Available online at www.sciencedirect.com

ScienceDirect

&%) The Journal of

A2

Systems and

sl Software

ELSEVIER The Journal of Systems and Software 80 (2007) 1941-1955
www.elsevier.com/locate/jss
COCOA: COnversation-based service COmposition
in pervAsive computing environments
with QoS support
Sonia Ben Mokhtar *, Nikolaos Georgantas, Valérie Issarny
INRIA Rocquencourt, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex, France
Available online 12 March 2007
Abstract

Pervasive computing environments are populated with networked services, i.e., autonomous software entities, providing a number of
functionalities. One of the most challenging objectives to be achieved within these environments is to assist users in realizing tasks that
integrate on the fly functionalities of the networked services opportunely according to the current pervasive environment. Towards this
purpose, we present COCOA, a solution for COnversation-based service COmposition in pervAsive computing environments with QoS
support. COCOA provides COCOA-L, an OWL-S based language for the semantic, QoS-aware specification of services and tasks, which
further allows the specification of services and tasks conversations. Moreover, COCOA provides two mechanisms: COCOA-SD for the
QoS-aware semantic service discovery and COCOA-CI for the QoS-aware integration of service conversations towards the realization of
the user task’s conversation. The distinctive feature of COCOA is the ability of integrating on the fly the conversations of networked
services to realize the conversation of the user task, by further meeting the QoS requirements of user tasks. Thereby, COCOA allows
the dynamic realization of user tasks according to the specifics of the pervasive computing environment in terms of available services

and by enforcing valid service consumption.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Service oriented architectures; Pervasive computing; Semantic web; Dynamic service composition; Workflow; QoS

1. Introduction

Pervasive computing environments are populated with
networked services, i.e., autonomous software entities, pro-
viding a number of functionalities. One of the most challeng-
ing objectives to be achieved within these environments is to
assist users in realizing tasks that integrate functionalities
of the networked services (Sousa and Garlan, 2002), so that
tasks may be requested anytime, anywhere, and realized on
the fly according to the specifics of the pervasive computing
environment. To illustrate the kind of situations that we
expect to make commonplace through our research, we pres-
ent the following scenario (see Fig. 1):

* Corresponding author.
E-mail addresses: Sonia.Ben_Mokhtar@inria.fr (S. Ben Mokhtar),
Nikolaos.Georgantas@inria.fr (N. Georgantas), Valerie.Issarny@inria.fr
(V. Issarny).

0164-1212/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/.jss.2007.03.002

... Today, Jerry is going to travel by train from Paris to
London, where he is going to give a talk in a working
seminar. At the train station, Jerry has the privilege of
waiting in the V.I.P. room. In this room, besides the
wonderful French buffet, a number of digital services
are available, among which a streaming service used to
stream digital resources on users portable devices, and
a large flat screen that continuously disseminates news.
Today, exceptionally, Jerry has arrived early at the train
station. When he enters the V.I.LP. room, nobody is
there. He decides to watch a movie while waiting for
his train departure. Jerry uses the e-movie application
that he has on his PDA, to which he gives the title of
the movie that he wants to watch. This e-movie applica-
tion is able to discover video servers as well as display
devices available in the reach of the user and to select
the most appropriate device. More precisely, if a larger
screen than the user’s PDA screen is found in the user’s

mailto:Sonia.Ben_Mokhtar@inria.fr
mailto:Nikolaos.Georgantas@inria.fr
mailto:Valerie.Issarny@inria.fr

1942 S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955

o
- f r' ‘

¢ .®
e
e e

Fig. 1. Scenario.

reach, and if the user’s context allows it (e.g., nobody
else is in the same room), this application displays the
movie on that screen. Furthermore, if the user’s context
changes (e.g., the user leaves the room or a person enters
in the room), the application is able to transfer the video
stream to the user’s PDA. When the train arrives at the
station, Jerry gets on the train and continues to watch
the movie on his PDA until the train departure...”.

Hardware resources like displays, and software
resources like multimedia streaming servers constitute net-
worked capabilities that may conveniently be composed to
realize user tasks enabling, for instance, the entertainment
of nomadic users. Still, developing pervasive applications
as user tasks that benefit from the open networking envi-
ronment raises major software engineering challenges.
Functional capabilities accessible in the specific networked
environment must be abstracted in an adequate way so that
applications may specify declaratively required functional
capabilities for which concrete instances are to be retrieved
on the fly. Furthermore, consumption of networked
capabilities shall be achieved in a way that guarantees
correctness of the application, both functionally and non-
functionally. Another key requirement to indeed enable
pervasive applications is for the network to be truly open,
with integration of most networked resources, without
being unduly selective regarding hosted software and hard-
ware platforms. Specifically, the pervasive computing envi-
ronment shall be able to integrate most networked
resources, further allowing the dynamic composition of
applications out of capabilities provided by resources,
when applications get either requested by users or proac-
tively provided by the environment.

The Service-Oriented Architecture (SOA) paradigm,
and its associated technologies such as Web services,
appears as the right paradigm to engineer pervasive appli-
cations. Functional capabilities provided by networked
resources may conveniently be abstracted as services. Spe-
cifically, a pervasive service corresponds to an autonomous
networked entity, which provides a set of capabilities. A
service capability then corresponds to either a primitive
operation of the service or a process composing a number
of operations (also referred to as conversation) (Ben

Mokhtar et al., 2006a). Consumption of services by client
applications (which may themselves realize more complex
services available on the network) further requires service
clients and providers to agree on both the functional and
non-functional semantics of capabilities, so that they can
integrate and interact in a way that guarantees dependable
service provisioning and consumption. Such an agreement
may be carried out at the syntactic level, assuming that
clients and providers use a common service description
syntax for denoting, besides service access protocols, as
well, service semantics. This assumption is actually made
by most software platforms for pervasive computing
(e.g., Gaia (Roman et al., 2002), Aura (Sousa and Garlan,
2002), WSAMI (Issarny et al., 2004)). However, such
vision based on the strong assumption that service develop-
ers and clients describe services with identical terms world-
wide, is hardly achievable in open pervasive environments.
This raises the issue of syntactic heterogeneity of service
descriptions. A promising approach towards addressing
syntactic heterogeneity relies on semantic modeling of the
services’ functional and non-functional features. This con-
cept underpins the Semantic Web (Berners-Lee et al.,
2001). Combined with Semantic Web technologies,' nota-
bly ontologies, for the semantic description of the services’
functional and non-functional features, Web services can
be automatically and unambiguously discovered and con-
sumed in open pervasive computing environments. Specif-
ically, ontology-based semantic reasoning enables
discovering networked services whose published provided
functionalities match a required functionality, even if there
is no syntactic conformance between them. A number of
research efforts have been conducted in the area of seman-
tic Web service specification, which have led to the develop-
ment of various semantic service description languages,
e.g., OWL-S,> WSDL-S,> WSMO,* FLOWS.> Among
these efforts OWL-S, which is based on the Web Ontology

! Semantic Web: http://www.w3.0rg/2001/sw/.

2 OWL-S: http://www.daml.org/services/owl-s.

3 WSDL-S: http://Isdis.cs.uga.edu/projects/meteor-s/wsdl-s/.
4 WSMO: http://www.wsmo.org/.

5> FLOWS: http://www.daml.org/services/swsf/1.0/overview/.

http://www.w3.org/2001/sw/
http://www.daml.org/services/owl-s
http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/
http://www.wsmo.org/
http://www.daml.org/services/swsf/1.0/overview/

S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955 1943

Language (OWL),® a W3C recommendation, presents a
number of attracting features. Indeed, OWL-S supports
the concise specification of service functional capabilities
in the service profile on the one hand, as well as the detailed
specification of the corresponding service conversations on
the other hand, which in turn provides a basis for Web ser-
vice composition.

