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Self-customizable systems must adapt themselves to evolving user requirements or to their
changing environment. One way to address this problem is through automatic component
composition, systematically (re-)building systems according to the current requirements by
composing reusable components. Our work addresses requirements-driven composition of
multi-flow architectures.

This article presents the central element of our automated runtime customization approach,
the concept of composable components: the internal configuration of a composable component
is not fixed, but is variable in the limits of its structural constraints. In this article, we
introduce the mechanism of structural constraints as a way of managing the variability of
customizable systems. Composition is performed in a top–down stepwise refinement manner,
while recursively composing the internal structures of the composable components according
to external requirements over the invariant structural constraints.

The final section of the article presents our cases of practical validation. Copyright  2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many of today’s computer systems need to be able to
adapt themselves to changing requirements of their
environment. The mechanisms of this adaptation
should be transparent for their users, and often it is

∗ Correspondence to: Ioana Şora, Department of Computer
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desired to occur with as few user interventions as
possible. It is the case of self-customizable systems.

A self-customizable system operates in an envi-
ronment that imposes changing requirements for
the properties of the system. Most often the evo-
lution of the environment cannot be predicted at
the system design time, so the complete variety
of environmental requirements may be unknown
at design time. These changing requirements for
system properties must be solved dynamically at
start-up or runtime when the system must cus-
tomize its properties or behavior accordingly. Two
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application domains that are in our view and where
such self-customizable systems are needed are as
follows:

1. A ‘generic terminal’ application. Such an appli-
cation is a terminal independent service plat-
form, supporting advanced telecom and secure
internet value-added services (Georganopoulos
et al. 2004). An end user interacts with this
terminal that hides the particularities of the
terminal and of the communication link.
Realizing the generic terminal implies the
specification and development of a generic
architecture for accessing services, supporting
dynamic communication protocols. We investi-
gated these issues as part of the PEPiTA project
(http://pepita.objectweb.org).

• In order to provide uniform access to all the
services, the generic terminal must intelli-
gently customize the corresponding protocol
stack. This activity must be transparent for
the user and hence the decisions must be
taken automatically by the generic terminal.

• Changes in the user environment (user
mobility, notifying increased data loss) dur-
ing the deployment of a service can later
require dynamic protocol stack updates that
also have to be initiated automatically.

• In both cases, the customization of the proto-
col stack addresses both the composition of
a stack from different protocol layers as also
fine-tuning of individual protocol layers.

2. An adaptive virtual instrumentation environ-
ment for defining and executing tasks of mea-
suring, monitoring and control.
• Such a virtual instrumentation environ-

ment (Groza et al. 1998) consists of several
virtual instruments with their connections
defining a data-flow processing circuit. An
adaptive environment has to configure itself
according to the current monitoring task that
has to be carried out, starting from a general
enumeration of the desired requirements,
without detailed user participation in the
complete building of the measuring circuit.

• At a certain moment during the runtime
of the monitoring application, new exter-
nal conditions could, for example, induce
perturbations of the acquired input signals,
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requesting a dynamic change in the measur-
ing circuit by adding special filters to cope
with this situation.

Our research uses automatic component composition
as a means of realizing self-customizable systems. A
system is built from components and its properties
and behavior are determined by its compositional
structure. The compositional structure is given
by the set of participating components and the
connectors between these. The self-customizable
system will adapt to the current requirements by
adjusting its compositional structure. In the context
of automatic component composition, the focus
is on the decisional question: what components
should be deployed and what connections should
be between them? This composition decision is a
machine decision implemented as a computerized
search.

The research issue here is to define an optimal
amount of information and initial restrictions that needs
to be available in order to enable correct composition
decisions. The challenge comes from the need to
support unanticipated customization given by the
following two facts:

• The variety of environmental requirements that
could occur at runtime may be unknown
at design time since the evolution of the
environment cannot be predicted at the system
design time.

• The variety of component types that will become
available later during the systems lifetime is not
known at the system design time.

The evolvable requirements for the system prop-
erties and the development of new component
types are the sources of unanticipated situations
that must be faced by self-customizable systems. A
component-oriented system that adapts to the cur-
rent requirements by adjusting its compositional
structure must be open to discover and integrate
new component types and to create new structural
configurations. Thus, the customization solutions
cannot be limited to the use of a set of known-in-
advance components or configurations. Solutions
must be open to discover and integrate new compo-
nents and configurations, in response to new types
of requests or to improve existing solutions when
new components become available. The problem
that arises here is to balance between the desired
support for unanticipated customizations and the
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need for constraints that guarantee a correct com-
position of a system with required properties.

In response to the aforementioned issues, we
propose a compositional model (Şora 2004) for self-
customizable systems that copes with the need for
unanticipated customizations by expressing and
responding to new requirements and having the
ability to integrate new component types in not
beforehand fixed or known configurations. The
central element of our model is the concept of
hierarchically composable components: the internal
configuration of a composable component is not
fixed, but is variable in the limits of its structural
constraints. We present in this article, our mech-
anism of structural constraints as a flexible way of
managing the variability of runtime customizable
systems. A system is customized at runtime start-up
by automatically composing its structure according
to the current environmental requirements and in
the limits of its structural constraints. Characteristic
for our composition approach is that it is domain-
independent, handling composition decisions at an
architectural level.

The article is organized as follows: the next section
presents the basic concepts that serve as starting
assumptions for our compositional model, Section 3
introduces the concept of composable components
and describes our mechanism of structural con-
straints, Section 4 presents practical validation of
our approach, Section 5 refers to related work, and
the final section summarizes the conclusions.

2. BASIC CONCEPTS OF THE
ARCHITECTURAL COMPOSITIONAL
MODEL

This section resumes our perspective on the basic
concepts of component-based software engineering,
which are used in our work.

