Software Tools for Technology Transfer manuscript No.

(will be inserted by the editor)

CCDL: The Composable Components Description

Language

Ioana Sora!, Pierre Verbaeten?, Yolande Berbers?

! Politehnica University of Timisoara, Department of Computer Science, Timisoara, Romania
2 Katholieke Universiteit Leuven, Department of Computer Science, Leuven, Belgium

April 2004

Abstract. Tools that automate component composition
decisions need as inputs formal descriptions of follow-
ing categories: the functional and non-functional require-
ments desired for the target; the structural constraints
for the target; and the contractual specifications of avail-
able individual components. In this article we present
CCDL, a description language able to cover these three
aforementioned categories.

We define a composable component as an architec-
tural entity described by an external contractual specifi-
cation and a set of structural constraints for its variable
internal configuration. The internal configuration of a
composable component is not fixed, but is a target that
must be composed from available components. This com-
position is driven by external requirements while com-
plying with the fixed structural constraints. Such hier-
archically composable components permit finetuned cus-
tomization of component based systems with a high de-
gree of unanticipated variability. Our composition ap-
proach is architectural style specific and addresses mul-
tiflow architectures.

The most important strength of CCDL is its ability
to describe structural constraints of composable com-
ponents (that represent composition targets), as flexible
guidelines for their composition. CCDL descriptions can
be used by automatic composition tools that implement
requirements driven compositions strategies.

1 Introduction

In the component based software engineering approach,
a software system is viewed as an assembly of compo-
nents. The set of components and the manner how these
components are connected with each other determines

the properties (functionality and behavior) of the as-
sembled system. Constructing a system with certain re-
quired properties starts with the compositional decision,
the finding of an appropriate component assembly. Cur-
rent research activities investigate when and how the
compositional decision process can be automated.

Due to the complexity of the fully automatic com-
position decision problem, it remains appropriate in cir-
cumstances like dynamic self-customizable systems where
it is reasonable to impose additional constraints for the
target to be composed. In our work, we use automatic
component composition as a means to achieve dynamic
self-customizable systems. The current behavior of such
a system is determined by its structure and the compo-
nents from which it is composed.

Automatic software composition decisions require a
systematic compositional model that must comprise a
component description scheme and formalism, and a co-
ordinated, well defined requirements driven composition
strategy. The description scheme establishes rules for the
specification of:

— the contractual specifications of available individual
components: What must be known about each com-
ponent 7

— the functional and non-functional requirements de-
sired for the target: How should required properties
of the target be described?

— the structural constraints for the target: What addi-
tional constraints must be specified for the target 7 It
is common sense that composing a whole system only
from its requirements is not feasible, additional con-
straints or guidelines for the composition are needed.
But, there is also a need to support unanticipated
customization. Solutions should not be limited to the
use of a set of known in advance components or con-
figurations. Solutions must be open to discover and
integrate new components and configurations, in re-
sponse to new types of requests or to improve ex-

2 Ioana Sora et al.: CCDL: The Composable Components Description Language

isting solutions when new components become avail-
able. The problem that arises here is to balance be-
tween the support for unanticipated customizations
and the need for constraints that guarantee a correct
composition of a system with required properties.

We developed a compositional model based on com-
posable components in multi-flow architectures [7], to-
gether with CCDL (The Composable Components De-
scription Language) as its description formalism. This
model establishes what information is needed to be known
about individual components and the composition tar-
get in order to make composition decisions while CCDL
provides a formalism that can be processed by automatic
composition tools.

The remainder of this paper is organized as follows:
Section 2 presents a global view of our automatic compo-
nent composition approach as the context where CCDL
has been developed and deployed. Section 3 introduces
the basic concepts of our architectural component model.
We describe the composable component approach and
CCDL, the Composable Components Description Lan-
guage, in Section 4. Section 5 presents deployment sce-
narious for CCDL descriptions. In Section 6 we discuss
our approach in the context of related work. The last
section summarizes the concluding remarks.

2 Background and motivation

This section presents the context where CCDL (The
Composable Components Description Language) has been
defined and deployed, providing a global view of our
work on component-based self-customizable systems and
the tools developed for this.

We approach the automatic composition of systems
based on our composable components model. A central
element of our approach is the concept of composable
component: such a component has its own identity but
its internal configuration is not fixed, it may vary in the
limits of its structural constraints. The internal structure
of a composable component constitutes a target to be
composed. The structural constraints have the role of
guidelines for the composition, as they will be discussed
further in Section 4.2.

The automatic composition of components into a tar-
get system comprises two activities:

1. compositional decision. This activity is carried out
by a Composer. The inputs of the Composer are the
contractual descriptions of available individual com-
ponents, the functional and non-functional require-
ments for the target and the structural constraints
for the target. The Composer produces a structure
description of the composed target.

2. runtime building. In a second step, a Builder uses the
structure description generated by the Composer to
dynamically build or maintain the target system.

This Composer-Builder separation of concerns in au-
tomatic component composition is depicted in Figure 1.

As it can be seen in the figure, both the Composer
and the Builder need to access information from different
sources and repositories. We developed CCDL as the for-
malism deployed for the representation of the informa-
tion handled during composition. It can describe individ-
ual components, functional and non-functional require-
ments, structural constraints for the target and struc-
tural descriptions of assemblies. Some of the descriptions
are in form of CCDL documents (the component and
implementation descriptions), while others can be inter-
nal description objects that comply with the composable
components model description scheme.