Building upon semantic Web services, and particularly
OWL-S, we present COCOA, a solution for QoS-aware
COnversation-based service COmposition in pervAsive
computing environments. COCOA allows the dynamic
realization of user tasks from networked services available
in the pervasive computing environment. A preliminary
effort for defining COCOA has been presented in Ben
Mokhtar et al. (2006a). In this article, we present the exten-
sion of COCOA with support of Quality of Service (QoS).
COCOA is part of a larger effort on the development of an
interoperable middleware for pervasive computing envi-
ronments investigated in the IST Amigo project.” COCOA
is composed of three major parts. First, COCOA-L, is an
OWL-S based language for semantic specification of ser-
vices and tasks in pervasive environments. COCOA-L
allows the specification of requested and advertised service
capabilities, service conversations, as well as service QoS
properties. Second, COCOA-SD realizes the discovery
and selection of networked services candidate to the com-
position. Thanks to the semantic reasoning enabled by
the use of ontologies, COCOA-SD enables a thorough
matching of service functionalities complemented with
QoS-based matching. Finally, COCOA-CI performs
dynamic QoS-aware composition of the selected services
towards the realization of the target user task. The distinc-
tive feature of COCOA-CI is the integration of services
modeled as conversations, to realize a user task also mod-
eled as a conversation. This provides a mean to deal with
the diversity of services in pervasive computing environ-
ments. Indeed, as shown in Fig. 2, integrating service con-
versations for the realization of a user task’s conversation
enables the same user task to be performed in different
environments by means of several composition schemes
(e.g., by binding to a single service, by composing individ-
ual service capabilities, by composing fragments of service
conversations or finally by interleaving fragments of service
conversations). Thus, the realization of the task’s conversa-
tion is adaptive according to the specifics of the environ-
ment in terms of available networked services and their
provided conversations. Moreover, our approach enforces
a valid consumption of the composed services, ensuring
that their conversations are fulfilled.

To evaluate our approach, we have implemented a pro-
totype of COCOA; experimental results allow us to vali-
date the relevance of the employed paradigms in
pervasive computing environments.

® OWL: Web Ontology Language. http://www.w3.org/TR/owl-ref]/.
7 Amigo: ambient intelligence for the networked home environment.
http://www.extra.research.philips.com/euprojects/amigo/.

@0
Ooo 0 9@

o @ 9
Workflow Composition O ® @ o Binding to a Single Service
® @
User task
®6
®®

Workflow Inteleaving

Composition of Individual Capabilities

Fig. 2. Flexibility enabled by COCOA.

The remainder of this paper is structured as follows.
First, we present related research efforts in the area of
dynamic composition of user tasks in pervasive computing
environments, as well as conversation-based service com-
position (Section 2). Then, we introduce COCOA-L, our
language for semantic, QoS-aware specification of services
and tasks (Section 3). Building on COCOA-L, we present
formalisms enabling the realization of COCOA in Section
4, and the mechanisms constituting COCOA in Section 5.
More specifically, the latter concerns COCOA-SD our
approach to semantic service discovery, and COCOA-CI
our approach to conversation integration. In Section 6,
we assess our approach based on its performance evalua-
tion. Finally, we conclude with a summary of our contribu-
tions and future work in Section 7.

2. Service composition in pervasive computing environments:
state of the art

As introduced in the previous section, a user task is a
software application available on the user’s device that is
abstractly described in terms of functionalities to be inte-
grated. These functionalities have then to be dynamically
provided by the environment. Dynamic realization of user
tasks is one of the major challenges in mobile environ-
ments, as it allows users to perform potentially complex
software applications opportunely according to the
surrounding environment. A number of research efforts
have been conducted in the area of dynamic realization
of user tasks in pervasive computing environments. The
Aura project (Sousa and Garlan, 2002) defines an architec-
ture that realizes user tasks in a transparent way. The user
tasks defined in Aura are composed of abstract services to
be found in the environment. Gaia (Roman et al., 2002) is a
distributed middleware infrastructure that enables the
dynamic deployment and execution of software applica-
tions. In this middleware, an application is mapped to
available resources of a specific active space. This mapping
can be either assisted by the user or automatic. Gaia sup-
ports the dynamic reconfiguration of applications. For
instance, it allows changing the composition of an applica-
tion dynamically upon a user’s request (e.g., the user may
specify a new device providing a component that should
replace a component currently used). Furthermore, Gaia
supports the mobility of applications between active spaces

http://www.w3.org/TR/owl-ref/
http://www.extra.research.philips.com/euprojects/amigo/

1944 S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955

by saving the state of the application. Both of the previous
platforms introduce advanced middleware to ease the
development of pervasive applications composed out of
networked resources. However, they are too restrictive
regarding the networked resources that may be integrated
since resources have to host the specific middleware to be
known by pervasive applications. Furthermore, both
approaches assume framework-dependent XML-based
descriptions for services and tasks. In other words, both
approaches assume that services and tasks of the pervasive
computing environment are aware of the semantics under-
lying the employed XML descriptions. However, in open
pervasive environments it is not reasonable to assume that
service developers will describe services with identical terms
worldwide. This raises the issue of syntactic heterogeneity
of service interfaces. Indeed, while building upon service
oriented architectures (e.g., Web services) resolves the het-
erogeneity of services in terms of employed technologies,
interaction with services is based on the syntactic confor-
mance of service interfaces, for which common understand-
ing is hardly achievable in open pervasive computing
environments. A key requirement for enabling the dynamic
realization of user tasks in pervasive environments con-
cerns expressing the semantics of services and tasks.

A promising approach addressing the semantic model-
ing of information and functionality comes from the
Semantic Web paradigm (Berners-Lee et al., 2001). There,
information, originally comprehensible only by humans, is
enriched with machine-interpretable semantics, so as to
allow its automated manipulation. Such semantics of an
entity encapsulate the meaning of this entity by reference
to a structured vocabulary of terms (ontology) representing
a specific area of knowledge. Ontology languages support
formal description and machine reasoning on ontologies;
the Web Ontology Language (OWL)® is a recent recom-
mendation by W3C. These notions come from the knowl-
edge representation field and have been applied and
further evolved in the Semantic Web domain. Then, a nat-
ural evolution has been the combination of the Semantic
Web and Web Services into Semantic Web Services (The
DAML Services Coalition, 2004). This effort aims at the
semantic specification of Web services towards automating
Web services discovery, invocation, composition and exe-
cution monitoring. Hence, a number of research efforts
have been proposed for the semantic specification of Web
services. For instance, the latest WSDL (2.0) standard does
not only support the use of XML Schema, but also pro-
vides standard extensibility features for using, e.g., classes
from OWL ontologies to define Web services input and
output data types. A recent proposal for the semantic spec-
ification of Web services is the Web Services Modeling
Ontology (WSMO), which is specified using the Web Ser-
vice Modeling Language (WSML). Besides service specifi-
cation, this ontology provides support for mediators,

8 OWL: http://www.w3.org/TR/owl-ref/.

service:ServiceModel

'\service:describes* ervice:describedBy

—— service:Service

~

('servioe:presems‘ service:preseniedBy*\-.\service:supporls}ervice:supporledBy

.y
service:ServiceProfile

Fig. 3. OWL-S top level ontology.

service:ServiceGrounding

which can resolve mismatches between ontologies or ser-
vices. METEOR-S (Patil et al., 2004) is another proposal
for enhancing Web service descriptions and enabling Web
service composition. METEOR-S uses DAML + OIL’
(the direct precursor to OWL) ontologies to add semantics
to WSDL and UDDI.

The Web Service Semantics (WSDL-S) proposal, com-
ing from the METEOR-S project, also annotates Web ser-
vices with semantics, using references to concepts from,
e.g., OWL ontologies, by attaching them to WSDL input,
output and fault messages, as well as operations. The
First-Order Logic Ontology for Web Services (FLOWS)
is a recent proposal for the semantic specification of Web
services. It has a well defined semantics in first-order logic
enriched with support of Web based technologies (e.g.,
URIs, XML). FLOWS encloses parts of other languages
and standards (e.g., WSMO, OWL-S, PSL (ISO 18629))
and supports a direct mapping to ROWS, another lan-
guage from the same consortium based on logic program-
ming (i.e., rules). OWL-S is a Web service ontology
specified in OWL, which is used to describe semantic
Web services. A service description in OWL-S is composed
of three parts : the service profile, the process model and the
service grounding (see Fig. 3). The service profile gives a
high level description of a service and its provider. It is gen-
erally used for service publication and discovery. The pro-
cess model describes the services behavior as a process.
This description contains a specification of a set of sub-pro-
cesses coordinated by a set of control constructs. These
control constructs are: Sequence, Split, Split + Join, Choice,
Unordered, If-Then-Else, Repeat-While, and Repeat-Until.
The sub-processes can be either composite or atomic. Com-
posite processes are decomposable into other atomic or
composite processes, while atomic ones correspond to
WSDL operations. The service grounding specifies the
information necessary for service invocation, such as com-
munication protocols, message formats, serialization,
transport and addressing information. The service ground-
ing uses WSDL binding information. More precisely, it
defines mapping rules to link OWL-S atomic processes to
WSDL operations.