A software system is viewed as a set of compo-
nents that are connected by connectors (Allen and
Garlan 1997). A software component is an imple-
mentation of some functionality, available under
the condition of a certain contract, independently
deployable and subject to composition, as defined
in mainstream component bibliography (Szypersky
1997, Bachman et al. 2000).

A component in our approach is also an architec-
tural abstraction. Our insight is that architectural
style–specific compositional models are needed.
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This permits generic solutions that are applica-
ble to several application problems or domains
that share this architectural style. The restriction
is to build a system by assuming a certain defined
architectural style. Treating component composi-
tion in the context of the software architecture is a
largely spread approach (Hammer 2002, Wile 2003,
Inverardi and Tivoli 2002, Kloukinas and Issarny
2000), as it makes the problem manageable and
eliminates the dangers of architectural mismatch.
Also, in our approach, compositional decisions are
made at the architectural level, with knowledge of
the architectural style, but ignoring technological
details of the underlying component model, as long
as this provides the infrastructural support needed
for runtime assembly of components.

Each component has a set of ports as logical
points of interaction with its environment. We
distinguish between input ports and output ports,
but, further, we consider that every input port is
plug-compatible with every output port. The logic
of a composition is enforced through the checking
of component contracts expressed by means of
properties, as will be discussed later in this article.

Our work addresses systems that share the multi-
flow architectural style. A multi-flow system is a vari-
ant of the classical pipes-and-filters style (Garlan
2001), with an exclusive emphasis on the pipes (the
flows). A multi-flow system is defined by a num-
ber of flows on which components are plugged one
after the other. The concept of flow corresponds to
a data-flow relationship between ports. A flow has
parts where it is internal to a component and parts
where it connects ports of different components.
Types and positions of components on these flows
play a secondary role in defining the system archi-
tecture. As we will present later in Section 3, such a
system architecture can be fully described in terms
of flows and properties.

Components may be simple or composed. A
simple component is the basic unit of composition
that is responsible for certain behavior, and has
one input port and one output port. Composed
components appear as a grouping mechanism and
may have several input and output ports. The
internal structure of a composed component also
has to comply to the multi-flow style.

Components are described through their proper-
ties, seen as facts known about them – in a way
similar to Shaw’s credentials (Shaw 1996). In our
approach, a property is expressed through a name
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(a label) from a vocabulary set and may have refin-
ing subproperties or refining attributes with values.
For example, a component that does data compres-
sion will be described through a property named
compression. An attribute of this property can
be the average compression performance indica-
tor, described as the attribute compression-
factor, which takes numeric values. Refining
subproperties may reflect specific internal imple-
mentations of the compression functionality, for
example, the particular compression algorithm that
was deployed inside the COMPRESSER. If an LZ
algorithm is used and this should be visible to
the outside, property compression comes with
subproperty LZ.

In our approach, component contracts are
expressed as sets of provided and required proper-
ties. Each component as a whole provides a set of
properties (its provides clause) and may have several
requires clauses. In the case of simple components,
provides clauses are associated with the component
as a whole. In the case of composed components,
provides clauses can also be associated with ports,
reflecting from the internal structure of the compo-
nent. A provides clause contains a set of properties,
possibly with refining subproperties or attributes.
A requires clause contains a set of properties, pos-
sibly with refining subproperties and attributes.
Required properties may appear as positive or nega-
tive assertions (a certain property must be present or
a property can not be present). The requires clauses
may also impose ordering restrictions between the
required properties. The requires clauses are always
associated to particular ports of the component. This
is not a limitation, but naturally emerges from the
fact that a component requires a certain interaction
from a specific data flow. Requirements may be
associated with both types of ports, input or output
ports. A requirement associated with an input port
reflects the expectations that the component has
regarding its incoming data. A requirement asso-
ciated with an output port usually states a global
system correctness requirement that comes from an
incomplete functionality provided by the current
component.

Figure 1 illustrates the concepts presented above
and introduces the graphical notations used in this
article to describe components on a simple exam-
ple. Component descriptions are done formally with

Compression

ReqPairTo(compression):
decompression

Decompression

ReqPairTo(decompression):
compression

COMPRESSER

DECOMPRESSER

Figure 1. Example: defining component contracts th-
rough properties
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help of CCDL (Composable Components Descrip-
tion Language) (Şora et al. 2003), but, for illustra-
tions, we prefer an informal graphical notation.

The example presents two simple components,
named COMPRESSER and DECOMPRESSER rep-
resented as boxes. They each have one input port
and one output port. Input and output ports are
represented in figures through white and black rect-
angles respectively. Contractual clauses are asso-
ciated to components and ports through dotted
lines. In this example, the component named COM-
PRESSER provides property compression and
requires property decompression at its output
port. Thecompressionproperty can be achieved
through several different implementations of the
COMPRESSER, using different compression algo-
rithms (LZ, GZIP, etc). The particular compression
algorithm will be seen as a subproperty of the
compression property.

In our model, every input port can be connected to
every output port. The meaningful compositions are
determined by the criteria of correct composition,
based on matched required–provided properties.
The matching is done first at the level of properties’
names and after that at that of attributes and recur-
sively subproperties. A property that is required
without explicit subproperties can be matched by
the corresponding provided property with any sub-
properties.

By default, it is sufficient that a required prop-
erty finds a match in a provided property of a
component that is present somewhere in the exter-
nal flow connected to that port, not necessarily the
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immediate neighbor component. Such properties
are called to be able to propagate. One can spec-
ify immediate requirements, which apply only to
the next component on that flow. Also, the ordering
restrictions that are part of the requires clauses must
be respected. Additional ordering restrictions may
be introduced by required properties that are excep-
tionally defined as explicit pairs to other properties.
In this case, different pairs are not allowed to inter-
sect each other. Subproperties of pair requirements
are also automatically passed to each other.