2.1 Composer

The Composer finds the structure of the target system
starting from the imposed requirements, acting as the
compositional decision system.

The automatic composition problem, as we address
it, can be formulated: given a set of requirements de-
scribing the properties of the desired target system, and a
component repository that contains descriptions of avail-
able individual components, the composition process has
to find a set of components and the way to intercon-
nect them in order to obtain the desired target system.
All components can be hierarchically composable, thus
finding their internal structure is a recursive composition
problem.

The Composer determines a structural configuration
that is appropriate for the target and maintains its de-
scription. This structure description is the architectural
model [24] of the dynamic system.

The Composer is driven by the requirements imposed
for the target stated as CCDL expressions. In the case
when self-customization is used as start-up time configu-
ration according to direct user requirements, an optional
Translator front-end (i.e., in form of a Wizard) could be
deployed to generate the requirements in the form of
CCDL expressions from a more domain-specific form. In
the case when self-customization should occur contin-
uously at runtime, the requirements are provided by a
Monitor module. Independently on the source of the re-
quirements, their format at the input of the Composer
is a CCDL compliant form, even if they are internal de-
scription objects and not explicit documents.

The Composer has access to a Component Reposi-
tory containing component descriptions of available in-
dividual components. A CCDL component description
specifies the external contract and, for composable com-
ponents, also the internal structural constraints of the
component. The Composer selects a set of appropriate
components and determines the necessary connections.
The structural constraints for the target are an impor-
tant input for the Composer.

Ioana Sora et al.:

Abstraction level A

Requirements
application-domai

Application
Domain <

CCDL: The Composable Components Description Language

expressed in an
n speciffic manner

Trandator

amunen= R ESNANE CODL

weeee ™ Requirements Structural
constraints
for target
Architectural) (f ¢ Compone Component
Syle < descriptiof s Repository
Hierarchfic
composifion
h 4
Structural
description of
target
\ S
Conteéxt -
e avarenes Builder Implement. Implementation
descriptions Repository
Component
Technology<
Monitor Je--}.. Cc’tr;‘rgoseda
Runtime environment
.

Fig. 1. Integrated approach for self-customizable systems based on automatic component composition

The composition can result through stepwise refine-
ments: after a composition process has determined that
a certain component type is needed in place, if this is
a composable one, a new composition process may be
launched for composing the internal structure of it.

2.2 Builder

The Builder depends upon (or is part of) the underly-
ing component technology and component framework. It
must have the capability to dynamically load and con-
nect components in order to instantiate the structure de-
scription which has been determined by the Composer.
The Builder takes limited decisions, as to select one of
different implementations for the same component type,
if multiple implementations are available for it.

The Builder has access to an Implementation Repos-
itory. An entry in this repository contains an implemen-
tation of a component type that has been described in
the Component Repository. Together with the actual im-
plementation there is also an implementation description
that specifies the implemented component type and ad-
ditional implementation specific parameters. These pa-
rameters correspond to different metrics that are used to
evaluate the quality of an implementation (performance,
cost, etc.).

We have used this approach to achieve self customiz-
able network protocol stacks ([9], [10]) by integrating
the Composer over the DiPS [22] framework for proto-
col stacks. Also we have investigated applying this Com-
poser in self-customizable systems of multi-flow archi-
tecture from the domain of virtual instrumentation in
measurement and control ([7]).

4 Ioana Sora et al.: CCDL: The Composable Components Description Language

2.8 Motivation for CCDL

As we have shown in previous subsections, automatic
component composition needs formal expressed input re-
garding the contracts of available components, the func-
tional requirements for the target and the structural con-
straints of the target to be composed.

Interface description languages that describe com-
ponent contracts do not provide sufficient information
about the described components for automatic compo-
nent composition.

Various architectural description languages [23] are
used to represent components, connectors and architec-
tural configurations. Architectural configurations describe
an architectural structure (topology) of components and
connectors. The point is that, in our case, the internal
structure of a composition target is unknown and only
structural constraints for it should be specified. Most
ADLs do not support this concept of describing only the
guidelines for future configurations, which is the essence
of the composable components. The internal structure
of composable components needs to be not represented,
its configuration must remain open. The structural con-
straints in our composable components description are
just flexible guidelines for future configuration composi-
tions and not a full architecture configuration descrip-
tion.

The purpose of CCDL is to combine and extend fea-
tures belonging to interface description languages and
architectural description languages, in order to unitary
describe component contracts and constraints for com-
position targets.

3 Basic concepts of the composable
components model

The compositional model proposed in this work addresses
systems of the multi-flow architectural style. Also, it in-
troduces the concept of composable components.

Some details of the component model (like the pro-
gramming interfaces) are not presented here, since they
are not used in the compositional decision phase, only
later in the building phase of the system (as mentioned
before in Section 2).

3.1 General concepts

We present briefly the basic component concepts that
we use and that are consistent, in the main, with the
software component bibliography [3], [26]. We emphasize
here particularities of our approach.

Software component: is an implementation of some
functionality, available under the condition of a certain
contract, independently deployable and subject to com-
position. A component in our approach is also an archi-
tectural abstraction.

Component contract: specifies the services provided
by the component and their characteristics on one side
and the obligations of clients and environment on the
other side. Most often the provided services and their
quality depend on services offered by other parties, be-
ing subject to a contract. In our approach, contracts are
expresses through sets of required-provided properties.