In the area of ontology-based dynamic service composi-
tion in pervasive environments, an effort based on OWL-S

° DAML + OIL: http://www.w3.org/TR/daml+oil-reference.

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/daml+oil-reference

S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955 1945

has been proposed in Masuoka et al. (2003). In this
approach called Task Computing, services of the pervasive
computing environment are described as semantic Web ser-
vices using OWL-S. Each user of the pervasive computing
environment carries a composition tool that discovers on
the fly available services in the user’s vicinity and suggests
to the user all the possible compositions of these services
based on their semantic inputs/outputs. While this
approach validates the relevance of semantic Web technol-
ogies in pervasive computing environments, it presents
some drawbacks. For instance, suggesting to the user all
the possible compositions of networked services requires
that the user selects the right composition among the sug-
gested ones, which can be inconvenient for mobile users
of the pervasive computing environment. Indeed, the per-
vasive computing environment should minimize the users’
distractions by enabling the automatic and transparent
deployment and execution of user tasks. Furthermore,
the services to be composed are considered as providing a
single functionality, while more complex services (e.g.,
composite services specified with their corresponding con-
versation) are not considered for the composition. Such
composition, involving services or realizing tasks described
with their conversations, identified as conversation-based
service composition, allows the realization of more com-
plex user tasks.

In the last few years a number of research efforts have
been conducted in the area of conversation-based service
composition (Bernstein and Klein, 2002; Aggarwal et al.,
2004; Majithia et al., 2004; Bansal and Vidal, 2003; Brogi
et al., 2005). For instance, Bernstein and Klein (2002) pro-
pose to describe services as processes, and define a request
language named PQL (Process Query Language). This lan-
guage allows finding in a process database those processes
that contain a fragment that corresponds to the request.
While this approach proposes a process query language
to search for a process, it does not handle process integra-
tion. Thus, the authors implicitly assume that the user’s
request is quite simple and can be performed by a single
process. On the contrary, in our approach a composition
effort is made to reconstruct a task conversation by inte-
grating services conversations.

Aggarwal et al. propose to describe a task conversation
as a BPEL4WS' workflow (Aggarwal et al., 2004). This
description may contain both references to known services
(static links) and abstract descriptions of services to be inte-
grated (service templates). At execution time, services that
match the service templates are discovered, and the task’s
workflow is carried out by invoking the selected services.
This approach proposes a composition scheme, in which
a set of services are integrated to reconstruct a task’s con-
versation. However, the services being integrated are rather
simple. Indeed, each service is described at the interface

1 BPEL4WS: http://www-128.ibm.com/developerworks/library/
ws-bpel/.

level without describing the service conversation. On the
contrary, we consider services as entities that can behave
in a complex manner, and we try to compose these services
to realize the user task’s conversation.

Another conversation-based matching algorithm is pro-
posed by Majithia et al. (2004). In this approach, the user’s
request is specified at the interface level and is mapped to a
workflow. Then, service instances that match the ones
described in the workflow, in terms of inputs, outputs,
pre-conditions and effects, are discovered in the network,
and a concrete workflow description is constituted. As
for the previous approaches, the service composition
scheme that is proposed does not involve any conversation
integration, as the Web services are only described at the
interface-level.

The work proposed by Bansal and Vidal (2003) uses the
OWL-S process model to match services. In their
approach, the authors consider a user request in the form
of required inputs/outputs, and assume a repository of
OWL-S Web services. Then, they propose a matching algo-
rithm that checks whether there is a process model in the
repository that meets the desired inputs/outputs. Brogi
et al. (2005) have proposed an enhancement of this last
algorithm by performing a composition of services’ process
models to respond to inputs/outputs of the user’s request.
This last effort is close to our work, as an effort of integrat-
ing conversations is investigated. However, some differ-
ences remain. The main difference is that the authors
consider that the user request can be expressed in the form
of a list of inputs/outputs. While this is an interesting
assumption, this implicitly prevents the user from perform-
ing complex conversations. Indeed, the algorithm com-
poses in a pipe and filter like-way, atomic processes that
are compatible in terms of provided outputs and requested
inputs (signatures). While this strongly guarantees that the
composed services will be able to exchange information, it
weakly guarantees that the resulting composition will pro-
vide the user with the expected semantics. On the contrary,
we consider that the user’s request is expressed as a conver-
sation, which guarantees that the resulting composition will
indeed meet the user task’s expected behavior.

The QoS-aware dynamic realization of tasks in perva-
sive computing environments through the integration of
service conversations calls for a language that allows the
semantic-aware description of services and of tasks’ func-
tional and non-functional capabilities, as well as of ser-
vices’ and tasks’ conversations. For this purpose, we
present in the following section COCOA-L, a language
for specification of services and tasks of the pervasive
environment.

3. COCOA-L: an OWL-S based service and task description
language

We describe herein COCOA-L, an OWL-S based lan-
guage for the specification of networked services and user
tasks in pervasive environments. This language extends

http://www-128.ibm.com/developerworks/library/ws-bpel/
http://www-128.ibm.com/developerworks/library/ws-bpel/

1946 S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955

OWL-S in order to fit the requirements of service composi-
tion in pervasive computing environments. Specifically,
COCOA-L allows the specification of:

(1) Services’ and tasks’ advertised and requested func-
tional capabilities;

(2) Services’ and tasks’ conversations for modeling their
behavior; and

(3) Services’ and tasks’ QoS properties.

The UML diagram depicted in Fig. 4 represents the main
conceptual elements of COCOA-L with respect to (1), (2)
and (3). These elements are further detailed in the following
three sections. Note that in this diagram, colored boxes are
those corresponding to reused OWL-S elements.

3.1. Requested and advertised capabilities

At the heart of COCOA-L, we distinguish the notion of
capability. A capability characterizes a functionality that
might be requested or advertised by a service/task. A capa-
bility is realized by the invocation of a set of operations, i.e.,
a sequence of messages exchanged between a client and a
service provider (e.g., WSDL operations). A requested capa-
bility has a set of provided inputs, a required category, and a
set of required outputs and QoS properties; while an adver-
tised capability has a set of required inputs, a provided cat-
egory, and a set of provided outputs and QoS properties.

In COCOA-L, both user tasks and services are specified
with a conversation, which comprises respectively requested
and advertised capabilities. When a user task is being per-
formed, its requested capabilities have to be bound to
advertised capabilities of networked services.

3.2. Service conversation specification

A conversation represents the coordination of a set of
capabilities by control constructs (e.g., Sequence, Parallel,

Advetised Capability

provides requires prowdes

% .
‘ Category | | Input || Output |

~
Proviges requipks y’é
requires

Rquested Capability

35 | yser Task

<<enumeration>>
Control Construct

+Sequence
+Choice
+IF-Then-Else

+While-Repeat
+Repeat-Until
+Unordered
+5plit
+Split-Join

Fig. 4. COCOA-L.

Choice constructs). In COCOA-L, we use the OWL-S con-
trol constructs for coordinating capabilities of services and
tasks. Due to their involvement in a conversation, capabil-
ities have data and control dependencies between each
other. Control dependencies are those due to the structure
of the conversation. Specifically, two capabilities C; and C,
are said to have a control dependency if C; is prior to C; in
the conversation, and in order to enforce a valid service/
task consumption C; must be performed before C, when
the service/task is being performed. Nevertheless, when
realizing user tasks, the interleaving of multiple service con-
versations is supported as long as the services control
dependencies are fulfilled. For instance, if the user task
conversation is a sequence of the four capabilities Sequen-
ce(Cq, C5, C3,Cy) and the two services to be composed S
and S, have respectively the two following conversations:
Sequence(Cy, C3) and Sequence(C,, C4), a composition that
interleaves S, and S, conversations, while meeting S; and
S, control dependencies, is given as follows:

Sequence(S1 . Cl,Sz . Cz,Sl . C3,S2 . C4)

A data dependency between two capabilities C; and C,
is specified when data produced by C; must be consumed
by C, and only by C,. When a data dependency is specified
in a user task conversation, this means that the correspond-
ing two capabilities must be provided by the same service.
For instance, when realizing a user task comprising a book-
ing and payment capabilities for a hotel room, one can
imagine that it is not possible to use the booking capability
of a hotel reservation service and the payment capability of
another hotel reservation service. In the example of Fig. 5,
a data dependency is specified between the capabilities
Browse and Get Stream of the e-movie application, which
means that these two capabilities must be provided by
the same networked service. If a data dependency is speci-
fied in a service conversation, this means that the corre-
sponding capabilities must be performed in sequence
without interleaving with other capabilities outside the ser-
vice conversation.

