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Abstract. Clustering is very often used for the purpose of architectural recon-
struction. This article proposes an approach of improving the quality of automatic
software architecture reconstruction results. This work investigates the impor-
tance of taking into account the right factors for the similarity metric: the strength
of direct coupling/cohesion between classes, indirect coupling as computed from
the topology of the dependency graph, and global architectural layering resulting
from the orientation of dependencies. These factors are considered individually
or combined as similarity metrics and used within a set of clustering algorithms.

1 Introduction

Software architecture is a model of the software system expressed at a high level of
abstraction, hiding details of implementation, algorithms, and data representation and
concentrating on the interaction of ”black box” elements. Knowing and having an ex-
plicit representation of the system architecture is essential for understanding, evaluating
and maintaining a large software application. Often, the documentation is incomplete,
outdated or is completely missing, only the code being available. Reconstructing the ar-
chitectural model from the available code remains the saving alternative in these cases.

The reverse engineering community has developed a lot of techniques to help re-
construct the architecture of software systems, as they aresurveyed and classified in
[DP09].

Quasi-automatic reconstruction techniques aim at finding the natural cluster struc-
ture of software systems, with as little user intervention as possible. Software clustering
refers to the decomposition of a software system into meaningful subsystems. To be
meaningful, the automatic approach must produce clusterings that can help developers
understand the system, grouping together parts that relateto each other from a logical
design point of view.

Our goal is to improve quasi-automatic reconstruction techniques, in order to obtain
a reconstructed architectural model of a better quality - one which is considered so by
a human expert.

This article is organized as follows: Section 2 resumes the state of the art and builds
the motivation for our approach. Section 3 states the goals of this work and introduces
our reconstruction approach. Experimental results demonstrating the advantages of this
approach are described in Section 4.



2 Background

Reconstructing the architecture of a software system can take one of the following ap-
proaches:

– The top-down approach, when certain assumptions of the overall system organiza-
tion are known and they are validated by examining the existing artifacts with help
of interactive tools in a human-controlled reconstructionprocess.

– The bottom-up approach, when (quasi)-automatic unsupervised tools build hypothe-
ses starting from the examination of the existing artifacts.

In the category of top-down, human-controlled or interactive approaches there are
notable tools such as: Rigi by H. Muller et al [MTW93]; the Reflexion Model tech-
nique of Murphy, Notkin, and Sullivan [MNS01]; the Reflexionmodel combined with
clustering [CKS07]; ACDC - the pattern driven approach of Tzerpos and Holt [TH00].

In the category of bottom-up, automatic or quasi-automaticapproaches for architec-
tural reconstruction, techniques have been imported from the domain of data mining.
Clustering algorithms have been largely used in data miningto identify groups of ob-
jects whose members are similar in some way. Clustering algorithms group together
entities into groups, by maximizing the sum of relationships between entities grouped
together and minimizing the sum of relationships between different groups. In reverse
software engineering, clustering is used for architectural reconstruction, by grouping
together in subsystems modules (classes, functions, etc) that relate to each other.

There are several research approaches in this domain, whichdiffer by:

– the graph clustering algorithm which is used [Wig97]
– the software-engineering defined criteria used for grouping modules together (the

similarity metric)

The basic assumption driving this software clustering approach is that software sys-
tems are organized into subsystems characterized by internal cohesion and loosely cou-
pling with each other. A reference tool of this category is Bunch, developed by Mitchell
and Mancoridis [MM06], using a search based algorithm (hillclimbing) and a modu-
larization quality metric MQ defined as a formula on couplingand cohesion.

As observed by many researchers, clustering software basedon a metric for simi-
larity and disimilarity derived only from coupling and cohesion does not provide sat-
isfactory results [eAG01]. Various researches have tried to do software clustering by
taking into account other categories of informations as similarity metrics: A form of
indirect coupling is taken into account by Chiricota [CJM03]. The LIMBO approach
of Andritsos and Tzerpos [AT05] considers even non-software informations, such as
historical data (time of last modification, author) held by version control system repos-
itories, the physical organization of applications in terms of files and folders. Anquetil
and Letherbridge [AL99] use for clustering the symbolic textual information available
in the identifier used as names.

Recent researches ([AL11], [BD11], [PHY11], [Muh12], [HWM12]) agree that un-
supervised clustering approaches based only on a coupling metric tend to produce re-
sults (architecture decompositions) that are non-acceptable for the domain experts.