Component property: can describe different kinds of
characteristics of a component, “something that is known
and detectable about the component” [17]. Properties
are most often used to describe services, similar to the
service-oriented component model from [5]. In our ap-
proach, a property is first defined by its name (a label)
from a domain specific standard vocabulary set. A prop-
erty may have refining subproperties or refining param-
eters with values, as will be discussed in section 4.1.3.
Properties may refer to functional and non-functional
characteristics of the component.

Port: “alogical point of interaction between the com-
ponent and its environment” [2]. There are input ports,
through which the component receives data, and out-
put ports, through which the component generates data.
Connectors can be applied between an output port from
a component and an input port from another compo-
nent.

3.2 Specific concepts

Our work defines composable components in the context
of multi-flow architectures.

3.2.1 Multi-flow architecture

Flow: the data-flow relation among pairs of ports. A flow
has parts where it is internal to a component (from an
input port to an output port of the same component)
and parts where it is between two components (from an
output port of a component to an input port of another
component).

Multi-flow architecture: it is a variation of the pipes-
and-filters [12] architecture. An informal example of multi-
flow architecture is presented in Figure 2. The particular-
ity of this architectural style is that dataflow relations
are defined first (the “flows” in our terminology) and
components must fit over the fixed flows. The number
and the branches of the flows define the system archi-
tecture. For every component the internal flows must be
known so that it can be deployed in the flow architecture.

In the example in Figure 2, the system S has four
flows on which subcomponents can be aligned. The four
flows are: Inl1—QOutl, Inl—Out2, In1—0Out3 and
In2—QOut4. The system S can be realized as different
compositions of components on these flows. In the ex-
ample, system S is realized as the composition of com-
ponents A, B, C' and D. The internal flows of all compo-
nents are known and they match with the internal flows
of S where they are deployed.

Ioana Sora et al.: CCDL: The Composable Components Description Language 5

Fig. 2. Multi-flow architecture example. System S is defined by four flows and can be realized as different component compositions on

these.

3.2.2 Composed and composable components

We define the basic unit of composition as simple com-
ponent with one input port and one output port.

Components that have several input and output ports
are considered composed components. These are built
from hierarchical composed components. The whole sys-
tem may be seen as a composed component, as S being
the system and a composed component in the exam-
ple in Figure 2. The internal structure of a composed
component is aligned on a number of flows that connect
its input ports with its output ports. For the internal
structure of a composed component the same style of
multi-flow architecture applies.

Composed components have a well defined identity:
they have their own properties and contractual inter-
faces and fixed internal flows. The composed component
as a whole is always defined by its own set of provided
properties, which expresses the higher-abstraction-level
features gained through the composition of the subcom-
ponents. The vocabulary used to describe the own pro-
vided services of a composed component is distinct from
the vocabulary deployed for describing the provided ser-
vices of its subcomponents. This abstraction definition
must be done by the designer of the composed compo-
nent. The properties of the subcomponent are causally
linked to the properties of the composed component, but
often they cannot be computed or deduced from these.
Many properties of an assembly are emergent properties,
they are related to the overall behavior of the assembly
and depend on the collaboration of several components
and can be seen as expressed at a higher abstraction
level.

For example, a Sender component may be composed
in one instance from components Encrypter, Compresser
and Transmitter. Each of the composing components
provides a functional property: encryption, compression,
and respectively transmission. The composed Sender
component as a whole provides property sending.

As an important point of our approach, we consider
that it is necessary to be able to define the identity of a
composed component, even if its internal structure is not
fully specified. We name such composed components as
composable components. A composable component has
a well defined external view (ports, properties). The in-
ternal structure of a composable component is not fixed,
it is composable in the limits of certain structural con-
straints, as will be detailed in Section 4.2. Defining com-
posable components is also a manner of specifying com-
position targets.

For example, the Sender component mentioned be-
fore could be realized through various other component
compositions. Its external view states that it is a com-
ponent with one input and one output, providing prop-
erty sending. The internal structure of the Sender can
be variable, with the single restriction that property
transmission is provided inside it.

4 CCDL - The Description Language for
Composable Components

We have developed CCDL, a description language that
allows the specification of composable components. CCDL
is able to describe the following three views of a compo-

6 Ioana Sora et al.: CCDL: The Composable Components Description Language

<!--CCDL component description pattern -->

<component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemalocation="comp.xsd"

name="SampleComponent">
<componentExternals>

</componentExternals>
<componentInternals>

</componentInternals>
</component>

Fig. 3. Example: Main elements of a CCDL component description

nent: the external view, the internal view if it is a com-
posed component, and its implementation descriptions.

The external view contains the contractual specifi-
cation of the component. It contains information about
the ports and provided and required properties.

The internal view may specify either structural con-
straints, if the component is composable, or a complete
structural description, if the component has an already
fixed internal configuration.

An implementation description locates a binary im-
plementation of a component and specifies additional
properties of implementation metrics.

Usually the three views are not inclosed in a single
document, as could be seen in Figure 1: the external
view and the internal view form the component descrip-
tion document, stored in Component Repositories, while
every implementation description may be separate doc-
uments, stored in Implementation Repositories.

CCDL, the component description language for com-
posable components, is defined as a XML Schema [28].
The XML Schema standard is a meta-language suitable
for developing new notations. This choice for XML [27]
simplifies the implementation and later the use of the de-
scription language due to the large availability of tools
for creating, editing and manipulating XML documents.
We used the Apache Xerces XML parser [15] in our im-
plementation. Editing a CCDL description can be done
with aid of syntax-directed editing tools for XML.