The example illustrated in Fig. 1 contains a
correct composition, where every required prop-
erty is matched by a provided property. Prop-
erty decompression is required at the out-
put port of COMPRESSER and is provided
by component DECOMPRESSER. Property com-
pression is required at the input port of
DECOMPRESSER and is provided by component
COMPRESSER. The requirements decompres-
sion respectively compression at the ports
of the two components are pair requirements.
Thus, in another composition where also other
pair requirements are involved (i.e. encryption-
decryption), the two pairs cannot intersect each
other (i.e. valid compositions would be compres-
sion – encryption – decryption – decompression or
encryption – compression – decompression –
decryption but not compression – encryption –
decompression – decryption). The fact that the com-
pression is implemented through a particular algo-
rithm will be reflected in a specific subproperty
that will be attached to the global compression
property in the case of this particular implemen-
tation. In the case the COMPRESSER component
implementation deploys the GZIP algorithm, it
provides property compression with subprop-
erty gzip. As a consequence, the requirement
decompression at its output port, declared as
pair of compression, will also get the subprop-
erty gzip. Only a DECOMPRESSER component
implementation that provides decompression
with this subproperty is considered a match. This
COMPRESSER-DECOMPRESSER example will be
elaborated further in Section 3.2.

Components can be hierarchically composed.
A composed component as a whole is always
defined by its own set of provided properties,
which expresses the higher-abstraction-level fea-
tures gained through the composition of the sub-
components. Most often, these properties are not
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computable entities and cannot be mathematically
deduced or calculated from the properties of sub-
components. The vocabulary used to describe the
own-provided properties of a composed component
is distinct from the vocabulary deployed for describ-
ing the provides of its subcomponents. It simply is
a higher-level abstraction that should be defined
by the designer of the composed component. For
example, the COMPRESSER component discussed
above does not necessarily need to be an atomic
component, it may be realized as a composition of
several subcomponents. One of the subcomponents
is an implementation of a compression algorithm,
described as the property AlgoCompr. The fact
that an assembly of property AlgoCompr and the
properties provided by the other subcomponents
leads to the compression property is just an
increase of the abstraction level established by the
designer of the COMPRESSER.

3. COMPOSABLE COMPONENTS

3.1. The Concept of Composable Components

Hierarchical relationships between components are
a well-accepted way of structuring and manag-
ing complexity while providing fine-grained com-
position. For example, the OMG CCM specifica-
tion (OMG 2003) sees component implementations
either as monolithic (compiled) entities or as assem-
blies of other components, providing a recursive
definition. A component implementation always
implements a certain component interface. The
same component interface can have several different
implementations, thus several component assem-
blies can implement the same component interface.
However, an implementation (also assembly) must
be explicitly associated with an interface. The issue
here is how can it be specified as to what kind of
assemblies are acceptable to implement a specific inter-
face? How can new assemblies be automatically
generated for a given interface?

We define a composable component as a first class
entity that has a well-defined own identity, but does
not have a fixed internal structure. The identity
of a composable component is given by its own
provided properties and contractual requirements
(its interface).

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 000–000
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

In order to ensure the preservation of the identity
of composable components, some structural con-
straints must be attached as its invariants. The struc-
tural constraints have the roles of flexible guidelines
for future compositions of the internal structure
and are not a full configuration description. The
structural constraints of a composable component
determine what kind of component assemblies are
acceptable to implement the internal structure of the
component. We argue that component descriptions
need to specify not only the elements of the compo-
nent interface but also the structural constraints for
the internal structure of the component. The struc-
tural constraints describe actually a composition
target, a component assembly to be determined.

This article proposes a method of describing
structural constraints for composable components.
The structural constraints of a composable compo-
nent in our definition are expressed through:

1. the set of fixed internal flows
2. relationships between flows (as continuation or

connection relationships)
3. the properties that must exist on these flows
4. order relationships between properties on

flows.

The structural constraints are a solution that
balances the need to support unanticipated cus-
tomizations of the internal structure of a composable
component and the need for constraints that guar-
antee a correct composition so that it preserves the
properties that determine the identity of the com-
posable component. The insertion of subcompo-
nents is permitted anywhere on the existing flows,
as long as their component descriptions do not con-
tradict existing requirements (structural constraints
of the composed component or requirements of the
already present components on that flow).

The structural constraints comprise the following
two kinds:

• basic structural constraints
• structural context–dependent requirements for

component.

Both kinds of structural constraints are expressed
by means enumerated above and treated without
discriminations. They appear as two different kinds
because of their different origin (that establishes
them). The basic structural constraints may contain
items of all categories 1 to 4, while the structural
context-dependent requirements may contain only
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items of categories 3 to 4. They will be detailed in
paragraphs 3.2.1 and 3.2.2.

A composable component description must con-
tain the external view of the component (ports,
contracts) and the internal view stating the
structural constraints or a structural description.
Paragraph 3.2.3 illustrates the formalism used to
describe structural constraints.

Section 3.3 discusses how component assemblies
can be generated to be compliant with invariant
structural constraints and in response to variable
external customization requirements.

3.2. Structural Constraints

3.2.1. Basic Structural Constraints
The basic structural constraints describe the fixed
internal flows and the minimal properties that must
be assembled on particular flows for the declared
provides of the composed component to emerge
and virtually define a ‘skeleton’ of the composed
component. This ‘skeleton’ is not a rigid structure;
it fixes only the flows and establishes ordering
relationships between properties that must be
present on these flows (as, for example, to constrain
properties x and y to be on flow1, with property
x ‘‘before’’ property y in the direction of the flow,
notation x ≤ y). These constraints must be specified
by the developer of the composed component.

As a simple illustrating example, we develop
throughout this section the case of a compos-
able component COMPRESSER. Such a component
performs data compression by an arbitrary com-
pression algorithm. The structural constraints for
the COMPRESSER component are depicted using
the informal graphical notation in Fig. 2.

