
Code: analysis, bugs, and security
supported by Bitdefender

Compiler basics. LLVM compiler infrastructure

Marius Minea
marius@cs.upt.ro

1 November 2017

mailto:marius@cs.upt.ro


Compilers: generate executable code

#include <disclaimer.h>
Not a compilers course

Basics for understanding / analyzing / reverse engineering code



Compilation steps

Preprocessing

Lexical analysis (scanner)

Syntactic Analysis (parser)

Semantic Analysis
e.g. type checking

Intermediate Representation Generation

IR Optimization

Code generation



Abstract and concrete syntax

Concrete syntax
includes representation details (keywords, punctuation)

Abstract syntax
represents conceptual structure (no keywords, but various node

types, attributes, etc.)
implicit language elements (conversions,...) may appear explicitly

⇒ abstract syntax tree

IfStmt

ElseStmtThenStmtCond

AST is starting point for subsequent processing −→ CFG



Control flow graph (CFG)

int a = 0, b, c = 0;
do {

b = a + 1;
c = c + b;
a = 2 * b;

} while (a < 100);
return c;

a = 0

c = 0

b = a + 1

c = c + b

a = 2 * b

return c
a≥100

nodes are basic blocks: straight-line code segments
with single entry and exit

fundamental data structure for analysis and code generation



Dataflow analyses

obtains information about possible sets of values computed at
various points in the program

value need not be numeric: any useful information

Reaching Definitions uninitialized variables ?

Live Variables “value assigned but never used”
what/how many registers needed ?

Available Expressions Very Busy Expressions
for code motion / optimization



Intermediate formats

Higher-level IR
preserves object structure
for dataflow and other analyses

Lower-level IR
for code generation and optimization



Static single assignment (SSA) form

IR in which every variable is assigned exactly once
so new auxiliary variables are introduced

Developed by IBM researchers in 1980s
significantly simplifies dataflow analysis



SSA by example

https://en.wikipedia.org/wiki/Static_single_assignment_form

https://en.wikipedia.org/wiki/Static_single_assignment_form


SSA by example (cont’d)
For joins of then and else branches, introduce special Φ-node,
depending on one of two variables

(like conditional expression)

https://en.wikipedia.org/wiki/Static_single_assignment_form

https://en.wikipedia.org/wiki/Static_single_assignment_form


LLVM Intermediate Representation

LLVM: collection of compiler & toolchain technologies
started by Chris Lattner (later: Apple) & Vikram Adve at UIUC
now open-source, very widely used

Clang: compiler in the LLVM framework, alternative to gcc
many analyses & security add-ons done for clang

Can write our own:
analysis passes (do not change code)
transformation passes (keep or change behavior)



Sample LLVM intermediate code

define i32 @delta(i32 %a, i32 %b, i32 %c) #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i32, align 4
store i32 %a, i32* %1, align 4
store i32 %b, i32* %2, align 4
store i32 %c, i32* %3, align 4
%4 = load i32* %2, align 4
%5 = load i32* %2, align 4
%6 = mul nsw i32 %4, %5
%7 = load i32* %1, align 4
%8 = mul nsw i32 4, %7
%9 = load i32* %3, align 4
%10 = mul nsw i32 %8, %9
%11 = sub nsw i32 %6, %10
ret i32 %11
}



Same code optimized

define i32 @delta(i32 %a, i32 %b, i32 %c) #0 {
%1 = mul nsw i32 %b, %b
%2 = shl i32 %a, 2
%3 = mul nsw i32 %2, %c
%4 = sub nsw i32 %1, %3
ret i32 %4

}

Notice: 3-address code, in SSA form

C source:

int delta(int a, int b, int c) {
return b * b - 4 * a * c;

}



Same code optimized

define i32 @delta(i32 %a, i32 %b, i32 %c) #0 {
%1 = mul nsw i32 %b, %b
%2 = shl i32 %a, 2
%3 = mul nsw i32 %2, %c
%4 = sub nsw i32 %1, %3
ret i32 %4

}

Notice: 3-address code, in SSA form

C source:

int delta(int a, int b, int c) {
return b * b - 4 * a * c;

}



Register allocation

first: live variable analysis
determines when a value no longer needed

Common technique: graph coloring
one node for each temp variable
connect two temps if live at same time
⇒ cannot be in same register find minimum coloring, no edge

with same node colors

If insufficient ⇒ register spilling
must be save in memory / on stack



Compiler optimizations

Many different types, from early to late in code generation

Local optimizations – within basic blocks
peephole optimizations – a few instructions, assembly level

Global optimizations – within function body

Interprocedural optimizations – expensive analysis



Common optimizations

Constant folding
precompute value of constant expression

Dead Code Elimination
needs live variable analysis

Algebraic Simplification
pow(x, 2) → x * x
x * 4 → x << 2

Common Subexpression Elimination
compute once into temp, use several times



Loop optimizations

Strength reduction
replace expensive with simpler operations (esp. in loops)
need to know:

loop invariants
loop induction variables

for (int i=0; i<n; ++i)
a[i] = k * i;

for (int i=0, s=0; i<n; ++i) {
a[i] = s;
s += k;

}

Scalar evolution
for loops with regular computations (e.g. polynomials)
can compute loop counts, summarize loops, etc.



Loop unrolling
Branch instructions are expensive
⇒ copy loop body several times, reducing loop count
count may be statically known or not

Classic example: Duff’s device
void send(int *to, int *from, unsigned count)
{

register int n = (count + 7) / 8;
switch (count % 8) {
case 0: do { *to = *from++;
case 7: *to = *from++;
case 6: *to = *from++;
case 5: *to = *from++;
case 4: *to = *from++;
case 3: *to = *from++;
case 2: *to = *from++;
case 1: *to = *from++;

} while (--n > 0);
}

}