A CCDL component description has the general struc-
ture presented in Figure 3.

CCDL is defined by the XML schema comp.xsd. A
component description corresponds to its root element
component. The component type is identified through
its name. The name must be unique, and is given as an
attribute of the component element. The component is
defined through the componentExternals and
componentInternals elements, corresponding to the ex-
ternal respectively internal view descriptions.

4.1 FEzternal View Description

4.1.1 Ports

The points of interaction of a component are represented
as ports. For each port, a type (classifying it as input or
output port) must be specified. Optionally, a port can
be declared as an entrance, that means as the point
where the external requirements regarding its internal
configuration are applied.

The component as a whole provides certain services,
defined by global provides statements in the compo-
nent description. In order to provide these services, it
requires that other services are provided by the environ-
ment. Usually these required services must be provided
to certain flows, thus the requires statements are at-
tached to ports. An example is provided in the next sub-
section.

In the case of composed components, provides state-
ments can also be associated with ports, reflecting par-
ticular services offered by composing subcomponents.

4.1.2 Contracts

We assume that in the multi-flow architecture every in-
put port may be syntactically connected to every output
port. It is the role of component contracts to enforce se-
mantic meaningful compositions.

Contracts are expressed through required-provided
properties. A contract for a component is respected if all
its required properties have found a match. For a multi-
flow architecture, on every flow, all properties required
must be matched by properties provided by components
connected to that flow.

Requirements associated with an input port Cy.In,
are addressed to components which have output ports
connected to the flow ingoing C.In,. Requirements as-
sociated with an output port C,.Out, are addressing
components which have inputs connected to the flow ex-
iting C,.Out,,.

By default, it is sufficient that requirements are met
by some components that are present in the flow con-
nected to that port, these requirements are able to prop-

Ioana Sora et al.: CCDL: The Composable Components Description Language 7

Timestamper Ln
timestamp___ |
Out
C
pLp2_____]
Compr esser n
compression _ |
<“decompres3an | Out
“tpair} - ---
Encrypter In
encryption E
--------- Out

¢ decryption” K
ipair}---~

out TripTimeCalculator

mr o--- < timestamp

\I
Out | Decompresser

ZTompressiorr,

“fpait]. .-~
out| Decrypter

7 encryption ‘/.

“pair)----

Fig. 4. Example: Contracts expressed through required-provided properties

agate. We have presented the mechanism of propagation
of requirements and the basic composition strategy de-
rived of it in [9].

One can specify immediate requirements, which are
not propagated, these apply only to the next compo-
nent on that flow. Negative requirements specify that a
property should not be present on the referred flow. Pair
requirements refer to pairs that must be always matched
in the same relative order.

As an example, in Figure 4 is presented a simple
assembly of fully matched components. The example
presents a data flow part of a sender-receiver system,
where encryption and compression of the transmitted
data must occur and also the transmission time must be
calculated. The example system in the figure comprises
seven components, and the assembly fulfills the system
requirements and all component requirements are fully
matched. The TripTimeCalculator calculates the time
delay on a given flow. It requires that timestamps are at-
tached to the data on its incoming flow (has the require-

ment timestamp at its input port TripTimeCalculator.In.

This is a propagateable requirement, it can be provided
by a component at any place in the incoming flow of
TripTimeCalculator, as it is the case with component
Timestamper that provides the property timestamp.
The Encrypter component has the requirement for
decryption on its outgoing flow, declared as a pair re-
quirement. Also the Compresser has a pair requirement
for decompression. Since requirements declared as pairs
must be matched in the same order as they were posed,
the Compresser — Decompresser sequence may either
contain the Encryptor — Decryptor sequence or be con-
tained by it. A sequence like Encryptor —Compresser —
Decryptor — Decompresser is not permitted due to the
requirements being declared as pair.

As an example, we present the CCDL description of
simple component TripTimeCalculator (Figure 5).

The component is identified through its name
TripTimeCalculator. The component has two ports,
one input port named Inl and one output port named
Outl. The service provided by this component is de-
scribed by the provided property triptime. In order to
provide this service, it requires that timestamps are at-
tached to the data on its incoming flow (has the require-
ment timestamp at its input port Inl).

Required properties are elements of a
requiredPropertyType which extends the usual
propertyType with the attributes assertion, pairto
and immediate. The assertion attribute specifies if the
properties is required to be present or if, on the contrary,
it is required not to be present as being incompatible.
The pairto attribute declares that the required prop-
erty refers to a pair and specifies which provided prop-
erty it refers to. For example, referring to the situation in
Figure 4, the component Compresser globally provides
the property compression and requires at its port Out
property decompression as pair to compression. In the
case that the component provides more properties, not
only one global property, the name that is the value of
the pairto attribute is essential in order to be able to
distinguish between them.

4.1.3 Refining specification of properties

Properties have been presented in the previous subsec-
tion as simple names. They can be further detailed by
values that are configuration parameters or by subprop-
erties.

The list of subproperties represents finetuning op-
tions of the main property. A property element may
specify as many subproperties as necessary. Each sub-
property is also a property. A list of subproperties is
introduced by a with element.