3 Our Work

3.1 Goal and approach

Our goal is to investigate ways of improving the quality of bottom-up, automatic, un-
supervised reconstruction. We have built the ArchitectureReconstruction Tool Suite
(ARTs) as an extensible tool chain for experimenting with different methods for clus-
tering. In the architectural reconstruction community there have been developed a lot of
different approaches and methods but used and studied in isolation. Our goal is to inte-
grate into an architectural reconstruction toolsuite the different partial solutions, in order
to compare their relative efficiency and also study the ways how they can be combined.
Also, we propose a new approach of including extracted architectural information in
the grouping criteria.

The architecture of ARTs is depicted in Figure 1.
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Fig. 1.The Architectural Reconstruction Toolsuite (ARTs)

The input for ARTs are primary structural and dependency models extracted from
code by static analysis and represented according to the UNIQ-ART meta-model [Sor12].
The primary models represent relationships between theUnits(classes or modules) and
their parts.

Each tool of this chain accepts different plug-ins in order to customize it.
The central tool is theClusterFinder, which operates on a weighted graph repre-

senting an abstraction of the system in order to produce its decomposition in clusters.
It may be implemented by different clustering algorithms. Currently we have imple-
mented both flat decomposition algorithms as well as hierarchical decomposition algo-
rithms. The algorithms are:

– Minimum Spanning Tree based algorithms (MST [Zah71] and MMST [BT04])
– Metric Based ([CJM03]);



– Search based (hill-climbing)
– Hierarchical clustering: Single Linkage, Complete Linkage, Weighted Average,

Unweighted Average

The DSMBuilder selects information from the primary model and creates the ab-
stract weighted graph. Different grouping criteria can be used (in isolation or composed)
as factors leading to the weights values, as detailed in subsection 3.2.

In order to improve the clustering process, some preprocessings and postprocess-
ings can be performed, optionally, independent of the chosen clustering algorithm. We
implemented elimination of library (omnipresent) modules[MTW93] and orphan adop-
tion [TH97].

A clustering method, defined by the combination of grouping factors, clustering
algorithm, pre- and postprocessings, is evaluated by comparing its result with a given
authoritative decomposition. The algorithms which may be used in theComparer are
detailed in subsection 3.3.

3.2 Grouping criteria

Following three criteria can be used (in isolation or composed) as the grouping (simi-
larity) metric:

– the strength of the direct dependencies coupling (DC)
– indirect coupling (IC)
– global architectural information regarding the architectural layer (LA)

The direct coupling factor, which is the baseline grouping criteria, can be adjusted
by applying factors derived from the indirect coupling or global architectural informa-
tion. The total grouping factor (similarity metric value) between two units A and B is
given by aggregating the individual factors:

Similarity(A,B) = DC(A,B) · IC(A,B) · LA(A,B)

Also, in future work new grouping criteria could be added, for example introducing
another factor derived from the symbolic textual information extracted from the used
identifier names.

The direct coupling factor (DC) The main factor is the direct coupling factor which
quantifies the statical dependencies between units. A unit Adepends on a unit B if there
are explicit references in A to elements of B.

In previous work [SGG10] we empirically defined 11 differentdependency types,
characterized by a dependency type weightwDepType. The values of the weights have
been empirically finetuned in order to reflect the relative importance of different depen-
dencies types for the strength of the coupling.

The value of the direct coupling factor between A and B is given by the sum of all
dependency types that exist between them:

DC(A,B) =
∑

DepType

wDepType · countDepType(A,B)



For certain dependency typesdepType such as function calls or variable accesses,
the specific weightwDepType is adjusted with a countercountDepType(A,B) repre-
senting the relative number of the accesses from A to B, reported to the total number of
possible accesses.

The indirect coupling factor (IC) We start from the observation that if two modules
A and B have neighbors (modules they interact with) which also interacting with each
other, this corresponds to a form of indirect coupling. In this case, the two modules A
and B have a higher probability to be part of the same subsystem (cluster).

First we calculate the ESM (Edge Strength Metric) defined in [CJM03] value for
each edge of the given dependency graph.

To determine the importance of ESM value, a confidence levelcl ∈ [0; 1] is intro-
duced when computing the indirect coupling factor IC:

IC(A,B) = ESM(A,B) ∗ (1− cl)

Thus the higher the pre-given confidence level, the higher the impact of the IC factor
and the higher the importance given to cycles, with 0 meaningit will have no impact
in the algorithm used and 1 meaning it will have maximum impact (and as some of the
edges will have an ESM value of 0, it will practically cut someof the edges before the
algorithm).

The architectural layer distance factor (LA) One of the advantages of top-down
reconstruction approaches is that they start with some general assumptions about the
global architecture. In a bottom-up unsupervised approachwe may not have such a-
priori global architectural knowledge. We propose a new approach of includingex-
tracted architectural information in the grouping criteria.

