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Abstract—In order to help software engineers deal with the

increasing size and complexity of software systems, current

research is directed toward developing more intelligent tools such

as recommendation systems for software engineering.

In this paper we propose a tool to help software engineers

in tasks related to early stages of program comprehension, by

finding the most important classes of a software system.

Our approach of identifying the most important classes of

a software project is based on ranking them by using fuzzy

rules that have in their premises attributes of the classes. These

attributes are the size of the class, the weighted incoming and

outgoing dependencies, and the PageRank value of the class in

the graph created from class dependencies. Experiments done on

a set of well-known open source real-life systems produce good

results for identifying the key classes of software systems.

I. INTRODUCTION

Software engineers have to deal in all phases of the software

process with problems induced by the increasing size and

complexity of software systems. Tools like integrated develop-

ment environments (IDEs), modeling tools, collaborative and

versioning tools are since a long time indispensable in their

work. Current research is directed toward developing more

intelligent tools such as recommendation systems for software

engineering. These are tools that help software engineers

master the large amount of code, models, documentation etc.

that they must navigate and that assist them with a wide range

of their activities, from reusing code to writing effective bug

reports [1].

Program comprehension [2] is the activity of understanding

how a software system or a part of it works. It is an important

software engineering activity, which is necessary to facilitate

reuse, maintenance, reengineering or extension of existing

software systems. In the case of large software systems,

program comprehension has to deal with the huge amount of

code that implements them. When starting with the study of

an unknown system, software engineers are overwhelmed by

the amount of information, which makes it difcult and time

consuming to filter out the important elements from a lot of

details.

In this paper we propose a recommendation tool to help

software engineers in tasks related to early stages of program

comprehension, by finding the most important classes of a

software system. It can be used either as a stand-alone tool, or

as a plug-in in IDEs where it can point out to the developer the

most important classes in legacy source code, or in software

reverse engineering and visualization tools for pruning class

diagrams by filtering unimportant classes.

Our approach of identifying the most important classes of

a software project is based on ranking them by using fuzzy

rules that have in their premises attributes of the classes.

In Section II we define the basic principles used for deter-

mining the importance of a class inside a software system and

we present the global architecture of our tool. In Section III

we describe how we extract the values of all class attributes

used in the process of class ranking. Section IV presents how

the raw values of attributes are preprocessed and transformed

into fuzzy linguistic variables and defines the fuzzy rules

for ranking classes according to their importance. Section V

presents experimental results of applying our approach to a

set of relevant open-source projects. Section VI discusses our

results by comparing with related work. Section VII draws the

conclusions of this paper.

II. OVERVIEW OF OUR APPROACH

A. Fundamental assumptions about the importance of classes

We consider that the importance of a class is given by the

contribution it makes to the overall system: if a class is big

and complex and has many interactions with other classes, it

is a good candidate of being an important class of the system.

Also, previous works in this field introduced the idea that

the importance of a class is also given by the importance of the

classes it interacts with. To quantify this, the software system

is modeled as a graph having the classes as nodes and their

interactions as edges and network centrality metrics such as

PageRank [3] are used.

In this work, we combine these two views, taking into

account in the ranking process several class attributes, one

of these attributes being the PageRank values of classes.

B. Architectural view of the class ranking tool

Figure 1 presents the global architecture of our tool.

The tool takes as input the code of the system to be

analyzed. The raw values of the class attributes are extracted

by static analysis of the source code with the help of the

model extractors of the ART tool suite [4]. These raw values

are normalized and scaled by a preprocessor. A Fuzzy Logic

Controller (FLC) establishes the degree of importance of

every class and is used to rank the classes according to

their importance. The FLC’s rules use the values of a class’s
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Fig. 1. Architecture and usage of the class ranking tool.

attributes to decide its suitability to belong in the set of key

classes. A threshold is set for returning the top ranked classes

which are the recommended set of key classes.