8 Ioana Sora et al.: CCDL: The Composable Components Description Language

<!--CCDL for simple TripTimeCalculator component-->

<component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemalocation="comp.xsd"

name="TripTimeCalculator">
<componentExternals>
<provides>
<property name="triptime"/>
</provides>
<port name="inl" type="in">
<requires>

<property name="timestamp" assertion="yes" pairto="nil" immediate="no"/>

</requires>
</port>
<port name="outl" type="out" />
</componentExternals>
</component>

Fig. 5. Example: CCDL description of simple component TripTimeCalculator

For example, the property named sending provided
by a Sender component may be refined through sub-
properties like encryption, fragmentation and
acknowledgement.

Configuration parameters can be used to specify quan-
titative aspects of properties. Such parameters are intro-
duced as parameter elements inside a property element.
A parameter is specified by its name, type and value.
For example, property fragmentation can have a pa-
rameter describing the fragmentation size, and property
acknowledgement may be specified regarding the policy
used (ack or nack).

The property sending with subproperties and pa-
rameters is expressed in CCDL syntax as in Figure 6.

Subproperties and configuration parameters are present

in the definition of a composed component if its struc-
ture is already fixed.

A composable component usually does not specify
subproperties in its definition. Subproperties are often
used to express and finetune requirements addressed to a
composable component. In example, if property pl with
subproperties pl1 and p12 is required, a match is a com-
ponent C' that exposes the provided property pl, and
the internal structure of C' must be further composed
so that it will provide the finetuning properties pl1 and
pl2.

The description of a generic composable Sender com-
ponent will thus specify provided property sending, with-
out subproperties and parameters. The external view de-
scription of component Sender is given in Figure 7.

A client who wants to deploy a Sender component
will be able to specify in its requirements finetuning sub-
properties for the sending property, as in Figure 6. The
matching of such properties occurs level by level. First,
components providing the global property sending are
searched, then the search continues for the subproper-
ties. If a component providing the exact subproperties

is found, this can be used directly. If no component pro-
viding all subproperties is found, then the composable
component providing the generic property will be com-
posed according to the desired subproperties.

4.2 Internal View Description

Component internals can be given either as a structural
description of the internal configuration or as structural
constraints in the case that the internal configuration is
not fixed.

A structural description will completely specify all
individual component types that are deployed and all
connections between their ports, in a classical style of
an architectural description language. We will not detail
here further this aspect.

The specification of structural constraints is an im-
portant feature of CCDL. It is needed as composable
components do not have a fixed internal structure. In
this approach lies a powerful part of the customization
capability: the full internal configuration of the compo-
nent will be composed as a result of external require-
ments allowing fine-tuning of properties [7].

4.2.1 Expressing structural constraints: flows, on-flow
properties, inter-flow dependencies

As mentioned before (in Section 3.2.2), composable com-
ponents are first class entities, that have their own in-
terfaces with ports, provided and required properties.
These are the fixed elements of a composable compo-
nent. The internal structure is not fixed, but still some
structural constraints must exist in order to always en-
sure the identity of the global component description.

We express structural constraints by means of fixed
internal flows, properties that must be present on these
flows, and inter-flow dependencies.

Ioana Sora et al.: CCDL: The Composable Components Description Language

<property name="sending">
<with>
<property name="encryption" />
<property name="fragmentation">
<parameter name="fsize" type="integer" value="1024"/>
</property>
<property name="acknowledgement"/>
<parameter name="kind" type="string" value="nack"/>
</property>
</with>
</propert

Fig. 6. Example: refining properties through subproperties and parameters

<!--CCDL for Sender component-->
<component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="comp.xsd"
name="Sender">
<componentExternals>
<provides>
<property name="sending"/>
</provides>
<port name="inl" type="in" entrance="true"/>
<port name="outl" type="out" entrance="true">
<requires>
<property name="receiving"
assertion="yes" pairto="sending" immediate="no"/>
</requires>
</port>
</componentExternals>
<componentInternals>

</componentInternals>
</component>

Fig. 7. Example: External view of component Sender

Sender

Inl
L]

sending

transmit

* > transmit

A\

|
Outl

Fig. 8. Exampke: Basic structural constraints example for composable component Sender

10 Ioana Sora et al.: CCDL: The Composable Components Description Language

The structural constraints describe the minimal prop-
erties that must be assembled on particular flows so
that the declared provided properties of the composed
component emerge. These constraints virtually define a
“skeleton” of the composed component. This “skeleton”
is not a rigid structure, it fixes only the flows and estab-
lishes order relationships between properties that must
be present on these flows. Figure 8 presents as an exam-
ple the basic structural constraints for the composable
component Sender.

The basic structural constraints of Sender specify
that it has one internal flow. On this flow arbitrary com-
ponents can be added. The structural constraints specify
that at the bottom of the layer the property transmit
must be provided.

The CCDL description of the composable Sender
component can be completed with the internal view, as
in Figure 9.

Flows are introduced as £1ow elements, with attributes
name, from and to. Attributes from and to specify the
flows endpoints. These endpoints can be names of ports
or names of internal reference points. The internal refer-
ence points are constructions which enable the specifica-
tion of flow ramifications (rp), junctions of flows (join),
flow sources(start) or sinks (end).

Contained properties are introduced with help of the
containedProperty element. Such an element specifies
that a certain property (transmit, in our example) must
be present on a certain flow (it must be provided by a
component having ports connected to that flow).

Between properties belonging to the same flow, or-
der relations may be imposed by the orderRelation
element. In our example, property transmit must be at
the bottom of the Sender (it must be below any other
property).