COCOA-L further supports the specification of data
flow between capabilities. Specifically, data flow specifies
which output data produced by a capability may be con-
sumed by another capability. Data flow specification is
nevertheless different from data dependencies in the fact
that it does not drive the service selection process. For
instance, if the user task contains the specification of a data
dependency between two capabilities, it will drive the selec-
tion of services that provide both capabilities in the same
conversation, while specifying a data flow relation does
not lead to any constraint in service selection. Indeed, the
selection of two capabilities that belong to two different
services may be performed, as long as the selected capabil-
ities are compatible in terms of inputs/outputs to be
exchanged with respect to the data flow specification.

Our objective is to realize user tasks based on their con-
versation specification through the integration of services
also specified with their conversation. This integration

S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955 1947

e)
/ \
L Search Local
Browse | Display Display
v I i
Search I Get
Display Stream
v | .
Get [| Get
Striam Context
Get
Context
@ v
No e Local
Display
A
Local
Display

Required Capability I:]

Control dependency —— g

User's e-Movie Application | Data dependency

. _/

Fig. 5. The e-movie application.

has to fulfill both data and control dependencies of user
tasks and services.

3.3. Service QoS specification and measurement

3.3.1. QoS specification

QoS specification associated with the dynamic composi-
tion of user tasks is concerned with capturing the user tasks
QoS requirements as well as services QoS properties. QoS
specification should: (1) allow the description of both
quantitative (e.g., service latency) and qualitative (e.g.,
CPU scheduling mechanism) QoS attributes; and (2) be
declarative in nature, that is, specify only what is requested,
but not how the requirements should be implemented by
services (Aurrecoechea et al., 1998).

In the following, QoS category refers to a specific non-
functional property of a service that we are interested in
(e.g., performance). Every category consists of one or more
dimensions, each representing one attribute of the category.
For instance, latency defines a dimension of the performance
category. Quantitative dimensions in QoS specification, also
referred to as metrics, measure specific quantifiable attri-
butes of the service. Qualitative dimensions, referred to as
policies, dictate the behavior of the services. These dimen-
sions are described in COCOA-L with references to ontol-
ogy concepts. Sabata et al. further classify the metrics into
categories of performance, security levels, and relative impor-
tance. Policies are divided into categories of management
and /level of service (Sabata et al., 1997).

Based on the aforementioned work, and the work intro-
duced in Ben Mokhtar et al. (2005), we introduce a base
QoS specification of services depicted in the UML diagram
of Fig. 6, which is adapted to pervasive environments. Spe-
cifically, we notice that although more QoS parameters yield
more detailed description, the gain has to be put up against
the increased overhead. Usually, a small number of param-
eters (i.e., <5) is sufficient to capture the dominant QoS
properties of a system (Dijk et al., 2000). Along with the fac-
tor of limited resources on mobile devices, we only take into
account the most dominant and descriptive dimensions in
our base QoS specification, instead of trying to incorporate
every possible applicable dimension. However, it can be eas-
ily extended with more dimensions, if requested by specific
services or tasks, by supporting the new dimensions in a
way similar to the ones discussed in this section.

In the latter diagram, dark colored boxes represent qual-
itative dimensions, whereas light colored boxes represent
quantitative ones. A QoS Property, is described based on
QoS dimensions and expressed as a boolean expression
using the following operators: and, or, not, equal, not-equal,
is-a, is-exactly-a, is-not-a, more-than, less-than, max-value-
of, min-value-of. The operators is-a, is-exactly-a and is-
not-a are used to compare qualitative properties, while
equal, not-equal, more-than, less-than, max-value-of, min-
value-of operators are used to compare quantitative prop-
erties. Finally, the and, or and not operators are used to
define composite properties.

According to our service model depicted in Fig. 4, a user
task has two kinds of required QoS properties: QoS prop-
erties specified at the level of capabilities expressing local
QoS requirements, and QoS properties specified at the level
of the whole task expressing global QoS requirements.
Local QoS requirements have to be satisfied by individual
advertised capabilities of services, whereas global QoS
requirements has to be satisfied by the resulting service
composition. The mechanisms used to check the fulfillment
of local and global QoS properties of user tasks are further
detailed in Sections 5.1 and 5.2, respectively.

3.3.2. Measurement of quantitative QoS dimensions

The specification of quantitative QoS dimensions in
service requests and advertisements requires providing
dimension measuring as accurate as possible. Service-level
dimensions can be measured easily (e.g., off-line measure-
ments using available quality analysis tools). Resource-
related measures for the services are also easy to obtain
after service execution, using available utilities (e.g., path-
char!' for bandwidth measurement). However, providing
accurate metrics measures for the selection of services prior
to their execution requires special care, since this relates to
predicting the service’s resource consumption. The predic-
tion of service metrics can be carried out based on histories
(Flinn et al., 2002; Narayanan and Satyanarayanan, 2003;

" http://www.caida.org/tools/utilities/others/pathchar.

http://www.caida.org/tools/utilities/others/pathchar

1948 S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955

QoS Property uses
I

uses

<<enumeration>>
Operator

+and

+or

+not

+equal
+not-equal
+is-a
+Hs-not-a
+Hs-exactly-a
+more-than
+Hess-than
+min-value-of
+max-value-of

Transaction

7 -

Availability
+Probability = [0..1]

Reliability

Lat:
Performance sibeizd

+Time in ms

CPU Load
+Percentage = [0,1]

Memory

Cost +Percentage = [0,1]
<] Bandwidth
+Percentage = [0,1]

Battery
+Percentage = [0,1]

Price

Fig. 6. QoS specification.

Gurun et al., 2004), which has been proved to be accurate
and efficient (Gurun et al., 2004).

In our case, while evaluating the QoS of a service com-
position, we provide two estimations for each QoS dimen-
sion: (1) a history-based, probabilistic estimation; and (2) a
pessimistic estimation. The former corresponds to an aver-
age estimation, while the latter corresponds to a worst case
estimation. Actually, we consider both the previous estima-
tions, which depend on the user’s task requirement (e.g.,
deterministic or probabilistic) in the user’s request. For
example, if the user demands a deterministic QoS, our
approach compares the requested QoS with the pessimistic
estimation of the composite service. If the user requires an
average QoS, the latter is compared against the probabilis-
tic estimation. Further details about how we perform these
estimations are given in Section 4.2. Moreover, we use
relative importance to characterize both the users’ prefer-
ences among the various QoS dimensions and the criticality
of the hosts’ resources. Further details about the use of
relative importance among QoS dimensions are given in
Section 5.2.

4. Formalisms for QoS-aware dynamic service composition
In this section we introduce two formalisms enabling the

integration of services’ conversations for realizing user
tasks with support of QoS.

4.1. Modeling service conversations as FSA

In order to ease service composition by enforcing control
and data dependencies of services/tasks, we propose to
model services and tasks conversations using finite state
automata. Other approaches to formalizing Web services
conversations and composition have been proposed in the
literature based on Petri nets (van der Aalst and ter Hofst-
ede, 2004), process algebras (Koshkina and van Breugel,
2003) or finite state machines (Foster et al., 2003). Fig. 7
describes the mapping rules that we have defined for trans-
lating an OWL-S process model to a finite state automaton.
In this model, automata symbols correspond to capabilities
described using COCOA-L. The initial state corresponds to
the beginning of the conversation, and final states corre-
spond to the end of a client/service interaction. Each con-
trol construct involved in a conversation is mapped to an
automaton using the rules depicted in Fig. 7. Then, these
automata are linked together in order to build a global
automaton. Further details about modeling OWL-S pro-
cesses as automata can be found in Ben Mokhtar et al.
(2005). Fig. 8 shows the automaton representing the e-movie
application. Both user tasks and networked services are
modeled as finite state automata. However, the user task’s
automaton is enriched with additional information in some
of its transitions, i.e., the probability for this transition to be
selected. More precisely, a probability value is introduced in

S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955 1949

P2 Pn

%’),\AC I I | I I_l_l
-50- 0

Atomic Process ap

Sequence(P1,P2,...,Pn) P1
P1 P1
\Y
€ €

Repeat-While(P1) Repeat-Until(P1)

Choice(P1,P2,...,Pn)

I l
I Ly I
e - Start state
0500
Final state ©
| I 3
| |“. | Former start state C)

e
. o @ Former final state

Split(P1,P2), Split+Join(P1,P2),
Pl Un)ortrred(Pd’ 2))

Fig. 7. Modeling OWL-S processes as finite state automata.

