.86 0.86 0.71 Top 10 0.23 031 | 031 | 031
Top 15 0.57 | 0.86 0.86 | 0.86 Top 15 0.31 031 | 0.31 | 0.38
Top 20 0.71 | 0.86 0.86 | 0.86 Top 20 0.38 0.31 | 0.31 | 0.46
Top 30 0.71 0.86 0.86 0.86 Top 30 0.46 0.54 0.54 0.54
Top 50 0.71 | 0.86 0.86 | 0.86 Top 50 0.69 0.77 | 0.69 | 0.62
LastAt 137 454 427 364 LastAt 121 114 94 94

InterfOnly | Top 10 0.43 0.57 0.43 0.43 Top 10 0.23 0.31 | 0.31 0.23
Top 15 0.43 | 0.86 0.71 0.71 Top 15 0.23 0.38 | 0.31 | 031
Top 20 0.57 0.86 0.71 0.86 Top 20 0.46 0.54 0.38 0.38
Top 30 0.57 | 0.86 0.86 | 0.86 Top 30 0.54 0.62 | 0.62 | 0.54
Top 50 0.86 | 0.86 0.86 0.86 Top 50 0.85 0.85 | 0.85 | 0.85
LastAt 1264 | 1263 | 1263 | 1263 LastAt 118 95 110 129

Fig. 1. Recall measured when varying the values for the degemydtypes weights and the fraction of back-recommendations.

Analyzing the results in Figure 1, we can give followingHowever, when examining the top 20 ranked classes, we can
answers to the research questions stated in subsection lI-@bserve that there are among them other classes which are

« Back-recommendations are certainly needed. With tig€rtainly not unimportant. Another approach of validatifn
exception of the system jEdit, less classes from the k#ye tool results would be to show the output of the tool to a set
set are found when F=0(without back-recommendationg). experts that know well the systems under analysis and ask
Regarding the optimal value of F, it appears however thitem to identify the classes that rightfully belong to the to
it is the smaller values (F=1/4 or F=1/2) that will bringsummary. However, this experiment can be hardly carried out
an overall positive result in all cases, better than the caiepractice in an objective and accurate way, thus we rerdaine
F=1. It is however difficult to decide, on hand of thewith the unfavorable but more objective way of comparing
current set of experiments, which one of the values F=1th a fixed reference solution.
or F=1/2 is better. Program comprehension is effectively supported by our, tool

« The dependency types that bring the best results mafiich recommends a small number of classes identified as
differ from system to system, depending whether mokey classes that can be used as starting points for further
key classes are fundamental data models or whether ti@#alysis. For practical effectiveness, it is not worth tevdo
contain a lot of control. This set of experiment shows th&lie cut threshold. Also, a general ranking of all the classes
the best approach is to take into account all depender@ya system is not possible, since in the median region of
types @lIDeps or AllWeighted) since it brings overall the the ranking there are classes which are important for certai
best results. More experimental investigation and finéeatures of the system but not for the system as a whole. It
tuning of the casé\llWeighted, as we have it intuitively makes no sense to try to rank these classes with each other in
proposed initially in [11], could bring further optimiza-a general ranking, their analysis is better done with tegnes
tions. such as feature localization [14].

« From all the experiments, it results that it is reasonable
to limit the tool recommended set to the top 20 or top 30
ranked classes, independent from the size of the systemlhere are a few approaches trying to identify the most
For all systems we noticed that a couple of classes, tifgportant classes from a software system. They use as input
most important ones, always appear among the top igformation extracted either by static analysis [15], [186]
almost independent from the parameters of the tool. TRy dynamic analysis [17]. The techniques that have been
majority of the other classes from the reference sets @gplied for identifying the key classes are based on welngini
found in the top 20 or top 30, in different orders fotechniques [12], network analysis [16], and machine le&ni
different parameters. A very few classes from certaid5], [18].
case studies could not be found within the consideredZaidman et al [12], [19], [17], uses another graph-ranking
cut thresholds, but their individual examination showeglgorithm known from webmining, HITS, in order to detect

that their presence in the top summary is indeed arguath€y classes of a software system. They apply HITS on models
built by dynamic and static analysis, and perform experisien