A concrete Sender will be built after determining
its structure according to specific requirements. The re-
quirements imposed at its port Inl can be, for example,
these specified in Figure 6. Applying the composition
strategy based on propagation of requirements as we de-
scribed it in [8] an adequate structure of the Sender will
result.

4.2.2 Updating structural constraints

The structural constraints of a composable component
must be defined by the designer of that component.

It is possible that the initial specification of a com-
posable component may be updated. The need to up-
date the specification of a composable component C' can
appear when designing a special component X that is
meant to be deployed here as subcomponent. Most of
the time, the initial specification of C’s structural con-
straints can handle by itself various subcomponents to be
deployed. In the case that the designer of a new compo-
nent X wants to make additional specifications regard-
ing the possible deployment of it in certain contexts, this

possibility must remain open. The need for such an up-
date is however an exceptional situation.

Thus we distinguish two categories of structural con-
straints of composable components, according to their
source: the basic structural constraints, defined by the
designer of the component, and the structural context-
dependent requirements.

The structural context-dependent requirements are
added at the explicit request of other components. Syn-
tactically, the structural context-dependent requirements
are expressed also in terms of properties contained on
flows and order relationships between these properties.
The presence of these contained properties or order re-
lationships as context-dependent requirements does not
impose a mandatory skeleton as in the case of the ba-
sic structural constraints. They specify the terms under
which a certain subcomponent may be deployed here,
but only if it is considered necessary by external require-
ments.

For example, the developer of the TripTime and
TimeStamp components will want to specify that these
components are to be used such that property triptime
is below any other property on the flow to be measured
while property timestamp is above any other property
present on the same flow. This will lead to an addition
to the structural constraints of the Sender specified ini-
tially in Figure 9, as presented in Figure 10.

Adding the order relation relative to property timestamp

as context dependent constraint does not in any case
always enforce the presence of timestamp. Only if an
external requirement imposes timestamp, an adequate
component will be searched and the order relation rule
relative to timestamp is activated, so that this property
is placed correctly.

4.3 Implementation description

The implementation description specifies the location of
an implementation for that component type. The loca-
tion can be that of the implementation classes or that of
a complete structure description for a composed compo-
nent.

The implementation description can also contain ad-
ditional implementation specific parameters. These pa-
rameters correspond to different metrics that are used
to evaluate the quality of the implementation (perfor-
mance, cost, etc.) and do not refer to functional proper-
ties of the component. The parameters are described by a
simplified type of properties, the implemPropertyType.
This contains a name and an optional value. For exam-
ple, the implementation description of a component may
define as parameters the following:

<provides>
<impl_parameter name="cost" value="free">
<impl_parameter name="memory" value="high">
</provides>

Ioana Sora et al.: CCDL: The Composable Components Description Language 11

<!--CCDL for Sender component-->

<component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemalocation="comp.xsd"

name="Sender">
<componentExternals>

</componentExternals>
<componentInternals>
<structuralConstraints>
<basicStructuralConstraints>

<flow name="f" from="inl" to="outl"/>

<containedProperty name="transmit"

flowlocation="f" />

<orderRelation below="transmit" above="any" flowlocation="f" />

</basicStructuralConstraints>
</structuralConstraints>
</componentInternals>
</component>

Fig. 9. Example: Internal view of composable component Sender

<structuralConstraints>
<basicStructuralConstraints>

</basicStructuralConstraints>
<contextDependencies>

<orderRelation below="any" above="timestamp" flowlocation="f" />

</contextDependencies>
</structural

Fig. 10. Example: Context dependent structural constraints

This means that this implementation version is freely
available and it has high demands for memory.

The requirements for the target may contain also a
the desired implementation parameters. Unlike the prop-
erties describing functional requirements for the target,
the implementation parameters will refer globally to all
components of the target system.

5 Repositories

The deployment of components is supported by informa-
tion from a component repository and an implementation
repository. The component repository contains CCDL
descriptions of components, that specify the component
externals and internals. The implementation repository
contains implementation descriptions for existing com-
ponent description.

Not every component description must have a known
implementation, the composable components usually do
not have known implementations. The implementation
description may add also the implementation character-
istics - a set of properties particular only for the imple-
mentation. This decoupling between component descrip-
tions and implementation descriptions facilitates an easy

deployment as well for using components as introducing
new component types.

The decision to use an existing component is made
by the Composer based on the component description.
Later, the Builder must find an implementation for that
component, using the implementation repository. While
the choice of a component made on hand of its properties
handles the functional features of the composed system,
the implementation characteristics are handled by the
choice of a right implementation, based on the imple-
mentation parameters. If there is no known implementa-
tion, or if the implementation is not according to all the
requirements, the component will be composed accord-
ing to the requirements and in the limits of the structural
constraints specified in the component description.

New components may be easily introduced to the
system, following a scenario like depicted in Figure 11,
that presents the actions to make a new component C' X
known to the system.

First, the new component has to be described, using
for its properties terms from the established domain vo-
cabulary. This vocabulary of properties must be part of
the corresponding domain specification (as for example
the OMG domain standards [25].

Secondly, a CCDL description of the new component
CX must be added. It could happen that special in-

12 Ioana Sora et al.:

Domain Specification/
Domain Standard

CCDL: The Composable Components Description Language

O/
vocabulaty

Component I mplementation
Repository Repository
CA

Update
structural
; { context-
{ dependent

constra nts

~——

CX

dd
escription

Add
Implementation(s)

Fig. 11. Deployment of repository tools. Example of introducing a new component CX to the system

teractions for the component C'X when used in certain
contexts should be specified. It is the task of the designer
of the component C'X to provide the updates for the use
of CX in these special contexts. For example, when us-
ing CX in the composition of C'B, special restrictions
might appear as to where C'X should be placed in CB’s
internal structure. The update lists provided by C'X will
become CB’s context-dependent structural constraints.