One kind of architectural information which may be extracted in a bottom-up ap-
proach is layering information. Any system has a layered architecture, units belonging
to a layer may depend only on units belonging to lower layers.Layers are determined by
applying a partitioning algorithm like [SJSJ05] on the directed graph of dependencies.

We make the observation that two units that are situated in layers of very different
levels are highly unlikely to be part of the same architectural subsystem, even if there
is a strong dependency between them. On the other hand, two units that are situated on
the same or on close layers have a higher chance to be part of the same architectural
subsystem.

We defineδ as the absolute value of the difference between the layers ofA and B,
divided to the total number of layers in order to normalize the value:

δ(A,B) =
|Layer(A)− Layer(B)|

TotalLayers

The similarity metric is proportional with the architectural layer distance factor.

AL(A,B) = Ladjustement(δ(A,B))



The layer distance adjustement is a decreasing function

Ladjustement : [0, 1] → [0, 1]

We experimented with layer distance adjustement functionsdecreasing at different
rates, such as linear or exponential.

When applying any of the adjustement functions, units that are mutually dependent
and are situated on the same layer haveδ = 0, and the value of the linear or expo-
nential adjustement function is 1, thus the similarity is given only by the dependency
strength. For any other case, the bigger the distance is, thesmaller will be the value of
the adjustement function, reducing accordingly the dependency strength.

3.3 Validation

A clustering method is defined by the combination of groupingfactors, clustering algo-
rithm, pre- and postprocessings. A good method should produce results which are close
to the decomposition indicated by a human expert - the architect. A method is evaluated
by comparing the results it produces for a set of test systemswith the corresponding
authoritative decompositions of these systems.

Different strategies for comparing the similarity degree of two decompositions of
the same system have been proposed [WT04]. In this work we haveso far used the
MoJo metric, but other metrics can be also added to theComparator. The MoJo metrics
counts the minimum number of operations (moves and joins) one needs to perform in
order to transform one decompositionC1 into another decompositionC2. The direct
MoJo metric is actually a disimilarity measure, since a big value of the metric indicates
that the decompositions are not similar. In order to have a similarity measure, we use
another quality measurement based on MoJo, the MoJo similarity measurement which
is defined as:

similarityMoJo(C1, C2) = [1−
MoJo(C1, C2)

N
]× 100%

This metric describes the normalized similarity degree of two clusterings,C1 and
C2, of a system withN units.

TheComparator automatically calculates the MoJo similarity metric and applies it
to check the compliance between the clusterings produced automatically by the tool and
a reference clustering solution given by the software architect expert. Since the MoJo
metric is not symmetric, for a pairC1,C2 the metric is applied in both directions and
the maximum value is taken.

4 Results

4.1 Tuning of algorithms

First, all implemented algorithms required a tuning process in order to establish the
ranges of optimal values for their specific parameters.



Each algorithm has its very own set of specific parameters: The MST algorithm
has as parameter aThreshold value that is used by the algorithm as a decision factor
when edge removal is considered; The MMST algorithm has as parameter aCloseness
factor value that represents the threshold used by the algorithm asa decision factor
when uniting two clusters is considered. The Metric Based algorithm has as parameter
a Threshold value that is used as a decision factor when considering removing an edge
together with the ESM metric value. The Hill Climbing algorithm has as parameters the
climbDegree which specifies how many of the possible variations should beconsidered
at each step and thegenerationMethod. The Hierarchical algorithms have as parameters
a granularity factor which determines the point of cutting off the final clusters.

In order to determine the optimal parameter values, we proceeded as follows: We
choose a set of test systems to be clustered and we determinedtheir reference decom-
positions, either by detailed code inspection or by requesting the opinion of their de-
velopers. For each algorithm, several runs have been made with different values for the
specific parameters, for all test system. We noticed that theparameter values for which
the obtained decomposition is closest to the reference (themaximum of the MoJo sim-
ilarity) may vary from one system to another, thus some average values have been de-
termined as the recommended values for the parameters of each algorithm. Discussing
the exact parameter values obtained by tuning for each algorithm is not relevant for the
main goal this paper; for example, an analysis of parameter values for the MST and
MMST algorithms has been included in [SGG10].

Also, tuning has shown that general pre- and postprocessings such as elimination of
omnipresent modules (library classes) and orphan adoptionhave a clear positive impact
and have been included by default in all further experiments.