D. Tool evaluation on two case studies. Using dynamic analysis they obtain an
According to the conclusion drawn in the previous sulaverage recall of 92% and precision 46%. The major drawback
section, we set the parameters of our tool such that we taifetheir method is that dynamic analysis relies very much
into account all dependency types, with different weighite (on the user finding good execution scenarios. It also has
AllV\eighted case) and back-recommendations are assignedgalability issues and a high execution time (1h45). Fas thi
fraction F=1/4. The cut threshold is set at the top 20 rankedason, they trace only a small number of classes (for Ant
classes. With these values, we obtain following evaluatibn only 127 classes were traced, preselected by the user for thi

IV. RELATED WORK

our tool, summarized in table I: role). Zaidman also combined this webmining technique with
static analysis but concluded that the static analysis veds n
TABLE | able to achieve a reasonable precision and recall. Here thei
EXPERIMENTAL RESULTS SUMMARY .. .
best results were a recall of 50% and precision of 8%, while
JHotDraw | jEdit | Ant | JMeter the execution time is still high (over 1 hour).
System size 398 1266 | 524 | 280 In this work we prove that static analysis can be used to
Reference size| 9 7 8 13 full d efficiently identifv k | our kss
Hits in Top 20 5 3 5 - successfully and efficiently iden ify ey classes. Our u
Execution time| L min 3min | 2min | 1mn near the values obtained by [12] with dynamic analysis,

while the execution time in our case is only 1-2 minutes.
From all test cases, we can compute the average valuesAtso, the user is not required to know execution scenarios,
precision and recall, which are 0.35 respectively 0.82. he just provides the code to be analyzed without any other
We consider that the recall is the relevant metric for thiatervention, even as jars from the binary distribution.isTh
evaluation of the tool. The precision metrics is not so rafev makes our tool really usable in practice. We consider that
in this case since it considers true positives only classea f our positive result is mainly due to our recommendation
a fixed reference set which has an average size of 10 classesdel, which takes into account all possible types of static

dependencies with appropriate weights, while Zaidman us€g L. Page, S. Brin, R. Motwani, and T. Winograd, “The pageraitation

coupling metrics that are built from method calls onIy. We ranking: Bringing order to the web." Stanford InfoLab, Teatal Report
| . in th k of [12] th . d L. 1999-66, November 1999, previous number = SIDL-WP-1999-0120.
also appreciate in the work of [12] the extensive deschiptio opjine]. Available: http:/filpubs.stanford.edu:808a2/

of their result sets in case of Ant and JMeter, which allowedB] N. Ma, J. Guan, and Y. Zhao, “Bringing pagerank to the tizita

us to compare with our result sets for these two systems. analysis, Information Processing & Management, vol. 44, no. 2, pp. 800
. . — 810, 2008, evaluating Exploratory Search Systems Digiitalies
Steidl et al describe another approach that startsS from iy the Context of Users Broader Activities.

static analysis in [16]. The importance of classes is givei¥] L. Zhang, K. Zhang, and C. Li, “A topical pagerank basegigithm for

i iy i recommender systems,” Proceedings of the 31st Annual International
by their centrality index computed on the the dependency ACM SIGIR Conference on Research and Development in Informetion

graph. They found that using the Markov centrality leads t0 Reyrieval, ser. SIGIR '08. New York, NY, USA: ACM, 2008, pp. 713~
the best results, reporting a precision between 60% and 80%, 714.

; ; ; i i«i [0] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexicaitality
but only in the top 10 recommendation set, while this preasi as salience in text summarizatiord” Artif. Intell. Res.(JAIR), vol. 22,

drops dramatically in the top 50 set. Their experiments were o 1, pp. 457-479, 2004.
performed on a set of 4 systems. From the data presentdél, R. Mihalcea and P. Tarau, “Textrank: Bringing order irtexts,” in

the reference solutions were the reunions of different gxpe Proceedings of EMNLP 2004, D. Lin and D. Wu, Eds. = Barcelona,
L. . . . Spain: Association for Computational Linguistics, July 200p. 404—
opinion instead of intersection of such. Theses largerlimese 411,

solutions may have favored the count of hits in the top 10[7] B. Neate, W. Irwin, and N. Churcher, “Coderank: a new fanuif soft-

as opposed to the smaller and fixed reference solutions used "A"S:;—’ z’?)gté'csb Tgo;t;vage?g”g'”ee””g Conference, 2006. Australian,
in our experiments. From the results presented, we globallg] k. inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusto,
appreciate the retrieval power of this technique is similih “Ranking significance of software components based on ustiaes,”
ours. Software Engineering, |EEE Transactions on, vol. 31, no. 3, pp. 213—
. . . . 225, March 2005.
A different approach, based on machine learning, for idene; |. sora, “Unified modeling of static relationships betmeprogram ele-

tifying the important classes of a system with the goal of ments,” inEvaluation of Novel Approaches to Software Engineering, ser.