The final step is to provide implementation(s) for the
new component C'X, either in form of implementation
classes or a complete description of the internal structure
of a composed component. Composed components must
not have implementations specified.

6 Discussion and Related Work

Our insight is that a composition model should address
the architectural level, to be usable across different appli-
cations that share that architectural style. The approach
is to build a system by assuming a certain defined archi-
tectural style. This approach of component composition
being treated in the context of architecture is largely ac-
cepted in the research community ([16], [19], [30], [18],
[4], [21]), as it makes the problem manageable and elim-
inates the problems of architectural mismatch [13]. In
this context, we present a model for composable compo-
nents in multiflow architectures, together with CCDL,
its description language.

In specifying the architecture of dynamic systems,
different approaches have been used, most of them in

the category of architectural description languages. In
another approach [29], the Chemical Abstract Machine
(CHAM) formalism has been used to describe architec-
tural styles and reconfigurations.

CCDL is neither an interface description language
nor an architectural description language, but presents
some concepts related with both of them. Issues of com-
position of architectural components have been addressed
within ADL’s (see [23] for an comprehensive overview).
In these cases, deciding a good component combination
is done statically and relies completely on the applica-
tion programmer. Even within ADL’s that support dy-
namic architectures, the dynamism is a “programmed”
one. Here the goal of CCDL is different than that of
ADL’s. The role of ADL’s is to model and describe soft-
ware architectures, with their explicit configuration. The
information contained in an architectural description can
be used in tools to analyze properties of the architectural
structure. On the other hand, CCDL does not fully de-
scribe a composed system, neither a composed compo-
nent. It states only guidelines for future composition of
that system or component, in form of structural con-
straints.

The main particularity of CCDL is to describe min-
imal requirements for the system configuration, leaving
the configuration itself open. Tools take CCDL descrip-
tions and generate the concrete structural configuration
according to requirements. We might relate to xADL
[11], that has the capability to make conceptually dis-
tinction between architectural prescription (design-time
template) and architectural description (runtime state

Ioana Sora et al.: CCDL: The Composable Components Description Language 13

of system). However, xADL prescriptions accept a re-
duced degree of variability, it can specify that certain
components are optional. Nearer to our goal is ASTER
[20], an interconnection language for specification of ap-
plication requirements. It is used to automatically build
a distributed runtime system customized to meet the re-
quirements [21]. Georgiadis et al [14] propose the archi-
tectural specification of a self-organising system through
a set of constraints. These constraints define an architec-
tural style and can be used to generate or verify a specific
architectural instance for compliance. The composition
language PeerCAT [1], intended to describe composition
of peer services into new applications permits the decla-
ration of a minimal composition. This is different from
our structural constraints in the fact that an actual min-
imal structure is given. Also, pure service-oriented ap-
proaches as [5] do not consider that a composed appli-
cation has a structure with a defined topology.

The ensemble of our work can be put also in the con-
text of research on predictable component assembly. An
important research topic in component composition is
the prediction of the assembly-level properties of a com-
ponent composition [17], [6]. The structural constraints
as part of a composable component’s description specify
which properties put together and assembled will lead to
the higher-level assembly property. The advantage of the
structural constraints is that they are a flexible mech-
anism to enforce a predictable assembly of functional
(non-quantitative and non-computable) properties.

7 Conclusions

Automatic component composition decisions require pre-
cise specifications of the contracts of individual compo-
nents, of the functional and non-functional requirements
for the target and of additional structural constraints of
the target. In this article we present CCDL, a descrip-
tion language for composable components in multi-flow
architectures, that is able to specify all the needed cat-
egories.

We have introduced composable components as a
means to achieve finetuned customization of component
based multiflow architectures. A composable component
is simultaneously a building block and a composition
target. CCDL distinguishes itself especially through its
capability to express guidelines for the composition of
composable targets.

CCDL descriptions are used by automatic composi-
tion tools that implement requirements driven composi-
tions strategies in self-customizable systems.

References

1. Sascha Alda. Component-based self-adaptability in peer-
to-peer architectures. In Proceedings of the 26th Interna-

10.

11.

12.

13.

tional Conference on Software Engineering ICSE 2004,
2004.

. Robert Allen and David Garlan. A formal basis for ar-

chitectural connection. ACM Transactions on Software
Engineering and Methodology, 6(3):213-249, 1997.

Felix Bachman, Len Bass, Charles Buhman, Santi-
ago Comella-Dorda, Fred Long, John Robert, Robert
Seacord, and Kurt Wallnau. Technical concepts of
component-based software engineering, CMU /SEI-2000-
TR-008. Technical report, Carnegie Mellon Software En-
gineering Institute, May 2000.

Don Batory and Bart Geraci. Composition validation
and subjectivity in GenVoca generators. IEEE Transac-
tions on Software Engineering, 23(2), February 1997.
Humberto Cervantes and Richard Hall. Autonomous
adaptation to dynamic availability using a service-
oriented component model. In Proceedings of the 26th
International Conference on Software Engineering I[CSE
2004, pages 614-623, 2004.