Search Get Get Local
Stream Context___Display

I Dlsplay ; ; @
Get Local
3 O

tream

Fig. 8. Automaton of the e-movie application.

the case of a Repeat-While, Repeat-Until and Choice con-
structs. For the first two constructs (loops), the information
added is the probability for the corresponding process to be
executed once again. In the case of the Choice control con-
struct, a probability is attached to each possible choice of
this construct. This information is necessary to calculate a
probabilistic QoS estimation of a composition, as further
discussed in the following section. For instance, if a compo-
sition involves a loop, the QoS of this composition depends
on how many times the user will execute this loop. All these
probabilities are evaluated based on histories and are
updated each time the user task is executed. In addition to
these probabilities, some other information is needed to
estimate the worst case value of QoS parameters. This infor-
mation is attached to each loop construct in the task’s pro-
cess, and gives the maximum number of times the loop can
be carried out during the execution of a user task.

4.2. Evaluating the QoS of composed User Tasks

In our approach, as the task is abstract, i.e., do not refer
to specific services, we need to extract the QoS formulae

Seq(o1,02)

O>020

(a) (b)

Sequence Reduction

% ; 5 o1,p1 Oouﬂi
' on pn

on,pn

(b)

Slmple loop Reductlon Dual loop Reduction

oi: operation
pi: probability before reduction
pi": probability after reduction

Fig. 9. Workflow constructs.

corresponding to each QoS metric. These formulae are
extracted in advance and stored with the task’s description.
Then, during the composition, each time an element is
being composed, these formulae are used to check the ful-
fillment of the task’s QoS requirements. A number of
research efforts propose reduction rules to compute the
QoS of a workflow (Cardoso et al., 2004; Menasce,
2004). We use the model proposed by Cardoso et al.
(2004) to extract the formula of each QoS dimension, cor-
responding to the task’s automaton structure. In this
approach, a mathematical model is used to compute QoS
for a given workflow process. More precisely, an algorithm
repeatedly applies a set of reduction rules to a workflow
until only one atomic node remains. This remaining node
contains the QoS formula for each considered metric, cor-
responding to the workflow under analysis. The algorithm
uses a set of six reduction rules: (1) sequential, (2) parallel,
(3) conditional, (4) fault-tolerant, (5) loop and (6) network.
However, as our automata model is an abstraction of the
OWL-S workflow constructs, we only need to keep the
reduction rules for sequential, conditional, and loops
systems.

As introduced earlier, we provide two estimations for
each QoS dimension: (1) a history-based probabilistic esti-
mation and (2) a pessimistic estimation. Fig. 9 and Tables 1
and 2 show how we perform these estimations. Fig. 9
describes the reduction rules to be applied for sequence,
choice and both simple and dual loop constructs. In this
figure capabilities represented on each transition (named
0;) provides some QoS attributes (e.g., Availability (noted
a;), Latency (noted /;), Cost'? (noted ¢;)). Besides these
attributes, some capabilities, i.e. those involved in the
choice and loops constructs, have additional information,
i.e., the probability to be selected (p;). These probabilities
are only used in the case of a probabilistic average estima-

12 11 the following we refer cost to any cost-related dimension, e.g., CPU
load, memory.

1950 S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955

Table 1
History-based probabilistic average QoS evaluation
Seq Choice Simple loop Dual loop

Availability — ajxa, Yap U {eple

Latency L+1h S Lip; llfp 71"””’]:(1”_" L)
o cotco—(1=p)co

Cost ate > cip; = S

Table 2

Pessimistic QoS evaluation

Seq Choice Simple loop Dual loop

Availability ay*a, Min(a;) N*a,*Min(a;) Nx*a,*a,*Min(a;)

Latency L+1L Max(l) N+*l,+ Max(l;) Nx*(I,+1,)+ Max(l;)

Cost ¢+ Max(c;) Nxc,+ Max(c;) Nx(c,+ c,r) + Max(c;)

tion of QoS. The formulae to be applied in this case are
described in Table 1. Note that in this Table, for each loop
case, the probabilities p; described in Fig. 9, are changing to
p; after reduction, where: p; = {2 On the other hand, eval-
uating a worst case estimation of QoS requires the use of
the above reduction rules, by applying the formulae
described in Table 2. In this case another information is
required for both loop cases, which is the maximum num-
ber of times a loop can be executed, as described earlier.
This information is represented by N in Table 2.

We focus on the QoS of a service composition with
respect to the three dimensions: availability, latency and
cost, because they are considered as important QoS dimen-
sions of user tasks (e.g., Cardoso et al., 2004) and other
quantitative dimensions can be calculated in a similar
way. For qualitative dimensions, their evaluation is trivial
since it only needs to ensure that the policy of each com-
posed service is no weaker than the user’s request. This is
done by reasoning on the semantic concepts describing
the required policies and the provided ones.

Having these two formalisms introduced, we present in
the following two sections the two mechanisms constituting
COCOA, i.e., QoS-aware service discovery (COCOA-SD)
in Section 5.1, and QoS-aware conversation integration
(COCOA-CI) in Section 5.2.

5. Mechanisms for QoS-aware dynamic service composition
5.1. QoS-aware service discovery: COCOA-SD

Service discovery allows finding in the pervasive envi-
ronment, at the specific time and place, service advertised
capabilities that match service requested capabilities
towards the realization of user tasks. Service discovery
decomposes into service matching and service selection as
described below.

5.1.1. Service matching
Service matching allows identifying services that provide
semantically equivalent capabilities with those of the user

task’s conversation. Furthermore, these capabilities should
fulfill the QoS properties required in the task’s requested
capabilities. We use the matching relation Match(Adv,Req)
to match an advertised capability Adv against a requested
capability Reg. This relation extends the relation defined
in Ben Mokhtar et al. (2006b) with the matching of QoS
properties. Specifically, the Match relation is defined using
the function distance(concept,, concept,), hereafter denoted
by d(concept,, concept,), which gives the semantic distance
between two concepts, concept; and concept,, as given in
the classified ontology to which the concepts belong. Pre-
cisely, if concept, does not subsume'?® concept, in the ontol-
ogy to which they belong to, the distance between the two
concepts does not have a numeric value, ie., d(con-
cepty, concept,) = NULL. Otherwise, i.e., if concept, sub-
sumes concept,, the distance takes as value the number of
levels that separate concept; from concept, in the ontology
hierarchy obtained after ontology classification. In this
relation, we consider the case where concept; is subsumed
by concept, as a mismatch and we assign the value NULL
to the relation d because such matching implies that a client
may be provided with an advertised capability that is more
specific than the requested capability, which may lead to a
malfunction of the advertised capability. For instance, if
the advertised capability translates only Latin languages
into other Latin languages, and the client provides in its
requested capability the concept Language as input, which
subsumes both Greek and Latin languages, the advertised
capability will not work if the client invokes the corre-
sponding service with a text in Greek as input. Moreover,
as we aim at the automatic realization of user tasks we
opt for the selection of only capabilities that are equivalent
or more generic than the requested capabilities, thus avoid-
ing the risk of malfunctioning capabilities.

Formally, let the advertised capability Adv be defined by
the set of required inputs Adv.In, a set of provided outputs
Adv.Out, a provided category Adv.Cat, and a set of pro-
vided QoS properties Adv.P. On the other hand, let the
requested capability Req be defined by a set of provided
inputs Regq.In, a set of required outputs Req.Out, a required
category Req.Cat and a set of required QoS properties
Req.P. The relation Match is then defined as:

Match(Adv, Req) = Vin' € Adv.In,3in € Req.In : d(in,in’) > 0 and
Yout' € Req.Out,Jout € Adv.Out : d(out,out’) > 0 and
d(Adv.Cat,Req.Cat) = 0

Vp' € Req.P,3p € Adv.P: (p = p')

From the above, the relation Match(Adv, Req) holds if and
only if all the required inputs of Adv are matched with in-
puts provided by Regq; all the required outputs of Req are
matched with outputs provided by Adv; the category re-
quired by Req is matched with the category provided by

13 Subsumption means the fact to incorporate something under a more
general category.

S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955 1951

Adv and all the required properties of Regq are matched
with properties provided by Adv.