; ; ; ; Communications in Computer and Information Science, L. Maelasz
condensing reverse engineered class diagrams is presentedand J. Filipe, Eds. _Springer Berlin Heidelberg, 2013, vl 4pp.

in [15] and [18]. Available forward design diagrams are 9s5-1009.
used to learn and then to validate the quality of a set 0] L. Briand, J. Daly, and J. Wust, “A unified framework for uing

P : F : measurement in object-oriented systen&aftware Engineering, |EEE
prediction algorithms. In [18], design metrics and network Transactions on, vol. 25, no. 1, pp. 91-121, Jan 1999,

metrics are independently computed and used as attribyte$ |. Sora, “Finding the right needles in hay - helping gram compre-

by the learning algorithms. In our approach, we combine the hension of large software systems, Rnoceedings of 10th International
pagerank network metric and the design metrics, by comgutin g&gc‘;ggf’m”e‘“m of Novel Approaches to Software Engineering
pagerank on the weighted graph resulting from dependengy A. zaidman and S. Demeyer, “Automatic identification of keipsses
based design metrics. in a software system using webmining techniquésiirnal of Software
Maintenance and Evolution: Research and Practice, vol. 20, no. 6, pp.

387-417, 2008.

V. CONCLUSIONS [13] Y.-G. Guehéneuc, “A reverse engineering tool for precise class di-
)) o agrams,” in Proceedings of the 2004 Conference of the Centre for
In this paper, we propose a method for identifying the key Advanced Sudies on Collaborative Research, ser. CASCON '04. IBM

classes of a software system by modeling the system as a grﬁgr E’es";' fnooééesiezsﬁéethers and D. Poshyvanyk, “Reatlocation

built by static anaIySiS of program dependenCieS and amlyi in source code: a taxonomy and survelprnal of Software: Evolution
the PageRank algorithm for ranking its nodes. and Process, vol. 25, no. 1, pp. 53-95, 2013.

The key for the effectiveness of our approach is how tH&] M. H. Osman, M. R. V. Chaudron, and P. v. d. Putten, "An gsil
of machine learning algorithms for condensing reverse eegateclass

graph is built: it takes into acc_ount all types_ of static depe ~ diagrams,” inProceedings of the 2013 IEEE International Conference
dencies between classes, weighted according to the eelativ on Software Maintenance, ser. ICSM '13. Washington, DC, USA: IEEE

importance given by the dependency type and number [Eé] Computer Society, 2013, pp. 140-149.

L. D. Steidl, B. Hummel, and E. Juergens, “Using network wsialfor rec-
occurrences. Also, it is important to have edges for bo ommendation of central software classes,"1Bth Working Conference

forward and backward recommendations. We have empirically on Reverse Engineering (WCRE), Oct 2012, pp. 93-102. _

determined and validated the values for these parameters.[17] A- Zaidman, T. Calders, S. Demeyer, and J. Paredaens, lyigp
. webmining techniques to execution traces to support the ranog

The experiments done on real systems show good results, comprehension process,” iNinth European Conference on Software

proving the practical effectiveness of our tool, which githe Maintenance and Reengineering, CSMR 2005., March 2005, pp. 134-

user a good start for program comprehension, providing hi[%] F. Thung, D. Lo, M. H. Osman, and M. R. V. Chaudron, “Corslag

easy and quickly with a trustworthy and short recommenda-" class diagrams by analyzing design and network metrics using

tion set inc|uding the key classes which form the executive optimistic classification,” inProceedings of the 22Nd International
Conference on Program Comprehension, ser. ICPC 2014. New

summary of the system. York, NY, USA: ACM, 2014, pp. 110-121. [Online]. Available:

http://doi.acm.org/10.1145/2597008.2597157

REFERENCES [19] A. Zaidman, B. Du Bois, and S. Demeyer, “How webmining and

coupling metrics improve early program comprehension,Pinogram

[1] A. von Mayrhauser and A. Vans, “Program comprehensioningur Comprehension, 2006. ICPC 2006. 14th |EEE International Conference

software maintenance and evolutioGdmputer, vol. 28, no. 8, pp. 44— on, 2006, pp. 74-78.
55, Aug 1995.