Ivica Crnkovic, Heinz Schmidt, Judith Stafford, and
Kurt Wallnau, editors. Proceedings of the jth ICSE
Workshop on Component-Based Software Engineering
dedicated to Component Certification and System Pre-
diction, Toronto, Canada, 14-15 May 2001.

Ioana Sora. Model compozitional bazat pe compo-
nente compozabile in arhitecturi multi-flux (Composi-
tional model based on composable components in multi-
flow architectures, in Romanian). PhD thesis, Po-
litehnica University Timisoara, Romania, 2004.

Toana Sora, Vladimir Cretu, Pierre Verbaeten, and
Yolande Berbers. Automating decisions in component
composition based on propagation of requirements. In
Michel Wermelinger and Tiziana Margaria, editors, Fun-
damental Approaches to Software Engineering, Tth Inter-
national Conference, Proceedings, number 2984 in Lec-
ture Notes in Computer Science, pages 374—388. Springer
Verlag, 2004.

Ioana Sora, Frank Matthijs, Yolande Berbers, and
Pierre Verbaeten. Automatic composition of systems
from components with anonymous dependencies. In
Theo D’Hondt, editor, Technology of Object-Oriented
Languages, Systems and Architectures, pages 154—169.
Kluwer Academic Publishers, 2003.

Ioana Sora, Pierre Verbaeten, and Yolande Berbers. Us-
ing component composition for self-customizable sys-
tems. In I. Crnkovic, J. Stafford, and S. Larsson, editors,
Proceedings - Workshop On Component-Based Software
Engineering at IEEE-ECBS 2002, pages 23-26, Lund,
Sweden, 2002.

Eric M. Dashofy, Andre van der Hoek, and Richard N.
Taylor. A highly-extensible, XML-based architecture
description language. In Proceedings of the Work-
ing IEEE/IFIP Conference on Software Architectures
(WICSA 2001), Amsterdam, Netherlands, 2001.

David Garlan. Software architecture. In J. Marciniak, ed-
itor, Wiley Encyclopedia of Software Engineering. John
Wiley & Sons, 2001.

David Garlan, Robert Allen, and John Ockerbloom. Ar-
chitectural mismatch, or, why it’s hard to build systems
out of existing parts. In Proceedings of the 17th Interna-
tional Conference on Software Engineering, pages 179—
185, Seattle, Washington, April 1995.

14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Ioana Sora et al.: CCDL: The Composable Components Description Language

Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-
organising software architectures for distributed systems.
In Proceedings of the ACM SIGSOFT Workshop on Self-
healing Systems WOSS’02, 2002.

Apache Group. Xerces Java Parser.
http://www.apache.org, 2001.
Dieter K. Hammer. Component-based architecting

for component-based systems. In Mehmet Askit, edi-
tor, Software Architectures and Component Technology.
Kluwer, 2002.

Scott A. Hissam, Gabriel A. Moreno, Judith A. Stafford,
and Kurt C. Wallnau. Packaging predictable assembly.
In IFIP/ACM Working Conference on Component De-
ployment (CD2002), Berlin, Germany, June 20-21 2002.
Paola Inverardi and S Scriboni. Connectors synthesis for
deadlock-free component based architectures. In Pro-
ceedings of the 16th ASE, Coronado Island, California,
USA, November 2001.

Paola Inverardi and Massimo Tivoli. Correct and au-
tomatic assembly of COTS components: an architec-
tural approach. In Proceedings of the 5th ICSE Work-
shop on Component-Based Software Engineering, Or-
lando, Florida, USA, May 19-20 2002.

Valrie Issarny and Christophe Bidan. Aster: A frame-
work for sound customization of distributed runtime sys-
tems. In Proceedings of the 16th International Confer-
ence on Distributed Computing Systems, pages 586—-593,
Hong-Kong, May 1996.

Christos Kloukinas and Valerie Issarny. Automating the
composition of middleware configurations. In Automated
Software Engineering, pages 241-244, 2000.

Frank Matthijs. Component Framework Technology for
Protocol Stacks. PhD thesis, Katholieke Universiteit Leu-
ven, Belgium, December 1999.

N. Medvidovic and R. Taylor. A classification and com-
position framework for software architecture description
languages. IEEFE Transactions on Software Engineering,
Vol.26(No.1):70-93, January 2000.

Peyman Oreizy, Michael M. Gorlick, Richard N. Tay-
lor, Dennis Heimbigner, Gregory Johnson, Nenad Med-
vidovic, Alex Quilici, David S. Rosenblum, and Alexan-
der L. Wolf. An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems, 14(3):54—
62, May/June 1999.

The Object Management Group (OMG).
Catalog of Domain Specifications.

http://www.omg.org/technology/documents/domain_spec_catalog.htm

Clemens Szypersky. Component Software: Beyond Object
Oriented Programming. Addison-Wesley, 1997.

World Wide Web Consortium W3C. eX-
tensible Markup Language (XML) 1.0.
http://ww.w3.org/TR/1998 /REC-xml-19980210, 1998.

World Wide Web Consortium W3C. Xml schema.
http://ww.w3.org/XML/Schema, 2001.

Michel Wermelinger. Towards a chemical model for soft-
ware architecture reconfiguration. In Proc. of the jth
Intl. Conf. on Configurable Distributed Systems. IEEE
Computer Society Press, 1998.

David Wile. Revealing component properties through
architectural styles. Journal of Systems and Software,
Special Issue on Component-Based Software Engineer-
ing, 65(3):209-214, March 2003.