The basic structural constraints depicted in the
figure state that the input port is connected to the
output port by an internal flow that must con-
tain the property AlgoCompr. These structural
constraints permit a wide variability in the cus-
tomization, according to external requirements, of
the internal structure of the COMPRESSER. The
only restriction is that a component providing prop-
erty AlgoCompr is present on the internal flow of
the COMPRESSER.

Two of the possible variants of realizing the inter-
nal configuration of a COMPRESSER are shown in
Fig. 3 and Fig. 4.

The first variant (depicted in Fig. 3) deploys
the component HuffmannComp as a provider of

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 000–000
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Compression

ReqPairTo(Compression):
decompression

AlgoCompr

Figure 2. Example: structural constraints for the compos-
able component Compresser
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the AlgoCompr property. As this compression
algorithm uses information about the distribution
of characters occurring in the initial data, the
component HuffmanComp has at its input port
the requirement CharFrecv. This requirement
of component HuffmanComp leads to component
Analyzer being added on the flow above it.

The second variant (depicted in Fig. 4) deploys an
adaptive compression method, described through
property AdaptiveCompression provided by
component AdaptiveComp. This component has
no other own requirements.

In both variants, after establishing the internal
configuration for the COMPRESSER, the generic
property compressionwill get specific subprop-
erties from the components that have been deployed
inside the COMPRESSER. As mentioned in an ear-
lier section, these subproperties will get to the pair
requirement decompression. Thus, if the first
variant has been chosen for theCOMPRESSER, sub-
property Huffmann refines property compres-
sion and its pair requirement decompression.
The composition of a DECOMPRESSER component
will be done, in these circumstances, according to
the basic structural constraints of DECOMPRESSER

Compression(Huffmann)

ReqPairTo(Compression):
decompression

Analyzer

HuffmannComp AlgoCompr, Huffmann

CharFrecv

Req: CharFrecv

Figure 3. Example: variant (1) of the internal structure
for the composable component COMPRESSER

Compression
(AdaptiveCompression)

ReqPairTo(Compression):
decompression

AdaptiveComp AlgoCompr, AdaptiveCompression

Figure 4. Example: variant (2) of the internal structure
for the composable component COMPRESSER
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and the additional requirement Huffmann put at
its input port, following a process of requirements-
driven composition, as described in Section 3.3.

As this simple example shows it, an impor-
tant strength of our approach is that by defining

Copyright  2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 000–000

7



UNCORRECTED P
ROOFS

Research Section I. Şora et al.
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structural constraints in the above-described way,
the customization of composed components is not
limited to filling in a given skeleton with right imple-
mentations. In our example, the internal configura-
tion of the composable COMPRESSER component
is not limited to a fixed structure skeleton: variant
1 deploys two components, while variant 1 deploys
one component, and more different structural con-
figurations are possible. It is possible that new com-
ponents, which can provide further enhancements
or customizations for the composed component, are
discovered. The insertion of these new components
is permitted anywhere on the existing flows, as
long as their component descriptions do not con-
tradict existing requirements (structural constraints
of the composed component or requirements of the
already present components on that flow).

3.2.2. The Structural Context–dependent
Requirements
The structural context–dependent requirements express
requirements related to other components when
deployed here as subcomponents. The basic struc-
tural constraints of a composed component allow
new subcomponents to be added, as long as their
properties are required and are not in contradiction
with the existing constraints. Sometimes, these new
components have properties that interact with other
properties present in the skeleton. The relationships
that must be expressed are in terms of assignment to
flows and ordering relations with other properties.
These interactions cannot be captured in the basic
structural constraints because the developer of the
composed component is not aware of the existence
or possible use of the new subcomponents in its con-
text. These structural context–dependent require-
ments will be added by the developer of these
subcomponents. The presence of these requirements
in the description of the composed component does
not introduce mandatory requirements for having
these properties provided here, but specifies the
terms under which a certain subcomponent may be
deployed here, if considered necessary. Structural
context–dependent requirements do not mean that
a certain property has to be provided in the structure
of the composed component, but if this property is
requested there by external reasons, these structural
context–dependent requirements specify how and
where it is appropriate to place that property.

Structural context–dependent requirements offer
the possibility to update the structural constraints

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

of a composable component. In the case where
new components are defined and implemented,
there might appear situations in which the existing
requirements (own requirements of component and
structural constraints of composed component) are
not enough to exclude inaccurate compositions (are
not able to prevent the new component to be
placed in inappropriate places inside a composable
component). In this case, the provider of the new
component will have to specify a set of structural
context–dependent requirements to be added to the
structural constraints of the composed components
in which this new one could be deployed. Below,
we discuss an example where this situation occurs.

In the case of the COMPRESSER component, an
external requirement could solicit the additional
feature of measuring the compression rate by com-
paring the size of the initial with the compressed
data, corresponding to a CompareSize property.
We assume that the component repository contains
component CS that provides property Compare-
Size, requiring property Size at its input port. A
component S provides property Size. Applying
the external requirement CompareSize over the
basic structural constraints of the COMPRESSER

Compression

ReqPairTo(Compression):
decompression

Size

AlgoCompr, AdaptiveComp

CompareSize

Size

CS

CompareSize

S

Figure 5. Counter example: incorrect variant of internal
structure
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component, a semantic incorrect configuration like
that depicted in Fig. 5 can result.

The own requirements of component CS will
place component S above it on the flow. The issue
here is that only the basic structural constraints
and the own requirements of the involved com-
ponents are not sufficient information in order
to eliminate semantically incorrect compositions.
In consequence, a configuration like that of Fig. 5
could result. In order to eliminate such erroneous
configurations, additional information is needed.
This information will be given by the structural
context–dependent requirements.