5.1.2. Service selection

Service selection allows identifying which services from
those that offer semantically equivalent capabilities to the
capabilities of the user task are potentially useful for the
composition. The selection of services is based on the con-
trol dependencies that are inherent to their conversation
specification. For instance, a service that provides a seman-
tically equivalent capability to one of the requested capa-
bilities of the user task, could not be useful for the
composition if the latter capability has data or control
dependencies with capabilities that are not requested at
all in the user task. To perform this selection we use regular
expressions. Specifically, we extract from the task automa-
ton the regular expression that represents the language gen-
erated by this automaton. For each term of this regular
expression, which corresponds to a capability from the task
description, we introduce the quantifier? that indicates that
there is 0 or 1 occurrence of this term. For example, the
regular expression extracted for the automaton of the e-
movie application presented in Fig. 8 is given by:

(Browse)? (SearchDisplay)? (GetStream)? (GetContext)"
(LocalDisplay)?|(SearchDisplay)? (GetStream)? (GetContext)"
(LocalDisplay)?| (LocalDisplay)?

Let’s note by L the language generated by the extracted
regular expression and by Ly, L,,. .., L, the languages gen-
erated by the automata of the pre-selected services
S1,85,...,S,, respectively. COCOA-SD selects all the ser-
vices S; such that L N L; # (. For example, a service that
provides a sequence of capabilities that match semantically
the capabilities Browse and GetStream of the user task, is
selected.

This allows the selection of services that meet the control
dependencies of the user task by enabling the potential
interleaving of their conversations. Furthermore, if a data
dependency is specified between two capabilities of the user
task, only services that provide both these capabilities in
their conversation are kept from the previously selected
services.

Service selection is also based on QoS specifications.
Particularly, if local QoS requirements are specified in
some capabilities of the user task, service capabilities that
do not fulfill the latter requirements are not selected for
the composition.

5.2. QoS-aware conversation integration. COCOA-CI

Once semantic-aware service discovery is achieved, the
next step towards dynamic composition of user tasks, is
the integration of the conversations of the selected services.
COCOA-CI integrates the conversations of services
selected using COCOA-SD, to realize the conversation of
the target user task. Moreover, COCOA-CI supports inter-

leaving of these conversations. COCOA-CI integrates the
conversations of discovered services to realize the user task,
based on associated state automata.

COCOA-CI first integrates all the automata of selected
services in one global automaton. The global automaton
contains a new start state and empty transitions that con-
nect this state with the start states of all selected automata.
The automaton also contains other empty transitions that
connect the final states of each selected automaton with
the new start state. Consider the automaton representing
the conversation of the target user task depicted in
Fig. 10, left higher corner, and the automata representing
the conversations of the selected services, Fig. 10, right
lower corner. In this figure, all the automata of the selected
services are connected in a global automaton, in which all
the added transitions are represented with dashed lines.

The next step of COCOA-CI is to parse each state of the
task’s automaton starting with its start state, and following
its transitions. Simultaneously, a parsing of the global
automaton is carried out in order to find for each state
of the task’s automaton a state of the global automaton
that can simulate it, i.e., a task’s automaton state is simu-
lated by a global automaton state when for each incoming
symbol'* of the former there is at least one semantically
equivalent'® incoming symbol of the latter. For example,
in Fig. 10, the state #; of the task’s automaton can be sim-
ulated by the initial state of the global automaton because
the set of incoming symbols of 7;, is a subset of the set of
incoming symbols of the global automaton initial state.

COCOA-CI allows finding service compositions with
possible interleaving of conversations of the involved ser-
vices. Indeed, this is done by managing service sessions.
A service session characterizes the execution state of a ser-
vice conversation. A session is opened when a service con-
versation starts and ends when this conversation finishes.
Several sessions with several networked services can be
opened at the same time. This allows interleaving the inter-
actions with distinct networked services. Indeed, a session
opened with a service 4 can remain opened (temporary
inactive) during the interaction of the client with another
service B. An example of managing sessions is given in Step
(1) of the composition. In this step, the capability Browse of
the task’s automaton has been matched against the capabil-
ity Browse of the global automaton. The next step is to find
the capability Search Display of the task’s automaton (Step
(2)). However, this capability is not available in the Video
Streaming Service. This leads to open another session with
the Display Service as this service provides the sought capa-
bility. In Step (3) after matching the capability Search Dis-
play, the capability Get Stream is sought. A semantically
equivalent capability, i.e., the Send Stream capability, is

4 Incoming symbols of a state correspond to the labels of the next
transitions of this state.

15 We recall that equivalence relationship between capabilities is a
semantic equivalence that have already been checked by COCOA-SD.

1952

S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955

PDA Display Service ={

Browse Search Get Get

Loca
Dlsplay Stream ___ Context

|splay .
Stream search Get | '

ontex

i @ Local
Displa 2 Display
p=0.1 @

QoS Formula : Loe
Latency =0.7(L,+L +L, +0—+L)+0.2(L +L, +0

0.7 4,

GC

0.7
Availability=0.7(4,. A, . 4. Moc A)+0.2(4, .4 .
10,34, !
QoS Requirement :
Latency <5
Availability > 50%

(a): Discovery
—_— >

7+L) +0.1(2,)

AH010L,)
C

LocalDisplay}

Video Streaming Service 1 =({
Browse, SendStream,
Stop, Pause} °

Context Manager Service ={
= Get Location Context,
° Get Person Context} -

—_—

Display Service ={
Display}

Video Streaming Service 2 ={

l(b): Selection
[~ N
~
s Sench
Ve Browse Stream\

(. VS1.Get
Stream

CM.Get

PDA Local
Context

QVS1 -Browse Ds Display L
isplay

CM.Get

Context ‘ ©
PDA .Local

Display

Estimated QoS :
Latency = 0.7(1+1+1+(1/0.7)+1)+0.2(1+1+(1/0.7)+1)+0.1*1=4,79 < 5

VS2.Get
Stream

CM.Get
Context

PDA Local

DS, Display Display

g VS2.Browse

CM.Get
Context

PDA Local
Display

Estimated QoS :
Latency = 0.7(5+1+1+(1/0.7)+1)+0.2(1+(1/0.7)+1) +0.1*1=4.44 < 5

Resulting service compositions

Availability =0.7(0.8*1*0.8*0.7/0.7*1)+0.2(0.8*1*0.7/0.7*1)+0.1*1=0.75>0.5

Availability =0.7(0.7*1*0.8*0.7/0.7*1)+0.2(0.7*1*0.7/0.7*1)+0.1*1=0.64>0.5

ervice 1 (VS1)

v,

Video Streaming
Service 2 (VS2)

Context Manager
ervice (CM)

PDA Display
Service (PDA)

Display Service
Display (DS)
L=1,A=1

Selected Services

Fig. 10. Conversation Integration.

accessible in the Video Streaming Service from the previ-
ously opened session.

An important condition that has to be observed when
managing sessions is that each opened session must be
closed, i.e., it must arrive to a final state of the service
automaton. During the composition process, various paths
in the global automaton, which represent intermediate com-
positions, are investigated. Some of these paths will be
rejected during the composition while some others will be
kept (e.g., if a path involves a service in which a session
has been opened but never closed, this path will be rejected).

In addition to checking for each state the equivalence
between incoming capabilities, a verification of the confor-
mance to the QoS constraints of the user task is performed.
This is done by using the QoS formulae that have been
extracted from the task’s automaton structure as described
in Section 4.2. Thus, we start with the QoS formula for
each QoS dimension, in which we initially assume that all

capabilities will provide the best value of the considered
QoS dimension (for example, latency = 0, availability = 1).
Then, each time we examine a service capability, we replace
the corresponding best value in the formula of the consid-
ered dimension, with the real QoS value of the capability.
This allows evaluating at each step of the integration the
values of all QoS dimensions in the case that the current
capability is selected. These values are then compared to
the corresponding values required by the user task, and if
the constraints are not met, the path in the global autom-
aton that includes this capability is rejected.