III. EXTRACTING CLASS ATTRIBUTES NEEDED AS INPUTS

FOR RANKING

The class attributes that are used as inputs are:

• Size: this is given by the number of methods of the class;

• WID (Weight of Incoming Dependencies)

• WOD (Weight of Outgoing Dependencies)

• PR (PageRank value of the class)

The weighting of dependencies and computation of Page-

Rank values are briefly described in following subsections.

A. Weighting static dependencies between classes

Static dependencies in object oriented languages are pro-

duced by various situations: inheritance, realization, aggrega-

tion, field access, method call, parameter type, return type,

local variable, type cast. A class A can depend on a class B

by several situations of dependencies at the same time: for

example, the class A can have members of type B, but in the

same time it can have a method with parameters of type B

and overall it can call several different methods of B.

The dependency relationship from a class A to a class

B is characterized by a global dependency strength, which

takes into account both the number and the kinds of de-

pendency situations between the two classes. We compute

the global dependency strength using a summative approach

based on weights which reflect the ordering of dependency

kinds according to their relative importance. Establishing these

weights (the relative importance hierarchy of static dependen-

cies kinds) is a subject of empirical estimation [5]. In this

work, we use the order of relative importance for the different

dependency kinds defined in [6].

The Weight of Incoming Dependencies (WID) for a class

B is computed as the sum of the dependency strengths of all

dependency relationships from a class A to B, for all classes

A that depend on B.

The Weight of Outgoing Dependencies (WOD) for a class

A is computed as the sum of the dependency strengths of all

dependency relationships from A to a class B, for all classes

B that class A depends upon.

B. Computation of PageRank values for Classes

PageRank [3] is a graph-based ranking algorithm which is

wellknown due to its major contribution to the Web search

technology, by providing a Web page ranking mechanism.

The basic idea of the algorithm is that of voting or recom-

mendation. When one node links to another one, it is consid-

ered that it gives a recommendation for that other node. Not all

recommendations are equally valuable: the importance of the

node giving the recommendation determines how important

the recommendation itself is. It results that the score associated

with a node, reflecting its importance, is given by both the

recommendations that it receives and the scores of the nodes

giving these recommendations.



In our previous work [7], [8] on using PageRank for

identifying the key classes, the software system is modeled as

a graph having as nodes classes or interfaces. In this model,

the edges correspond to recommendations that derive from

the program dependencies. If A depends on B, this means

both that A gives a recommendation to B (called forward

recommendation) but also that B gives a recommendation to

A (called back recommendation). The weight of the forward

recommendation from A to B is given by the dependency

strength of the dependency relationship from A to B. The

weight of the back recommendation from B to A is a fraction

F=1/2 of the weight of the forward recommendation from A to

B, as it has been established in [8], [7]. In this work, we use

the PageRank values computed in this way as PR attributes

for the classes of the system.

IV. FUZZY RULES FOR COMPUTING THE IMPORTANCE OF A

CLASS

A. Linguistic variables

The class attributes that can be used as inputs are: Size,

WID (Weight of Incoming dependencies), WOD (Weight of

Outgoing Dependencies) and PR (PageRank value of class

in graph of static class dependencies). Their raw values are

obtained as presented in the previous section.

The range of the values of attributes depends on the size and

type of the analyzed system, thus it is not possible to define in

an absolute way, for example, when the size of a class is large:

this will depend on the number of classes in the system and

the average size of the classes in that system. A normalization

of the values is needed in order to define the domain of the

linguistic variable representing the class attribute. This has

to take into account that in each system it is possible that a

few classes have very extreme values. The range of values

is thus limited to an area of double the standard deviation

around the average value, which is considered the maximum

value. Values that fall outside this area are assimilated with

the maximum value (and they will correspond with very large

in fuzzy terms). The values are then normalized and scaled to

interval [0..100].

Each one of the four class attributes corresponds to a

linguistic variable that is described as set of fuzzy terms. The

terms have to be enumerated, for each term providing its name

and the shape of its membership function. The implementation

of the currently used FLC requires that the terms are of

trapezoidal shape. The trapezoidal fuzzy sets are represented

as quadruplets (a, b, c, d), where 0 ≤ a ≤ b ≤ c ≤ d are the

x-coordinates of the trapeze points.