In our running example regarding the compos-
able COMPRESSER, the designer of component
CS will have to add to the structural constraints
of COMPRESSER the following context-dependent
requirements, as depicted in Fig. 6. These context-
dependent constraints state that, in case that a
CompareSize property will be present on the
internal flow of COMPRESSER, it must be after
the property AlgoCompr and the property Size
must be before property AlgoCompr. With these
additional constraints, a correct configuration using
CS inside the COMPRESSER is depicted in Fig. 7.

3.2.3. Specification of Structural Constraints
The structural constraints are part of the component
description. A composable component description
must contain the external view of the component
(ports, contracts) and the internal view stating the
structural constraints or a structural description.

Compression

ReqPairTo(Compression):
decompression

AlgoCompr

Size, CompareSize,
Size>AlgoCompr
AlgoCompr>CompareSize

Context-
dependent
structural
requirements

Figure 6. Example: adding context-dependent require-
ments

Compression

ReqPairTo(Compression)
decompression

AlgoCompr, AdaptiveComp

Size

CompareSize

Size

CS

S

Figure 7. Example: variant (3) of the internal structure
for the composable component Compresser
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The external view description of a component
can be seen as an interface description. When
the internal view is given as a full structural
description, this is similar to an architectural
description. Interface Description Languages and
Architectural Description Languages can handle
such specifications.

The issue is that when the internal view consists
of structural constraints, these cannot be expressed
using languages from these two families. Describing
the structure of (hierarchical) component assemblies
in terms of component instances and connections
between their ports is a common feature of ADLs.
The difficulty that arises here is to generally describe
structural constraints that will serve as guidelines
in the generation of component assemblies with
certain assembly properties. In order to fill this gap,
we prototyped CCDL, a description language for
composable components. This language is detailed
in (Şora et al. 2003).

We give here as an example the CCDL description
of the COMPRESSER component with its structural
constraints:

The strength of CCDL resides in its ability to
specify the structural constraints for the component
internals. ThecomponentInternalspart of the
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<component name="COMPRESSER">

<componentExternals>
<provides>
<property name="compression"/>

</provides>

<port name="in"type="in"entrance="true"/>
<port name="out"type="out"entrance="true">
<requires>

<required property name="decompression"
assertion="yes"pairto="compression"/>

</requires>
</port>

</componentExternals>

<componentInternals>
<structuralConstraints>
<basicStructuralConstraints>

<flow name="f"
from="in"to="out"/>

<containedProperty name="AlgoCompr"flowlocation="f"/>
</basicStructuralConstraints>
<contextDependencies/>

</structuralConstraints>
</componentInternals>

</component>
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description is relevant in the context of the cur-
rent section. This part differs essentially from an
architectural description: while an ADL describes
the structure of a component assembly, the struc-
tural constraints specify only flexible guidelines for
possible structures. In the example in discussion,
the structural constraints state that the composable
component COMPRESSER contains one internal
flow from port in to port out and that a property
AlgoCompr must be contained on this flow. Any
component assembly that contains a component-
providing property AlgoCompr will match the
basic structural constraints of the COMPRESSER.

3.3. Requirements-driven Composition

The internal structure of a composable component
component• will be established at runtime throughAQ1
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automatic requirements-driven composition. The
requirements for the composable target result from its
invariant structural constraints and from the current
requirements imposed by the external environment.
For example, the DECOMPRESSER composable
component mentioned in the example from para-
graph 3.2.1 will be composed according the require-
ments resulting from its structural constraints
(which state that it has one internal flow contain-
ing propertyAlgoDecompr) and from the current
requirements imposed by its external environment
(which are the Huffmann property imposed by
the already composed COMPRESSER).

The criterion for a correct composition is match-
ing all required properties with provided properties
and complying to imposed ordering relationships
on every flow in the system. This criterion is used as
well for validating a composition as for generating
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the right composition of a system from a set of given
desired properties.

We have the mechanism of propagation of
requirements as an essential element of our
requirements-driven composition strategy. This
mechanism of propagation works according to the
principle of ‘ask someone else to solve something
that you cannot solve yourself’. In a composition
where a simple component B is connected to an
output port of component A, while not provid-
ing matches for all requirements associated with
that output port of A, these unmatched require-
ments are added (virtually propagated) to the output
port of B. It becomes the responsibility of B to
find a connection that provides matches for all
these requirements. A similar propagation occurs
with requirements associated on in-ports. In the
case of composed components (with multiple input
and output ports), the propagation of requirements
follows only the internal flows originating in the
connecting port. It is natural to limit propagation
along internal flows as these determine which out-
put ports are really affected by one particular input
port.

The overall process of generating the structure
of the target is driven by the requirements. The
required properties for the target are put on the
main flow of the target and propagated from that
point on, while adding components. The addition of
new components on the flow occurs according to the
current requirements, which are those propagated
from the initial requirements together with those of
the new introduced components. A component is
added to the solution if it matches at least a subset
of the current requirements.

The mechanism of propagation of requirements
used in our approach is a generalization rooted
in Perry’s mechanism of propagation introduced
in (Perry 1989). Perry defined a semantic intercon-
nection model based on preconditions, postcondi-
tions and obligations, for the verification of program
semantics at the level of procedural programming.
Our approach brings two important contributions.
First, we generalize the principle of propagation to
multi-flow structures also adapting it in the con-
text of components. Second, we use propagation
as the driving force for composition (generation of
the structure of the target) rather than verifica-
tion of a given composition as we know related
works. (Batory and Geraci 1997) and (Batory et al.
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2000) use a similar propagation model for the ver-
ification of component compositions in GenVoca
architectures (layered systems).

A composition step deals with composed com-
ponents as units. After a composition step has
determined that it wants a certain component in
place, a new composition step may be launched for
composing the internal structure of that component.
The composition will result through top–down
stepwise refinements. Such recursive compositions
occur specially when a required property has refin-
ing subproperties (a requirement like p1 with
refining properties (p11 and p12)). In this case,
a composable component found to provide p1 will
have to be fine-tuned, so that its internal structure
is compliant to the set of properties (p11, p12).