COCOA-CI gives a set of sub-automata from the global
automaton that conforms to the task’s automaton struc-
ture (two sub-automata are depicted in the left lower cor-
ner of Fig. 10). Each of these automata is a composition
of networked services that conforms to the conversation
of the target user task, further enforcing valid service
consumption.

S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955 1953

Once the set of possible compositions is given (See
Fig. 10 where two compositions are given by COCOA-
CI), a last stage is to choose the best among resulting com-
positions, on the basis of provided QoS. However, since
different dimensions are in different units, data normaliza-
tion is needed. In our case, we apply standard deviation
normalization on the various dimensions as in Issarny
and Liu (2004):

2 if (d(c) —m(d) > 2 % 6(d))
d(e) =10 if (d(e;) — m(d) < =2 % 5(d))
dé"”*);"g;‘f) +1 otherwise

(1)

where d(c¢;) is the value of dimension d for the service com-
position ¢;, and m(d) and J(d) are the mean value and stan-
dard deviation for dimension d, respectively. Note that for
QoS parameters that are stronger with smaller values (e.g.,
latency), d'(¢;) is further transformed by d’(c;) =2 — d'(¢;),
so that stronger values are normalized to greater values.

With every dimension normalized, every service compo-
sition is evaluated based on a benefit function like in
Issarny and Liu (2004):

n

Overall Benefit = Z(d (¢;) * w;)/Service Composition Cost

7 @

where w; is the relative importance of the considered
dimension.

Using the service composition that has been selected, the
conversation description of the user task is complemented
with information coming from the composed services. Spe-
cifically, each capability of the user task is replaced with the
corresponding capability of the networked services. This
capability may correspond to either one single or a sequence
of client/service interactions. Furthermore, a grounding
description for the user task, which contains the binding
information of the composed services is generated.

The complemented task’s description and the generated
grounding are sent to an execution engine that performs
the user task by invoking the appropriate networked
services.

6. Prototype implementation and performance evaluation

COCOA decomposes into two main mechanisms,
COCOA-SD for discovering component services and
COCOA-CI for integrating the conversations of selected
services. COCOA-SD relies on semantic reasoning on
ontologies used to infer relations between semantic descrip-
tions, which we have identified as a costly mechanism (Ben
Mokhtar et al., 2006c). Nevertheless, semantic discovery of
service capabilities can be performed efficiently in pervasive
computing environments upon the deployment of appro-
priate solutions. Indeed, in Ben Mokhtar et al. (2006b)
we present an efficient semantic service discovery protocol

for pervasive computing environments. Results show that
rich, semantic service discovery can be performed with
response times comparable to the syntactic WSDL-based
service discovery. Furthermore, we define mechanisms for
structuring service repositories based on the semantic spec-
ification of services, which increases the scalability of our
protocol. Further details about efficient semantic service
discovery in pervasive computing environments can be
found in Ben Mokhtar et al. (2006b).

In this article we are primarily interested in evaluating
the performance of COCOA-CI, which is at the heart of
the composition process, as well as the impact of support-
ing QoS awareness.

We have implemented COCOA-CI in Java, on a Linux
platform running on a laptop with an Intel Pentium 4,
2.80 GHz CPU and 512 MB of memory. The performance
of COCOA-CI is proportional to the complexity of the task
and services’ conversations. Specifically, the response time
of the algorithm is proportional to the number of possible
(intermediate) composition paths investigated during the
execution of the algorithm. There are two main factors
contributing to the increase of the intermediate composi-
tion paths: (1) the number of semantically equivalent capa-
bilities provided by networked services; (2) the number of
capabilities requested in the task’s conversation. We have
carried out two experiments, each evaluating the impact
of each factor on the performance of COCOA-CI. In both
experiments, each value is calculated from an average of 10
runs.

Fig. 11 considers the first factor. In this figure, the num-
ber of capabilities provided by networked services is
increasing from 10 to 100 capabilities that are semantically
equivalent. We compare the performance of COCOA-CI
with the XML parsing of the services and task descriptions,
which is inherent to the use of Web services and semantic
Web technologies. The resulting curves show that the cost
of our algorithm is negligible compared to the XML pars-
ing time. Fig. 12 considers the second factor. In this figure,

600 T T T T T
XML
Matching Algorithm (Fixed task dgpth = 1) ---x---

500

400

300

Time (ms)

200

100

120

Services’ Number of Operations

Fig. 11. Performance of COCOA-CI (increasing the number of seman-
tically equivalent capabilities provided by services).

1954 S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955

the number of capabilities provided by the networked ser-
vices is fixed to the worst case coming from the previous
experiment, i.e., 100 semantically equivalent capabilities,
while the number of capabilities requested in the task’s
conversation is increasing from 1 to 20. The experiment
that is depicted in this figure corresponds to the compari-
son of the performance of COCOA-CI with the XML pars-
ing of the services and the task conversation descriptions.
The figure shows an extreme scenario for our algorithm,
as each capability requested in the task’s conversation is
matched against 100 capabilities, and the resulting number
of possible compositions is equal to: 100" in each case,
where nb is the number of capabilities requested in the
task’s conversation. We can see that for a number of pos-
sible compositions less than 100'°, our algorithm takes less
time than the XML parsing time. In realistic cases, both the
user task and networked services will contain various capa-
bilities organized using various workflow constructs, thus
leading to the decrease of possible resulting compositions.
Consequently, the response time will be reasonable for
the pervasive computing environment. Indeed, we have
applied our algorithm in a real case example in which the
task’s conversation contains twenty requested capabilities
and the selected services provide thirty capabilities, includ-
ing various control constructs (e.g. sequence, choice, loop).
In spite of the large number of capabilities requested in the
task’s conversation, the algorithm spent only 32 millisec-
onds to find the two resulting compositions among 36
intermediate compositions, against 152 milliseconds for
the XML parsing time.

Fig. 12 shows also another important result, which is the
impact of introducing QoS in our integration algorithm.
This impact is amounts to a small increase in the XML
parsing time, which is due to the addition of XML tags
for describing QoS, while at the same time to a consider-
able decrease of the execution time of our algorithm. This
is attributed to the rejection of a number of paths that do
not fulfill the QoS requirements of the user task during the
integration.

1000

800 |-

600 |-

Time (ms)

400

200

0 1 1 1 1
0 5 10 15 20 25

User Task’s Depth

Fig. 12. Performance of COCOA-CI with and without QoS (fixed number
of service capabilities, increasing the task’s number of capabilities).

7. Conclusion

The pervasive computing vision is increasingly enabled
by the large success of wireless networks and devices. In
pervasive environments, heterogeneous software and hard-
ware resources may be discovered and integrated transpar-
ently towards assisting the performance of users’ daily
tasks. Building upon the service oriented architecture par-
adigm and particularly Web services allows having a
homogeneous view of the heterogeneous services populat-
ing pervasive environments, as services have standard
descriptions and communicate using standard protocols.
However, realizing such a vision still requires dealing with
the syntactic heterogeneity of service descriptions. Most
existing solutions to dynamic composition of networked
services in pervasive environments poorly deal with such
heterogeneity, since they assume that components being
integrated have been developed to conform syntactically
in terms of interfaces.

Building upon semantic Web services, we presented in
this article COCOA, our solution to dynamic service com-
position in pervasive computing environments. COCOA
presents a number of attractive features. Indeed, COCOA
enables the integration of services having a complex behav-
ior for the realization of user tasks that also have complex
behaviors. Specifically, the realization of the user task varies
each time a user task is performed according to the specifics
of services available in the current pervasive environment.
This realization may vary from the integration of individual
service capabilities, to the interleaving of potentially com-
plex service conversations. Furthermore, COCOA allows
meeting QoS requirements of user tasks.

For the QoS-aware dynamic realization of tasks, we first
presented COCOA-L, an OWL-S based language enabling
the specification of service advertised and requested capa-
bilities, service conversations, as well as the specification
of QoS properties. Then, we presented COCOA-SD, which
enables QoS-aware semantic service discovery and
COCOA-CI, for the QoS-aware dynamic integration of
the selected service conversations.