Choosing the number of fuzzy terms for each linguistic

variable and the coordinates values of each term has been done

by taking into account the importance of the corresponding

class attribute in the decision process and the sensitivity

of the decision to variations of the attribute. Taking these

considerations into account, and after several rounds of tuning

experiments, we defined the following terms of the linguistic

variables:

Size={S, M, L}, where: S=(0, 0, 10, 40), M=(10, 40, 70,

90), L=(70, 95, 100, 100).

WID={VS, S, L, VL }, where: VS=(0, 0, 5, 10), S=(5, 10,

40, 60) L=(40, 60, 85, 98), VL= (85, 98, 100, 100).

WOD={VS, S, L, VL }, where: VS=(0, 0, 5, 10), S=(5, 10,

40, 60), L= (40, 60, 85, 98), VL= (85, 98, 100, 100).

PR={NL, L}, where: NL=(0, 0, 70, 90), L=(70, 90, 100,

100).

The most important attributes are WID and WOD, thus

their linguistic variables have four terms, corresponding to

very small (VS), small (S), large (L) and very large (VL).

The shapes of VS and VL are narrower because, firstly, only

extreme values must belong to these categories, and secondly,

a number of extreme values of the raw attributes, that exceeded

the average with more than the standard deviation were limited

to the maximum value of 100. The PR attribute has been given

only two terms, not large (NL) and large (L) because only

large values of this attribute impact on the decision in the

conclusion.

B. Fuzzy rules

We define fuzzy rules that have as inputs the attributes of

a class and as conclusion the decision to select the class in

the set of important classes. The linguistic variable Decision

is defined with following terms corresponding to strong reject,

weak reject, weak select, strong select: Decision={SR, WR,

WS, SS}. The terms SR, WR, WS and SS are singletons

with the coordinates evenly distributed over the domain of

the output.

We experiment with two settings: first we use only three

inputs given by the variables Size, WID, and WOD, and then

add also the variable PR to the inputs.

1) Fuzzy rules with 3 inputs: The decision is taken using

as inputs only the variables Size, WID, and WOD. We have

48 rules. An important class is generally characterized by big

values of its attributes. However, not all attributes are equally

important: a class with a big size but without interactions

with other classes, shown by small weights of dependencies,

will be probably a not important class. Also, it is possible

that a small class with very strong interactions with other

classes, shown by very large weights of the dependencies, is

important. Regarding the interactions with other classes, it is a

little bit more important to have many incoming dependencies

than outgoing dependencies. These empirical observations are

reflected in the set of rules. Since the limited space does not

allow to list all the 48 fuzzy rules that result from all possible

combinations of the inputs with 3, 4 and 4 terms, we illustrate

with one rule given as example:

if Size=L and WID=S and WOD=L then Decision=WS

2) Fuzzy rules with 4 inputs: The decision is taken using

as inputs the variables Size, WID, WOD and PR. We have

96 rules. The rules described in the subsection above do not

distinguish the case when a somewhat not so large class,

with not so large dependencies, is still important because its

interactions are with very important classes. In order to correct

this, we add the PageRank value of the class as an input to



the rules. The rules described in the previous subsection are

changed such that when PR is large then the value of the

decision in conclusion is ”incremented” with one term (e.g.,

if it was SR then it will be WR, etc). When PR is not large,

then the decision is the same as in the case with three inputs.

The rule given above as an example for FLC with 3 inputs is

replaced by the following 2 rules in the case of FLC with 4

inputs:

if Size=L and WID=S and WOD=L and PR=L then

Decision=SS

if Size=L and WID=S and WOD=L and PR=NL then

Decision=WS

V. EXPERIMENTAL VALIDATION

A. Experimental setup and approach

We have chosen as case studies a set of relevant open source

systems where design documentation is available such that a

set of key classes can be given as a reference solution to be

compared with the solutions produced by our recommender

tool.

We run 3 methods of ranking:

Method 1: Use FLC with 3 inputs (Size, WID, WOD).

Method 2: Use PageRank values only, as in our previous

approach described in [7] and [8].