A solution is considered complete when the
current requirements set becomes empty. It is
possible that for a certain set of requirements no
solution can be found.

The mechanism of propagation of requirements
briefly resumed here was formally described
in (Şora et al. 2004), an article that also gives a
complete description of the automatic composition
strategy.

Two challenges of unanticipated customization
were identified in the introductory section as the
variety of environmental requirements and the vari-
ety of available component types. Our composition
approach permits such unanticipated customiza-
tions. The composition strategy treats in the same
way any requirement, indifferent to the set of
properties or ordering relationships included in
the requirement. New properties can be given
as requirements at any time, as long as the in-
the-component repository there are components
described to provide a match of these properties.
This comes from the fact that the composition strat-
egy is driven by the propagation of requirements
rather than on the basis of some domain-specific
configuration knowledge. Also, our approach can
easily discover and use new components. This
comes from the fact that it searches for proper-
ties rather than component types. The mechanism
of structural constraints, as defined in the previous
section, permits significant variations (as number
and types of deployed components) in the structure
of a composable target.
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4. PRACTICAL VALIDATION

This section presents applications that use our
approach of structural constraints as the way of
expressing invariants for composition targets. Auto-
matic composition is used as a means to realize
adaptive systems that dynamically customize them-
selves at runtime. In such systems, the composition
decision is implemented in a Composer tool.

Section 4.1 describes our Composer tool and
Section 4.2 details an automatic requirements-
driven composition example from the domain of
network protocols.

4.1. Architectural Composer

A Composer tool that implements the automatic
composition decision for multi-flow architectures
of composable components was built. Given a set
of requirements describing the properties of the
desired system, and a component repository that
contains descriptions of available components, the
Composer has to find a set of components and their
configuration to realize the desired system.

The compositional decision-making system (the
Composer) builds and operates on an architectural
model (Oreizy et al. 1999) of the system. This archi-
tectural model is a structure description of the com-
posed system. The Composer finds the structure of
the target system starting from the imposed require-
ments. The Composer is architecture style–specific,
the composition decisions implemented by the Com-
poser do not contain application-specific code. The
Composer determines and maintains the structure
description of the composed system, while a Builder
uses this structure description to build or maintain
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the executable system. The Builder depends upon
(or is part of) the underlying component technol-
ogy and framework. This integrated approach for
self-customizable systems is depicted in Figure 8.

The Composer operates with requirements stated
as expressions that contain component properties.
The proposed adaptation model makes sense also in
dynamic systems where the customization require-
ments have to be extracted from their changing
context. Through monitoring of the context, the
customization requirements can be collected and
translated into required properties. The Composer
works the same with the required properties, no
matter where they originate from. The Composer has
access to a repository containing CCDL descriptions
of available components. The target of the compo-
sition is also a composable component defined by
structural constraints. The composition will result
through stepwise refinements: after a composition
process has determined that it wants a certain
component type in place, and this is a composable
one, a new composition search may be launched for
composing the internal structure of it. The Composer
implements the requirements-driven composition
strategy mentioned above in Section 3.3.

Initially, the Composer was developed and used
in the context of self-customizable network proto-
cols (http://pepita.objectweb.org). A composition
decision example from this domain is given in
the next Section. Later, we experimented with this
method to make an virtual instrumentation envi-
ronment for measurements and control (Groza et al.
1998) more self-adaptive. As our experiences with
the two above-mentioned application domains con-
firmed, the strategy used for composition is not
dependent on the application domain. There are

Translator Composer Builder

Application
Domains 

Software
Architecture

Component
Technologies 

Network
protocol stacks
Virtual
instrumentation 

Multi-flow architectures

Component 
Descriptions

Component 
Implementations

N:1 1:N

REQs
EXE

CCDL

DiPS
SAAD

Figure 8. Self-customizable systems: Translator-Composer-Builder
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composition policies that apply generally to sys-
tems that are of the same architectural style, but
do not interfere with the application domain. Reuse
of composition policies occurs not by domain, but
by specific architectural style. Such an architectural
approach of composition has advantages as well as
drawbacks that must be balanced: on the one hand,
we want to use the same composition strategy for
a whole family of composition problems sharing
the same architectural style, on the other hand, end
users should not be confronted with the problem
of stating their requirements in a form that matches
the underlying architecture style formalism.

The notion of requirements, as used in the con-
text of the composition strategy implemented in the
Composer, refer to properties (functional or seman-
tic) that the composition target will have. It is clear
that in case of a direct interaction with the end
-user, the requests should use more meaningful
concepts from the application domain so that they
are not confronted with a domain that is differ-
ent from their familiar application domain. The
deployment of translation layers may be in the
form of domain-specific front-end tools that accept
client requirements expressed in a description lan-
guage with a higher, domain-specific abstraction
level and translate them in the terms of the domain-
independent description language. Without such
a tool, the end user who is also the application
developer must make a mapping between the end
user–understandable configuration settings and the
more technical configuration settings that imple-
ment requirements on the component description
level. Deploying a translation layer enables the end
user to express requirements on a higher, more
abstract level and also depending on the user exper-
tise. It may be useful to enable the end user different
degrees of specificity according to his technical
expertise with respect to the application domain.
In this present research, we did not investigate
further this aspect of domain-specific translation
front-ends.