To perform such a composition, COCOA introduces
an abstraction of OWL-S based conversations as finite
state automata. This translates the difficult issue of con-
versation integration to an automata analysis problem
by further enabling the assessment of services and tasks
data and control dependencies. Furthermore, for enabling
QoS-awareness, COCOA-L allows the specification of
both local and global QoS requirements of user tasks.
Task’s local QoS requirements are those related to partic-
ular requested capabilities of the user task, they are
checked by COCOA-SD when selecting service advertised
capabilities that semantically match requested capabilities
of the user task. On the other hand, global QoS require-
ments are checked by COCOA-CI when integrating ser-
vice conversations and require the aggregation of QoS
properties coming from the multiple advertised capabili-
ties to be integrated.

S. Ben Mokhtar et al. | The Journal of Systems and Software 80 (2007) 1941-1955 1955

We further presented in this article a prototype imple-
mentation and evaluation of COCOA. In this article, we
have been primarily interested in evaluating the perfor-
mance of COCOA-CI and the impact of introducing
QoS-awareness in the composition process. Indeed, a preli-
minary solution for efficient semantic service discovery in
pervasive environment, has previously been introduced in
Ben Mokhtar et al. (2006b). For evaluating a prototype
implementation of COCOA-CI, we have compared its
response time against the time spent for the XML parsing
of services and task descriptions, which is inherent to the
use of Web services and semantic Web technologies.
Results show that in more realistic cases, COCOA over-
head is negligible compared to XML parsing. We have fur-
ther done experiments for evaluating the impact of
introducing QoS-awareness in COCOA. Results show the
introduction of QoS constraints improves the performance
of COCOA-CI. Our ongoing research efforts include the
deployment of COCOA-CI on top of an existing semantic
service discovery protocol for pervasive environments (e.g.,
Ben Mokhtar et al., 2006b), such that the composition of
user tasks can be performed transparently and in a distrib-
uted manner by a set of collaborating service directories of
the pervasive computing environment.

References

Aggarwal, Rohit, Verma, Kunal, Miller, John, Milnor, Willie, 2004.
Dynamic web service composition in meteor-s. Technical report,
LSDIS Lab, Computer Science Dept., UGA.

Aurrecoechea, C., Campell, A.T., Hauw, L., 1998. A survey of QoS
architectures. ACM/Springer Verlag Multimedia Systems Journal,
Special Issue on QoS Architecture. 3(6) 138-151.

Bansal, Sharad, Vidal, Jose M., 2003. Matchmaking of web services based
on the daml-s service model. In: Proceedings of the Second Interna-
tional Joint Conference on Autonomous Agents and Multi-agent
Systems.

Ben Mokhtar, Sonia, Georgantas, Nikolaos, Issarny, Valerie, 2005. Ad
hoc composition of user tasks in pervasive computing environments.
In: Proceedings of the 4th Workshop on Software Composition (SC
2005). Edinburgh, UK, April 2005. LNCS.

Ben Mokhtar, Sonia, Liu, Jinshan, Georgantas, Nikolaos, Issarny,
Valerie, 2005. Qos-aware dynamic service composition in ambient
intelligence environments. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering
(ASE’05).

Ben Mokhtar, Sonia, Georgantas, Nikolaos, Issarny, Valerie, 2006.
Cocoa: Conversation-based service composition in pervasive comput-
ing environments. In: Proceedings of the IEEE International Confer-
ence on Pervasive Services (ICPS’06).

Ben Mokhtar, Sonia, Kaul, Anupam, Georgantas, N., Issarny, Valerie,
2006. Efficient semantic service discovery in pervasive computing
environments. In: Proceedings of ACM/IFIP/USENIX 7th Interna-
tional Middleware Conference (Middleware’06).

Ben Mokhtar, Sonia, Kaul, Anupam, Georgantas, Nikolaos, Issarny,
Valerie, 2006. Towards efficient matching of semantic web service
capabilities. In: Proceedings of the workshop of Web Services
Modeling and Testing (WS-MATE’06).

Berners-Lee, Tim, Hendler, James, Lassila, Ora, 2001. The semantic web.
Scientific American.

Bernstein, A., Klein, M., 2002. Towards high-precision service retrieval.
In: Proceedings of The First International Semantic Web Conference
(ISWC’02).

Brogi, A., Corfini, S., Popescu, R., 2005. Composition-oriented service
discovery. In: Proceedings of the 4th Workshop on Software Compo-
sition (SC’05).

Cardoso, Jorge, Sheth, Amit Miller, John, Arnold, Jonathan, Kochut,
Krys, 2004. Quality of Service for workflows and Web service
processes. Journal of Web Semantic.

Dijk, H.V., Langendoen, K., Sips, H., 2000. ARC: a bottom-up approach
to negotiated QoS. In: IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA 2000), December, 2000.

Flinn, J., Park, S.Y., Satyanarayanan, M., 2002. Balancing performance,
energy, and quality in pervasive computing. In: Proceedings of IEEE
ICDCS.

Foster, Howard, Uchitel, Sebastian, Magee, Jeff, Kramer, Jeff, 2003.
Model-based verification of web service compositions. In: IEEE
International Conference on Automated Software Engineering.

Gurun, S., Krintz, C., Wolski, R., 2004. NWSLite: a light-weight
prediction utility for mobile devices. In: Proceedings of ACM
MobiSys.

Issarny, Valerie, Liu, Jinshan, 2004. QoS-aware service location in mobile
ad-hoc networks. In: IEEE International Conference on Mobile Data
Management (MDM’04).

Issarny, Valerie, Sacchetti, Daniele, Tartanoglu, Ferda, Sailhan, Franc-
oise, Chibout, Rafik, Levy, Nicole, Talamona, Angel, 2004. Develop-
ing ambient intelligence systems: A solution based on web services.
Journal of Automated Software Engineering.

Koshkina, M., van Breugel, F., 2003. Verification of business processes for
Web services. Technical report. York University.

Majithia, Shalil, Walker, David W., Gray, W.A., 2004. A framework for
automated service composition in service-oriented architecture. In:
First European Semantic Web Symposium.

Masuoka, Ryusuke, Parsia, Bijan, Labrou, Yannis, 2003. Task computing
— the semantic web meets pervasive computing. In: Second Interna-
tional Semantic Web Conference (ISWC2003).

Menasce, D., 2004. Composing Web services: A QoS view. IEEE Internet
Computing 8 (6).

Narayanan, D., Satyanarayanan, M., 2003. Predictive resource manage-
ment for wearable computing. In: Proceedings of ACM MobiSys.
Patil, Abhijit A.,Oundhakar, Swapna A., Sheth, Amit P., Verma, Kunal,
2004. Meteor-s web service annotation framework. In: Proceedings of

the 13th Conference on World Wide Web.

Roman, Manuel, Hess, Christopher, Cerqueira, Renato, Ranganathan,
Anand, Campbell, Roy H., Nahrstedt, Klara, 2002. Gaia: a middle-
ware platform for active spaces. SIGMOBILE Mobile Computing and
Communication Review 6 (4).

Sabata, B., Chatterjee, S., Davis, M., Sydir, J.J., Lawrence, T.F., 1997.
Taxonomy for QoS specification. In: Proceedings of Workshop on
Object-oriented Real-time Dependable Systems (WORDS 97), New-
port Beach, California, USA.

Sousa, Joao Pedro, Garlan, David, 2002. Aura: an architectural frame-
work for user mobility in ubiquitous computing environments. In:
Proceedings of the IFIP 17th World Computer Congress — TC2
Stream/3rd IEEE/IFIP Conference on Software Architecture.

The DAML Services Coalition, 2004. Bringing semantics to web services:
The owl-s approach. In: Proceedings of the First International
Workshop on Semantic Web Services and Web Process Composition
(SWSWPC’04).

van der Aalst, W.M.P., ter Hofstede, A.H.M., 2004. Yawl: Yet another
workflow language. Information Systems.

	COCOA: COnversation-based service COmposition in pervAsive computing environments with QoS support
	Introduction
	Service composition in pervasive computing environments: state of the art
	COCOA-L: an OWL-S based service and task description language
	Requested and advertised capabilities
	Service conversation specification
	Service QoS specification and measurement
	QoS specification
	Measurement of quantitative QoS dimensions

	Formalisms for QoS-aware dynamic service composition
	Modeling service conversations as FSA
	Evaluating the QoS of composed User Tasks

	Mechanisms for QoS-aware dynamic service composition
	QoS-aware service discovery: COCOA-SD
	Service matching
	Service selection

	QoS-aware conversation integration: COCOA-CI

	Prototype implementation and performance evaluation
	Conclusion
	References