Method 3: Use FLC with 4 inputs (Size, WID, WOD, PR).

B. Detailed analysis of experiments done on first case study

A first case study is JHotDraw1, an open source cus-

tomizable graphic framework for structured drawing ed-

itors. This system is also a much used benchmark for

studies of empirical software engineering, being a well-

known member of the Qualitas Corpus - a curated col-

lection of software systems intended to be used for em-

pirical studies on software code. We analyze here release

6.0b.1, its core of 398 classes. We consider that the set

of key classes of JHotDraw is formed by these pointed

out by the developers, completed with some classes added

in the study of [9]: Figure, Drawing, DrawingView,

DrawApplication, Tool, Handle, DrawingEditor,

StandardDrawingView, CompositeFigure. This set

of 9 classes is further considered the reference solution.

By applying the 3 ranking methods we obtain different

ranking hierarchies. The classes occupying the top 30 positions

for each method are illustrated in Figure 2. The classes from

the reference solution set are highlighted.

Since there is no ranking specified across the classes in the

reference set (and in most cases it is also not reasonable nor

meaningful to expect such a ranking), we will record only the

facts that the tool manages to find a class from the reference

solution set on a certain top position. Ideally, if the reference

solution set has K classes, the tool should rank them on the

top K positions. The results in Figure 2 can be represented in

a simplified way as in Figure 3. If we compare the 3 methods

from the point of view of their results, we look at the number

1http://www.jhotdraw.org/

of hits in the Top 10, in the Top 20 and respectively Top

30. In the Top 10, method 1 finds 6 classes, while method

2 and method 3 find 5 classes. In the Top 20, method 3

finds all the 9 classes of the reference solution set, while

method 1 and method 2 find only 8 classes. For this case

study, the experiment shows that method 3 brings the best

result, followed by method 1 and then by method 2.

C. Experimental results on other case studies

In addition to the first case study discussed in detail in

previous subsection, we chose as case studies other four open

source real life systems, which also have their design docu-

mentation available: Wro4J 2 (release 1.6.3), jEdit3 (release

5.1.0), ArgoUML4 (release 0.9.5) and JMeter5 (version 2.0.1).

Table I summarizes the results obtained by applying the 3

ranking methods to the full set of case studies represented by

all the five open source systems.

The size of the analyzed systems is measured in number

of classes and ranges from 280 classes to 1266 classes.

The reference solution (sets of key classes known from the

design documentation of the systems) always contains about

10 classes (the numbers vary between 7 and 13).

We observe that method 3 (using FLC with 4 inputs, one

of the inputs being PR) gives the best results for three of

the case studies: JHotdraw, Wro4J and JEdit. For two of the

case studies, JMeter and ArgoUML method 3 produces results

similar to method 2. We can conclude that method 3 is globally

better than method 2 (using PageRank values only). Although

method 1 (using FLC with 3 inputs) happens to behave well on

a few cases, overall it is outranked by the other two methods.

The conclusion of our experiments is that the PageRank

attribute of a class is an essential attribute for obtaining a

good ranking solution, but taking into account additional class

attributes can further improve the solution. The runtime for the

complete end-to-end processing (from loading the code until

obtaining the recommend set of important classes) is, even for

large systems, not longer than 2-3 minutes.

VI. DISCUSSION AND RELATED WORK

Different related works investigate methods for finding the

most important classes from a software system, and their par-

ticularities concern following aspects: the primary information

that is extracted and analyzed, the criteria used to define the

importance of a class and the techniques used to identify the

key classes.

The primary information is extracted in most cases by using

static analysis of the code [10], [11], while a few approaches

are using dynamic analysis [12], [13].