4.2. Self-customizable Network Protocol Stacks

Much research has explored the composition of
network services, as, for example, well-known
projects like the x-kernel (Hutchinson and Peterson
1990, Abbott and Peterson 1993, O’Malley and
Peterson 1992), Horus (van Renesse et al. 1995),
Ensemble (Liu et al. 1999). Many of these provide
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the infrastructure for stacking protocol layers and
components on top of each other in a dynamic mode
at runtime, using component-based approaches
of various granularity in order to build flexible
communication systems. Configurations may be
checked against specifications to see if a given
stack provides a set of required properties (Liu et al.
1999, van Renesse et al. 1995). General methods for
checking design rules of such systems are extracted
in (Batory and O’Malley 1992).

However, in the case of a self-customizable sys-
tem, the automation must go beyond verification
of a given component assembly: an appropriate
component assembly must be automatically gener-
ated starting from the specification of its desired
properties, the composition decision must be an auto-
matic decision. As presented in the motivation
contained in the introductory section, there are sit-
uations where self-customizable network protocols
are needed.

Our solution for self-customizable network pro-
tocols is to integrate the Composer described in
Section 4.1 into a component framework that is able
to provide the infrastructure for dynamic proto-
col stacks. We have deployed DiPS, the Distrinet
Protocol Stack framework (Matthijs 1999), as such
infrastructure. DiPS ensures the runtime support for
dynamic protocol stack changes and provides the
infrastructure support for the runtime composition
of components.

A whole protocol stack can be described as
a composable component STACK. The structural
constraints of the composable STACK define two
flows, a downgoing and upgoing path, require
that a network interface (corresponding to property
netwint) is present at the bottom of the stack.
These structural constraints are depicted in Figure 9.
A property netwint must be present on both
flows, with ordering restrictions that require any
other property to be provided only over it. The
actual structure of the protocol stack will be
determined according to external requirements and
respecting the structural constraints of the stack.

At a certain moment, let us consider that an
application needs a reliable communication link for
multimedia transmissions. This translates into the
global required properties rel, transp, non-
local. Since a particular kind of reliability was
required, property rel is refined by subprop-
erty multimediarel. Through propagation of
requirements, the composition of the stack could
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STACK
S.In1 S.Out2

Stack

netwint
* > netwint 

netwint
netwint > * 

Figure 9. Basic structural constraints example for com-
posable component STACK
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result in two solutions: TCP on IP on ETH or REL
on UDP on IP on ETH, both combinations provid-
ing reliable transport. Most of the components used
in this example implement the well-known proto-
cols, REL is a custom reliability protocol. In a next
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step, the reliability property has to be fine-tuned
for multimedia transmissions. This fine-tuning is
not possible when composing only from monolithic
coarse-grained components, as the TCP component.
The TCP reliability retransmission strategy does
not matchmultimediarel, thus the composition
TCP on IP on ETH will be rejected. The REL compo-
nent will be composed according to the requirement
multimediarel applied over its structural con-
straints. The starting steps for composing a stack
from requirements are presented in Figure 10.

The REL component is a composable compo-
nent, it has a set of structural constraints derived
from its basic functionality. The basic functional-
ity that contributes to all reliability protocols is
quite simple: in order to recover from data loss, the
sending part will resend the data until an acknowl-
edgement from the receiver has arrived. It has two
flows, corresponding to the downgoing and upgo-
ing paths through the protocol stack. The basic
structural constraints thus state that on the down-
going flow a retransmission strategy has to be pro-
vided (property RetransmStrategy), followed
by a header construction (property HeaderCon-
structing). On the upgoing flow, there has to

S.In S.Out

RequiredProperty: transp, non_local,
rel WITH multimediarel

REL

UDP

IP

ETH

ETHNI

stack

rel

transp

nonlocal

netwint

netwint

* > netwint

netwint

netwint > *

STACK STACK

multimediarel

Figure 10. Construction of a protocol stack from requirements. (Composable component STACK composed according
to external requirements transp, nonlocal, rel with multimediarel)
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Requires: multimediarel

rel

Out1 In2

ACKSending

HeaderParsing

ACKReceiving

HeaderConstructing

RetransmStrategy

REL

Figure 11. Basic structural constraints for the composable
REL component
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be a header parsing (property HeaderParsing),
a dispatching element that routes differently data
and feedback, creating a flow ramification, and, on
these two flows, there has to be an acknowledge-
ment receiving (property ACKReceiving) •andAQ2

an acknowledgement sending respectively (prop-
erty ACKSending). Between the two flows, the
downgoing and upgoing flow, there is a ‘contin-
uation’ relationship. A graphical representation of
these basic structural constraints of the composable
component REL is depicted in Figure 11. The inter-
nal flows as well as the properties that must be
present on these flows can be identified in this
figure. A configuration for the REL component
complying with the multimediarel require-
ment is given in the Figure 12. The multimedi-
arel requirement is forwarded to the downgoing
flow of the component, leading to the selection
of the MultimediaRelStrategy component for pro-
viding the right retransmission strategy (it provides
propertiesRetransmStrategy andmultime-
diarel). The component MultimediaRelStrategy
requires further support for readjustment of the
retransmission timeout (requires property trip-
time at its output port) – this leads to inclu-
sion of a RoundTripTimeCalculator, placed, accord-
ing to its own and structural requirements, on
the upgoing flow. The RoundTripTimeCalculator
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needs time stamps to be attached on its incom-
ing flow – so a TimeStampAttacher component is
placed on the downgoing flow after the retrans-
mission strategy. Acknowledgement sending and
receiving has to be handled, according to the
skeleton of the composed component. Since no
preference for the acknowledgement strategy
exists, positive acknowledgements are chosen (the
AckReceivingUnit and AckSendingUnit components).
AckSendingUnit is a compoable component that has
to be composed. A filter is needed, and component
NextSequenceFilter will be chosen, since it is compat-
ible with the multimedia retransmission strategy on
its incoming flow.

To illustrate how our approach may handle unan-
ticipated customizations, suppose that a new com-
ponent, MultipleSending, is developed and could be
used to enhance the performance of the REL layer.
The requirements of this component impose that
it is used on an outgoing flow of a retransmission
strategy. This implies that, when multiple sending is
required, such a component is deployed, as shown
in Figure 12.