4.2 Evaluation of the impact of different grouping criteria

After the step of tuning each algorithm, we carried out experiments in order to compare
the results when composing the grouping criteria from different factors : Direct coupling
only (DC) which represents the baseline of other comparisons, Direct coupling and
Layer architecture (DC + LA), Direct coupling and Indirect coupling (DC + IC), Direct
coupling, Indirect coupling and Layer architecture (DC + IC+ LA).

We carried out these experiments looking for the impact of using different grouping
criteria on the quality of the automatic decomposition, measured by its closeness to the
authoritative decomposition.

Table 1 contains the results obtained when applying the different clustering algo-
rithms, with different grouping criteria, for the clustering of a test systems. The test
system analyzed in Table 1 is the ARTs toolsuite implementation, a medium-sized sys-
tem of 360 classes, and its architecture is well known to the experimenters. The table
presents the maximum values of the MoJo similarity metric, obtained for any specific
parameter settings for each algorithm. Columns∆1, ∆2 and∆3 compute the differ-
ences in MoJo similarity, obtained when using different additional factors vs. the base-
line factor.

As the table shows, including an Architectural Layer factorin all clustering algo-
rithms always produces decompositions that are closer to the reference solution. Includ-
ing an Indirect Coupling factor, however, does not have a clear positive impact on the



Table 1.Experimental results - influence of different grouping factors on the clustering results

Factors DC DC + LA ∆1 DC + IC ∆2 DC+IC+LA ∆3

[0] [1] [1]-[0] [2] [2]-[0] [3] [3]-[0]

Algorithms

MST 64.2 75.8 11.6 55.6 -8.6 71.1 6.9

MMST 57.5 65.6 8.1 50.7 -6.8 60.3 2.8

Metric 70.8 74.6 3.8 76.2 5.4 72.2 1.4

HillClimb 47.8 61.2 13.4 49.1 1.3 59.1 11.3

SL 71.3 82.7 11.4 71.5 0.2 81.2 9.9

WA 66.9 76.5 9.6 64.3 -2.6 73.8 6.9

average

improvements 9.65 -1.85 6.53

quality of the resulting decomposition. Including both Architectural Layer and Indirect
Coupling factors is not better than using only the Architectural Layer factor.

We have used several other test systems, some developed as university projects, and
some open source software such as junit, xercesImpl, jEdit,Ant. We determined their
reference decompositions either by performing detailed analysis of their code or by
asking their developers. The sizes of the test systems go from 110 classes up to 1400
classes. The systems are characterized by properties such as: Number of architectural
layers; Dependency density; Average layer distance of dependencies.

By experimenting also with these systems, we obtained average improvement val-
ues for∆1, ∆2, ∆3 in the same ranges as in Table 1. We can thus conclude that the
architectural layer factor always improves the quality of the clustering result, and the
exponential adjustement function works better than the linear one. From a quantitative
point of view, the improvements are biggest for systems withmany classes that that
have many dependencies spanning big layer distances.

We concluded that the Indirect Coupling factor does not bring real improvements.
It also has a negative effect on many cases. Although it may seem surprising, we can
explain this finding by the following facts: the Indirect Coupling as defined by the Edge
Strength Metric hampers the grouping of inheritance hierarchies; also, in the case of
smaller systems, the Indirect Coupling metric tends to agglomerate everything in a few
very big clusters. The granularity of the selected reference model also affects the results,
positive results were obtained on large and/or complex systems or when using a more
coarse grained reference model.

We can conclude that it is possible to improve the quality of the automatic decom-
position, bringing it closer to the authoritative decomposition, by combining into the
grouping criteria an architectural layer factor which may be computed at the recon-
struction time in a bottom-up manner.

Also, the experiments pointed out another aspect which is worth to be investigated
in future work - how the different factors of the similarity metric may have an influence



on the stability of the clustering algorithms, by increasing the range of parameter values
that lead to optimal results and making these less dependentfrom the analyzed system.

5 Conclusion

In this work we investigated how to improve the results of clustering for automatic
software architecture reconstruction and we propose an approach based on combining
multiple grouping criteria: the strength of direct coupling/cohesion between classes,
the indirect coupling as computed from the topology of the dependency graph, and the
global architectural layering resulting from the partitioning of directed dependencies.

The conclusion of this work is that the results of software clustering can be im-
proved by combining traditional clustering approaches with partitioning. Our exper-
iments show that this way of taking into account the global topology of the whole
dependency graph in form of the Architectural Layer distance factor is more effective
than taking into account only local topologies of the dependency graph in form of the
Indirect Coupling factor. This conclusion applies to all the investigated clustering algo-
rithms, thus it demonstrates that the improvement is due to the grouping criteria.
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