The criteria used to define the importance of a class are

in most cases associating importance with interaction. The

interactions of a class are measured either by design metrics

such as coupling or by network metrics of the topology of the

2https://code.google.com/p/wro4j/
3http://jedit.org/
4http://argouml.tigris.org
5http://jmeter.apache.org/
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1  Figure  Figure  Figure 

2  DrawingView  DrawingView  DrawingView 

3  DrawingEditor  FigureEnumeration  FigureEnumeration 

4  StorableInput  DrawingEditor  DrawingEditor 

5  Drawing  Undoable  Undoable 

6  StorableOutput  DrawApplication  DrawApplication 

7  ConnectionFigure  StorableInput  StorableInput 

8  Tool  Drawing  Drawing 

9  Handle  StorableOutput  StorableOutput 

10  UndoableAdapter  CollectionsFactory  CollectionsFactory 

11  RelativeLocator  StandardDrawingView  StandardDrawingView 

12  Undoable  ConnectionFigure  ConnectionFigure 

13  AbstractCommand  AbstractCommand  AbstractCommand 

14  Connector  DrawApplet  DrawApplet 

15  TextFigure  CompositeFigure  Tool 

16  FigureEnumerator  Command  Handle 

17  FigureEnumeration  AbstractTool  UndoableAdapter 

18  DrawApplication  Tool  RelativeLocator 

19  CollectionsFactory  Connector  CompositeFigure 

20  StandardDrawingView  TextFigure  AbstractTool 

21  DrawApplet  HTMLTextAreaFigure  Connector 

22  CompositeFigure  Locator  TextFigure 

23  AbstractTool  PolyLineFigure  FigureEnumerator 

24  HTMLTextAreaFigure  FigureChangeListener  HTMLTextAreaFigure 

25  Locator  ConnectionTool  Locator 

26  PolyLineFigure  Handle  PolyLineFigure 

27  ConnectionTool  FigureAttributeConstant  ConnectionTool 

28  HandleEnumeration  HandleEnumeration  HandleEnumeration 

29  Storable  UndoableAdapter  Storable 

30  DecoratorFigure  Storable  DecoratorFigure 

 

 

 

Fig. 2. Top 30 ranked classes of JHotDraw.
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Fig. 3. Experiments with retrieving key classes of JHotDraw.

class interaction graph. Other approaches use information from

the versioning system [14], considering that classes that are

frequently changed are important. Further, textual information

such as class names [15] can be used as a source of additional

information for the importance of a class.

The techniques for identifying the key classes are mostly

based on network analysis [11], [16], [17], and machine

learning [10], [18].

It is difficult to compare the results of all these approaches,

because they are using different software systems as case

studies and not all publications describe the raw data of their

experiments, such as the rankings that they obtained. Where

such data was available we compared the results with our

results for the same systems. In [8] and [7] we have compared

in detail the results of our previous approach based only on

PageRank (referred in this work as method 2) with the results

of other works and showed that it produced solutions of similar

quality as the state of the art, with significantly better runtime

and less effort for the user.

In this work we have shown that by using fuzzy rules



TABLE I
EXPERIMENTAL RESULTS SUMMARY

System JHotDraw Wro4J jEdit ArgoUML JMeter

System size 398 335 1266 852 280

Reference set 9 12 7 12 13

Hits in Top 10 Method 1 6 5 5 3 2
Method 2 5 6 4 6 4
Method 3 5 6 4 6 4

Hits in Top 20 Method 1 8 10 5 5 5
Method 2 8 9 6 8 7
Method 3 9 10 6 7 7

Hits in Top 30 Method 1 9 12 6 7 6
Method 2 9 11 6 9 8
Method 3 9 12 6 8 8

Hits in Top 50 Method 1 9 12 7 8 8
Method 2 9 12 6 10 8
Method 3 9 12 7 10 8

with several inputs, including PageRank (corresponding with

method 3 in this work), we can further improve the quality

of the solution, doing better than our approach based on

PageRank only, without increasing the overhead in runtime

or user effort. Future work will try to improve this result

by taking into account also other characteristics such as the

system size and kind, and investigate if we can identify

categories of systems where there is a specific set of rules

that works best for each category.

VII. CONCLUSIONS

In this paper we propose a recommender tool to assist

software engineers in tasks related to early stages of program

comprehension, by finding the key classes of a software

system. The experiments show that using fuzzy rules having

as inputs class attributes such as size, weighted incoming

dependencies, weighted outgoing dependencies and PageRank

value produces the best results.
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