5. RELATED WORK

We relate to certain aspects of works to ensure
the management of software variability in dif-
ferent fields: predictable component composition,
dynamic architectures and automatic component
composition, generative programming and product
families.

An important research topic in component com-
position is the prediction of the assembly-level prop-
erties of a component composition as in (Hissam
et al. 2002, Crnkovic et al. 2001). Here, most effort
is directed toward prediction of ‘measurable’ prop-
erties (end-to-end latency, memory consumption),
where the same property of an assembly can be
calculated from the properties of the components.
We consider mostly noncomputable properties in
our model. The properties of a composed com-
ponent in our model are usually seen as abstract
features, expressed at a higher semantic abstraction
level than the properties of the parts. Having the
structural constraints as part of a composed com-
ponent description specifies which properties put
together and assembled will emerge the higher-level
assembly property.
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Figure 12. Configuration of the REL component over its structural constraints, according to external requirement
multimediarel
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Research in the field of composition of products
from a family also addresses aspects of automatic
requirements-driven generation. For describing the
requirements, approaches such as product lines
and generative programming (Czarnecki and Eise-
necker 1999, Batory et al. 2000) usually rely on a
feature model, meaning that the features of the
desired system are organized in different kinds
of feature diagrams, containing hierarchies of fea-
ture trees with mandatory, optional and alternative
features. Feature modeling introduces composition
rules to specify how features may be combined to
build correct products. More similarities with our
approach, based on structural constraints, presents
the work of (de Bruin and van Vliet 2003). They
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present an approach for the top–down compo-
sition of software architectures. It is based on a
feature-solution graph that links requirements to
design solutions.

All known approaches of product lines base
their configuration decisions on domain or product
knowledge expressed directly, even if with different
means. This works well for product lines, where
decisions are made statically in order to synthesize a
product. Product lines are meant to solve variability
at a predelivery moment (van Gurp et al. 2001). We
work in the field of runtime customization that
occurs postdelivery at start-up or runtime at the
customers’ side, and other decisional strategies, as
well as support from the runtime environment, are
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needed. The problem is with features that are not
predictable at initial design time and cannot be
included beforehand in a model and thus would
be difficult to be taken into account at runtime
customization.

For runtime compositions, ‘blue-print-like’ app-
roaches have been often used. In these cases,
composition is the criteria-driven selection of right
implementations for the defined components of a
system. Component types and their relationships
are fixed; no new component types or new col-
laborations between components may be used.
This approach limits the possibilities of unantici-
pated customization. (Posnak et al. 1997) describes
an Adaptive Configuration Pattern that simplifies
the development of layered systems. It decouples
the compositional structure from module imple-
mentation, and both can be changed independently
during the execution of a program. A component
can switch between module implementations that
are functionally equivalent, but have different pro-
cessing cost and quality characteristics. It is not
specified how the change of the compositional
structure could occur. Dynamic customization is
generally limited to enabling components to change
their implementations. Our composition model is
more complex; we consider that there may not be
enough flexibility to only replace components of a
given type in fixed hot spots.

There has been research in the domain of
automatic configuration of component-based sys-
tems (Kon and Campbell 2000, Kloukinas and
Issarny 2000, Issarny and Bidan 1996). We relate
to the automatic component composition approach
of Aster, a framework for runtime customization
of distributed systems (Issarny and Bidan 1996). It
offers tools for selecting and integrating middle-
ware components, starting from an architectural
description of the application and its nonfunctional
requirements. An essential step toward the possibil-
ity of implementing services that support automatic
configuration is a good explicit representation of
dependencies. In (Kon and Campbell 2000), a model
for representing dependencies among components
and mechanisms for dealing with these dependen-
cies is proposed. The software requirements are
directly expressed by means of explicit references to
components from a component repository. We con-
sider that often, dependencies can only be expressed
indirectly, in terms of a set of properties that have
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to be provided by an unknown provider from the
environment, including other components also.

Recent research on dynamic and self-organizing
software architectures investigate ways of doing
configuration management in such systems. It is
the area where the concept of structural constraints,
as described in this article, can be best integrated.
In (Georgiadis et al. 2002), the authors propose the
architectural specification of a self-organizing sys-
tem through a set of constraints. These constraints
define an architectural style and can be used to
generate or verify a specific architectural instance
for compliance. The composition language Peer-
CAT (Alda 2004), intended to describe composition
of peer services into new applications, permits the
declaration of a minimal composition. This is differ-
ent from our structural constraints in the fact that
an actual minimal structure is given. The Gravity
project (Cervantes and Hall 2004) defines a service-
oriented component model, where the autonomous
adaptation of applications can occur at runtime. In
a pure service-oriented approach, the adaptation
decision does not have to consider that a composed
application has a structure with a defined topology,
which is different from the multi-flow systems that
our work is addressing.

6. CONCLUSIONS

We address self-customization of systems through
requirements-driven automatic component compo-
sition at runtime. We present a solution for the
composition of systems with multi-flow architec-
tures.

The central element of our approach is the concept
of composable components defined through their
structural constraints. A composable component has
an own identity without having a fixed internal
structure. The structural constraints impose a set
of guidelines for the future structural configuration
of the composable component, being the invariant
that helps preserve the identity of the component.
These structural constraints are expressed in terms
of internal flows, of properties required on these
flows and ordering relationships between some of
the properties.

A strength of our approach is that it solves prob-
lems of unanticipated customizations: it permits to
easily formulate and solve new requirements, to
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discover and use new component types with mini-
mal user intervention and to variate the structural
configuration of the customized system. Compos-
able components and the mechanism of defining
them through their structural constraints, as pre-
sented in this article, offer the necessary flexibility,
while guaranteeing a predictable assembly.
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